

Application-Oriented Manual

User-programmable Prim Interface

60882048

We automate your success.

2 Jetter AG

Introduction

Item # 60882048
Revision 1.10
April 2017 / Printed in Germany

This document has been compiled by Jetter AG with due diligence, and based on the known state of the art.
In the case of modifications, further developments or enhancements to products shipped in the past, a revised document
will be supplied only if required by law, or deemed appropriate by Jetter AG. Jetter AG shall not be liable for errors in form
or content, or for missing updates, as well as for damages or disadvantages resulting from such failure.
The logos, brand names, and product names mentioned in this document are trademarks or registered trademarks of
Jetter AG, of associated companies or other title owners and must not be used without consent of the respective title
owner.

Jetter AG 3

User-programmable Prim interfaces Contents

Table of Contents

1 User-programmable serial interface 5

1.1 Connection ... 6
Serial interface port X11 ... 7

1.2 Functioning principle of the user-programmable interface .. 10
Functioning principle .. 11

1.3 Registers ... 14
Register numbers ... 15
Registers - Description ... 16

1.4 Programming .. 23
Configuring the interface .. 24
Sending characters .. 25
Sending texts ... 26
Sending values... 27
Receiving characters ... 28
Receiving values .. 29

2 User-programmable IP interface 31

2.1 Programming .. 33
Initializing the user-programmable IP interface ... 34
Establishing a connection .. 35
Sending data .. 39
Receiving data ... 41
Terminating a connection ... 44

2.2 Registers ... 45
Register numbers ... 46
Registers - Description ... 47

3 User-programmable CAN-Prim interface 51

Restrictions regarding the CAN-Prim interface .. 53
User-programmable CAN-Prim interface - Operating principle ... 57
Internal processes of the CAN-Prim interface ... 58
Register description - CAN-Prim interface ... 59
CAN message box - Description of registers for direct access ... 64
CAN message box - Description of registers for indirect access ... 70
Using the CAN-Prim interface (direct access) ... 74
Using CAN-ID masks ... 77
RTR frames via CAN-Prim interface .. 78

Jetter AG 5

User-programmable Prim interfaces User-programmable serial interface

1 User-programmable serial interface

This chapter describes how to address the serial interface of the controller
from within the application program to allow sending and receiving characters.

The user-programmable serial interface lets you connect devices which use
communication protocols that are not supported by the OS of the controller,
Fields of application, for example, are:

 Scales
 Scanners
 Display elements
 Frequency inverters
 Temperature controllers
 etc.

This chapter addresses programmers of application programs with experience
in data transfer via asynchronuous serial interfaces. Expertise in the following
areas is prerequisite:

 Wiring of serial interfaces
 Communication parameters (baud rate, parity, etc.)
 Transmit and receive buffers
 etc.

Topic Page
Connection .. 6
Functioning principle of the user-programmable interface 10
Registers ... 14
Programming .. 23

Introduction

Applications

Required programmer's
skills

Contents

6 Jetter AG

1 User-programmable serial interface

1.1 Connection

This chapter covers the connection to a user-programmable serial interface of
the device.

Topic Page
Serial interface port X11 .. 7

Introduction

Contents

Jetter AG 7

User-programmable Prim interfaces User-programmable serial interface

Serial interface port X11

Port X11 lets you connect the following devices:

 PC
 HMI by Jetter AG
 Any device with RS-232/422/485 interface

X11

SE
R

1

2

3

4

5
8

7

6

Pin Signal Description

1 RDA RS-422; receive data inverted

2 GND Reference potential

3 RDB RS-422; receive data not inverted

4 RxD RS-232; receive data

5 SDB RS-422; sending data not inverted
RS-485; sending / receive data not inverted

6 DC 24 V HMI supply voltage

7 SDA RS-422; sending data inverted
RS-485; sending / receive data inverted

8 TxD RS-232; sending data

Irrespective of the fact that various hardware drivers have been implemented,
only one hardware interface is available.
This means:
While, for example, communication via RS-422 is taking place, simultaneous
and independent communication via RS-232 is not possible.

Devices to connect with
this port

Pin assignment

Restrictions

8 Jetter AG

1 User-programmable serial interface

X11.3 [RDB]

X11.5 [SDB]

X11.1 [RDA]

X11.7 [SDA]

33 kΩ

33 kΩ

+3V3

+3V3

33 kΩ

33 kΩ

RT

RT

RT

RT

Number Part Function in the case
of RS-422

Function in the case
of RS-485

1 Receiver Receives data Unused

2 Receiver / sender Sends data Receives and sends
data

3 Serial line Twisted line of the serial interface

4 RT Terminating resistor

Connect a terminating resistor to both serial lines in the following cases:

 Long lines
 High baud rates

Select a terminating resistor which corresponds to the impedance of the line
used.

Block diagram

Terminating resistor

Jetter AG 9

User-programmable Prim interfaces User-programmable serial interface

Parameter Description

Type of terminal MiniDIN, shielded

Number of pins 8

Electrical isolation None

Number of interfaces 1 serial port

Interface standards RS-232/RS-422/RS-485-2

Baud rates JC-4xx: 1,200 ... 115,200 baud
JC-3xx: 2,400 ... 115,200 baud

Bits per character 5, 6, 7, 8

Number of stop bits 1, 2

Parity even, odd, none

For connecting devices to port X11 you can order the following cables:

Item no. Item Description

60867209 KAY_0576-0050 JetControl to modem with 9-pin
Sub-D, length 0.5 m

60868359 Cable assy # 196 2.5M JetControl to PC with 9-pin Sub-D,
length 2.5 m

60860013 Cable assy # 196 5M JetControl to PC with 9-pin Sub-D,
length 5 m

60868956 Cable assy # 196 8M JetControl to PC with 9-pin Sub-D,
length 8 m

60860011 Cable assy # 192 2.5M JetControl to HMI with 15-pin Sub-D,
length 2.5 m

60860012 Cable assy # 193 5M JetControl to HMI with 15-pin Sub-D,
length 5 m

60872142 Cable assy # 192 10M JetControl to HMI with 15-pin Sub-D,
length 10 m

60872884 Cable assy # 192 15M JetControl to HMI with 15-pin Sub-D,
length 15 m

60864359 KAY_0386-0250 JetControl to LCD 60 with 15-pin
Sub-D, length 2.5 m

60864360 KAY_0386-0500 JetControl to LCD 60 with 15-pin
Sub-D, length 5 m

60864897 KAY_0533-0025 JetControl to LCD 52/54 with 15-pin
Sub-D, length 0.25 m

60864257 Cable assy # 197 5M JetControl to JetView 200/300 with
9-pin Sub-D, length 5 m

60871930 Cable assy # 197 12M JetControl to JetView 200/300 with
9-pin Sub-D, length 12 m

Technical specifications

Cables for port X11

10 Jetter AG

1 User-programmable serial interface

1.2 Functioning principle of the user-programmable
interface

This chapter describes the functioning principle of the user-programmable
serial interface.

When using the user-programmable serial interface the following restrictions
apply:

 Irrespective of the fact that various hardware drivers have been
implemented, only one hardware interface is available.
This means: While, for example, communication via RS-422 is taking
place, simultaneous and independent communication via RS-232 is not
possible.

 The controller does not execute the pcomX protocol any more.
This means: This protocol can no longer be used to communicate, for
example, with JetSym, JetViewSoft or HMIs via this protocol.

Topic Page
Functioning principle ... 11

Introduction

Restrictions

Contents

Jetter AG 11

User-programmable Prim interfaces User-programmable serial interface

Functioning principle

The OS of the device provides for the user-programmable serial interface a
receive buffer and a transmit buffer. They can be used to adjust the transfer
rate between application program and serial interface.

The following illustration shows the block diagram of the user-programmable
serial interface:

Driver

Driver

Receiver

Transmitter

Receive-FIFO

Transmit-FIFO

R
ec

ei
ve

 R
eg

is
te

r
Tr

an
sm

it
R

eg
is

te
r

S
ta

tu
s

an
d

C
on

tro
l

R
eg

is
te

r

The user-programmable serial interface consists of the following elements:

Number Part Function

1 Interface driver Converts signals of different interface standards
(RS-232, RS-422, RS-485) into internal signal
levels

2 Addressee Performs serial/parallel conversion

3 Receive buffer Buffer for received characters

4 Receive register Read access to this register reads the received
characters in the receive buffer (3).

5 Interface driver Converts internal signal levels into signals of
different interface standards (RS-232, RS-422,
RS-485)

6 Transmitter Performs parallel/serial conversion

7 Transmit buffer Buffer for characters to be sent

8 Transmit register Write access to this register causes the
characters to be entered into the transmit buffer
(7) and to be sent by the transmitter (6).

Introduction

Block diagram

Elements of the interface

12 Jetter AG

1 User-programmable serial interface

Number Part Function

9 Status and control
register

Query of filling levels and error states of buffers;
setting of transmission parameters

A character is received as described below:

Step Description

1 The interface driver converts signals "on the line" into internal signal levels
and forwards them to the receiver.

2 The receiver performs serial/parallel conversion of this character and
checks the set communication parameters.

3 The receiver enters the character into the receive buffer if there is any
place left. Otherwise, the character is discarded and buffer overflow is
signaled.

4 Via receive register the character can be read out of the receive buffer.

A character is transmitted as described below:

Step Description

1 Via transmit register the character is entered into the transmit buffer if
there is any place left. Otherwise the character is discarded.

2 Once the transmitter has sent a character, it reads the next character from
the transmit buffer.

3 The transmitter performs parallel/serial conversion and sends this
character to the interface driver using the set communication parameters.

4 The interface driver converts internal signal levels into the various
interface standards.

When receiving characters, the following errors are detected by the controller
and displayed in the register Error state:

Error Description Effect

Framing error The format of the received
character does not match the
set parameters.

The erroneous character(s) is (are)
stored in the receive buffer and
error bit Framing error is set. The
error counter is incremented.

Parity error The parity bit of the received
character is not correct.

The erroneous character is stored
in the receive buffer and error bit
Parity error is set. The error
counter is incremented.

Buffer overflow A character is received,
although the receive buffer is
full.

The character is discarded and
error bit Overflow is set. The error
counter is incremented.

Receiving a character

Sending a character

Error detection

Jetter AG 13

User-programmable Prim interfaces User-programmable serial interface

As error bits cannot be assigned to individual characters in the receive buffer,
all characters should be removed from the receive buffer and discarded when
an error bit is set.
Possible causes of error and troubleshooting:

Error Possible cause Troubleshooting

Framing error

Jammed data transmission
caused by EMC problems,
defective cables or
connectors

 Check the wiring and
connectors.

 Use shielded cables.
 Do not lay cables near sources

of interference.
Incorrectly set communication
parameters (baud rate,
number of stop bits, etc.)

 Make sure the set
communication parameters are
consistent with the settings of
the connected device.

Parity error

Jammed data transmission
caused by EMC problems,
defective cables or
connectors

 Check the wiring and
connectors.

 Use shielded cables.
 Do not lay cables near sources

of interference.
Incorrectly set parity Make sure the parity setting is

consistent with the setting of the
connected device.

Buffer overflow The external device sends
characters at too high a rate
and the application program
is not able to read them out of
the receive buffer in due time.

 Program a software handshake.
 Set a lower baud rate.
 Make sure that characters are

read out from the receive buffer
faster. To achieve this the
program code has to be
optimized.

Troubleshooting

14 Jetter AG

1 User-programmable serial interface

1.3 Registers

This chapter describes the registers associated with the user-programmable
serial interface. These registers are used for the following tasks:

 Parameterizing the interface
 Sending characters
 Receiving characters

Topic Page
Register numbers .. 15
Registers - Description .. 16

Introduction

Contents

Jetter AG 15

User-programmable Prim interfaces User-programmable serial interface

Register numbers

The registers of each interface are combined into one register block. The
basic register number of this block is dependent on the controller.

Basic register number Register numbers

103000 103000 ... 103019

In this chapter, only the last two figures of a register number are specified, e.g.
MR 14. To calculate the complete register number, add the basic register
number of the corresponding device to the respective device, e.g. 103000.

Register Description

MR 0 Error state

MR 1 Protocol

MR 2 Baud rate

MR 3 Number of data bits per character

MR 4 Number of stop bits

MR 5 Parity

MR 6 Interface standard

MR 10 Transmit buffer

MR 11 Transmit buffer filling level

MR 12 Receive buffer (without deleting characters on reading)

MR 13 Receive buffer (with deleting characters on reading)

MR 14 Receive buffer filling level

MR 15 Receive buffer, 16-bit, little endian

MR 16 Receive buffer, 16-bit, big endian

MR 17 Receive buffer, 32-bit, little endian

MR 18 Receive buffer, 32-bit, big endian

MR 19 Error counter

Introduction

Register numbers

Determining register
numbers

Registers - Overview

16 Jetter AG

1 User-programmable serial interface

Registers - Description

When entering values into control registers MR 1 through MR 6, the entire
interface is re-initialized and the sending and receive buffers are cleared.

Error state

This register displays errors which have been detected on receiving a
character as bit-coded value.

Meaning of the individual bits

Bit 12 Buffer overflow

 1 = Although the receive buffer is full, one or more characters have
been received

Bit 13 Parity error

 1 = The parity bit of the received character is not correct.

Bit 14 Framing error

 1 = The format of the received character does not match the set
parameters.

Module register properties

Type of access Read / write (clearing)

Protocol

This register lets you set the protocol which is supported by the OS of the
controller. That is, this register is for defining how the interface is used.

Module register properties

Values

1 System logger

2 User-programmable interface

3 PcomX

Value after reset 3

Introduction

MR 0

MR 1

Jetter AG 17

User-programmable Prim interfaces User-programmable serial interface

Baud rate

This register lets you set the baud rate.

Module register properties

Values JC-4xx: 1,200 ... 115,200
JC-3xx: 2,400 ... 115,200

Value after reset 9,600

Number of data bits per character

This register lets you set the number of data bits per character.

Module register properties

Values 5, 6, 7, 8

Value after reset 8

Stop bits

This register lets you set the number of stop bits per character.

Module register properties

Values

1 1 stop bit

2 1.5 stop bits if MR 3 = 5

 2 stop bits if MR 3 = 6, 7, 8

Value after reset 1

Parity

This register lets you set the parity of a character.

Module register properties

Values

0 None (no parity)

1 Odd parity

2 Even parity

3 1 (mark)

4 0 (space)

Value after reset 2

MR 2

MR 3

MR 4

MR 5

18 Jetter AG

1 User-programmable serial interface

Interface standard

This register lets you set the hardware interface which is used to receive and
send characters.

Module register properties

Values

0 RS-232

1 RS-422

2 Reserved

3 RS-485, 2-wire

Value after reset 1

Sending buffer

The character that has to be sent must be entered into this register.

 If the sending buffer is able to accommodate the character, it is entered
into this buffer. This character will be sent once all previously entered
characters have been sent.

 Prior to sending characters from the application program, it must be
checked whether the sending buffer is able to accommodate characters.
This can be checked by reading out MR 11.

 The sending buffer functions according to the FIFO principle. The first
character entered is sent first.

Module register properties

Values

0 ... 31 5 bits per character

0 ... 63 6 bits per character

0 ... 127 7 bits per character

0 ... 255 8 bits per character

Type of access

Read access Character written last

Write Sending a character

Sending buffer filling level

This register shows how many characters the sending buffer accommodates.
There is space for 32,768 characters max. within the buffer.

Module register properties

Values 0 ... 32,768

MR 6

MR 10

MR 11

Jetter AG 19

User-programmable Prim interfaces User-programmable serial interface

Receive buffer, 8 bits (without deleting the character on reading)

This register shows the "oldest" character stored in the receive buffer. On
reading, this character will not be removed from the buffer.

Module register properties

Values

0 ... 31 5 bits per character

0 ... 63 6 bits per character

0 ... 127 7 bits per character

0 ... 255 8 bits per character

Type of access Read access Oldest character in buffer

Takes effect if MR 14 > 0

Receive buffer, 8 bits (with deleting the character on reading)

This register shows the "oldest" character stored in the receive buffer. This
character is removed from the buffer. Thus, the character received next can be
read out during the next read access.

Module register properties

Values

0 ... 31 5 bits per character

0 ... 63 6 bits per character

0 ... 127 7 bits per character

0 ... 255 8 bits per character

Type of access Read access Oldest character in the buffer

Takes effect if MR 14 > 0

Receive buffer filling level

This register shows how many characters the receive buffer accommodates.
Each read access to MR 13 decrements this register by 1.

Module register properties

Values 0 ... 32,768

MR 12

MR 13

MR 14

20 Jetter AG

1 User-programmable serial interface

Receive buffer, 16-bit, little endian

Read access to this register removes 2 characters from the receive buffer and
returns them as 16-bit value.

Assignment:

Character Bits in register

First Bit 0 ... 7

Second Bit 8 ... 15

Module register properties

Values 0 ... 65,535

Type of access Read access Removes 2 characters from the buffer

Takes effect if MR 14 > 1

Receive buffer; 16-bit; big endian

Read access to this register removes 2 characters from the receive buffer and
returns them as 16-bit value.
Assignment:

Character Bits in register

First Bit 8 ... 15

Second Bit 0 ... 7

Module register properties

Values 0 ... 65,535

Type of access Read access Removes 2 characters from the buffer

Takes effect if MR 14 > 1

MR 15

MR 16

Jetter AG 21

User-programmable Prim interfaces User-programmable serial interface

Receive buffer, 32-bit, little endian

Read access to this register removes 4 characters from the receive buffer and
returns them as 32-bit value.
Assignment:

Character Bits in register

First Bit 0 ... 7

Second Bit 8 ... 15

Third Bit 16 ... 23

Fourth Bit 24 ... 31

Module register properties

Values -2,147,483,648 ... 2,147,483,647

Type of access Read access Removes 4 characters from the buffer

Takes effect if MR 14 > 3

Receive buffer; 32-bit; big endian

Read access to this register removes 4 characters from the receive buffer and
returns them as 32-bit value.
Assignment:

Character Bits in register

First Bit 24 ... 31

Second Bit 16 ... 23

Third Bit 8 ... 15

Fourth Bit 0 ... 7

Module register properties

Values -2,147,483,648 ... 2,147,483,647

Type of access Read access Removes 4 characters from the buffer

Takes effect if MR 14 > 3

MR 17

MR 18

22 Jetter AG

1 User-programmable serial interface

Error counter

This register shows the number of detected errors.

Module register properties

Values 0 ... 2,147,483,647

Type of access Read/write (clearing)

MR 19

Jetter AG 23

User-programmable Prim interfaces User-programmable serial interface

1.4 Programming

This chapter describes how to configure the serial interface of the controller
for use as user-programmable serial interface and how to send receive
characters via this interface.

Topic Page
Configuring the interface .. 24
Sending characters ... 25
Sending texts .. 26
Sending values ... 27
Receiving characters .. 28
Receiving values... 29

Introduction

Contents

24 Jetter AG

1 User-programmable serial interface

Configuring the interface

Module registers MR 1 through MR 6 are used to configure the
user-programmable serial interface.

This guide proceeds from the assumption that wiring between controller and
remote device is according to the standard of the selected interface.

To configure the user-programmable serial interface proceed as follows:

Step Action

1 Enter value 1 into MR 2.

2 Enter the desired communication parameters into MR 2 through MR 6.

Result: The serial interface is set as user-programmable interface. Both the
transmit buffer and receive buffer are cleared.

Introduction

Prerequisites

Configuring the interface

Jetter AG 25

User-programmable Prim interfaces User-programmable serial interface

Sending characters

A character is sent by entering it into the register Transmit buffer.

This guide proceeds from the assumption that the user-programmable serial
interface has been configured.

To send characters via user-programmable serial interface proceed as follows:

Step Action

1 Check the transmit buffer filling level, whether there is enough space in
the transmit buffer.

2 If there is no space in the transmit buffer, wait, until there is enough space.

3 Enter the character to be sent into register Transmit buffer.

Result: The character is written into the transmit buffer and will be sent from
there.

Introduction

Prerequisites

Sending characters

26 Jetter AG

1 User-programmable serial interface

Sending texts

An easy way to send texts via the user-programmable serial interface is
redirecting the instructions DisplayText() and DisplayText2() to
Device 9.

This guide proceeds from the assumption that the following conditions are
met:

 The user-programmable serial interface is configured.
 The user is familiar with the options of the instructions DisplayText()

and DisplayText2() (refer to the online help which comes with JetSym).

When redirecting the instructions DisplayText() and DipslayText2() to
the user-programmable serial interface the following restrictions apply:

 The cursor position will not be evaluated.
 The characters for "Delete Screen" and "Delete to End of Line" are of no

special significance and will be output without any changes.

To send texts via user-programmable serial interface proceed as follows:

Step Action

1 Use the instruction DisplayText() or DisplayText2().

2 Specify Device 9.

Result: The task waits at this instruction until all characters have been
entered into the transmit buffer.

Introduction

Prerequisites

Restrictions

Sending texts

Jetter AG 27

User-programmable Prim interfaces User-programmable serial interface

Sending values

The instruction DisplayValue() allows redirection of values to Device 9.
This way, values can easily be sent via user-programmable serial interface.

This guide proceeds from the assumption that the following conditions are
met:

 The user-programmable serial interface is configured.
 The user is familiar with the options of the instruction DisplayValue()

(refer to the online help which comes with JetSym).

When redirecting instruction DisplayValue() to the user-programmable
serial interface the following restriction applies:

 The cursor position will not be evaluated.

To send values via user-programmable serial interface proceed as follows:

Step Action

1 The special registers for formatting the display, which are used in
connection with the instruction DisplayValue(), have to be set to the
desired values.

2 Use the instruction DisplayValue().

3 Specify Device 9.

Result: The task waits at this instruction until all characters have been
entered into the transmit buffer.

Introduction

Prerequisites

Restrictions

Sending values

28 Jetter AG

1 User-programmable serial interface

Receiving characters

A character is received by reading characters from register Receive buffer.

This guide proceeds from the assumption that the user-programmable serial
interface has been configured.

To receive characters via user-programmable serial interface proceed as
follows:

Step Action

1 Check the filling level of the receive buffer to make sure that it contains at
least 1 character.

2 Read the character from the register Receive buffer.

Result: The character is taken from the receive buffer.

Introduction

Prerequisites

Receiving characters

Jetter AG 29

User-programmable Prim interfaces User-programmable serial interface

Receiving values

Values are received by reading characters from Receive buffer registers
MR 15 through MR 18.

This guide proceeds from the assumption that the user-programmable serial
interface has been configured.

To receive values via user-programmable serial interface proceed as follows:

Step Action

1 Check the filling level of the receive buffer to make sure that it contains at
least 2 or 4 characters.

2 Read the values from Receive buffer registers MR 15 through MR 18.

Result: The characters are read from the receive buffer.

Introduction

Prerequisites

Receiving values

Jetter AG 31

User-programmable Prim interfaces User-programmable IP interface

2 User-programmable IP interface

The user-programmable IP interface allows to send or receive any data via
Ethernet interface on the device using TCP/IP or UDP/IP. When using this
feature, data processing is completely carried out by the application program.

The user-programmable IP interface allows the programmer to carry out data
exchange via Ethernet connections which do not use standard protocols, such
as FTP, HTTP, JetIP or Modbus/TCP. The following applications are possible:

 Server
 Client
 TCP/IP
 UDP/IP

To be able to program user-programmable IP interfaces the following
knowledge of data exchange via IP networks is required:

 IP addressing (e.g. IP address, port number, subnet mask)
 TCP (e.g. connection establishment/termination, data stream, data backup)
 UDP (e.g. datagram)

For communication via user-programmable IP interface, the programmer must
not use any ports which are already used by the operating system. Therefore,
do not use the following ports:

Protocol Port number Default value User

TCP Depending on the
FTP client

20 FTP server (data)

TCP 21 FTP server (controller)

TCP 23 System logger

TCP 80 HTTP server

TCP From the file
/EMAIL/email.ini

25, 110 E-mail client

TCP 502 Modbus/TCP server

TCP, UDP 1024 - 2047 Various

TCP, UDP IP configuration 50000, 50001 JetIP

TCP IP configuration 52000 Debug server

The user-programmable
IP interface

Applications

Required programmer's
skills

Restrictions

32 Jetter AG

2 User-programmable IP interface

Topic Page
Programming .. 33
Registers ... 45

Contents

Jetter AG 33

User-programmable Prim interfaces User-programmable IP interface

2.1 Programming

The user-programmable IP interface is used to carry out data exchange
between application program and network client via TCP/IP or UDP/IP
connections. For this purpose, function calls are used. These function calls are
included in the programming language of the device. To program this feature,
proceed as follows:

Step Action

1 Initializing the user-programmable IP interface

2 Open connections

3 Transfer data

4 Terminate the connections

Technical data of the user-programmable IP interface:

Function Description

Number of connections 20

Maximum data size 4,000 bytes

Number of receive buffers per
connection

4

While the device is processing one of the functions of the user-programmable
IP interface, tasks having called the functions should not be stopped through
TaskBreak or restarted through TaskRestart.
Failure to do so could result in the following errors:

 Connections do not open
 Data loss during sending or receiving
 Connections remain open unintentionally
 Connections are closed unintentionally

Topic Page
Initializing the user-programmable IP interface .. 34
Establishing a connection ... 35
Sending data ... 39
Receiving data .. 41
Terminating a connection .. 44

Introduction

Technical specifications

Restrictions

Table of contents

34 Jetter AG

2 User-programmable IP interface

Initializing the user-programmable IP interface

This function must be initialized each time the application program is
launched.

Function ConnectionInitialize():Int;

The following return value is possible:

Return value

0 Always

The function is used and its return value assigned to a variable for further
utilization in the following way:

Result := ConnectionInitialize();

The device processes this function in the following steps:

Step Description

1 The device closes all open connections of the user-programmable IP
interface.

2 The device initializes all OS-internal data structures of the
user-programmable IP interface.

 Establishing a connection (see page 35)
 Terminating a connection (see page 44)
 Sending data (see page 39)
 Receiving data (see page 41)

Introduction

Function declaration

Return value

How to use this function

Operating principle

Related topics

Jetter AG 35

User-programmable Prim interfaces User-programmable IP interface

Establishing a connection

Before data can be sent or received, a connection has to be established.
Here, the following criteria have to be discerned:

 Which transaction log (TCP or UDP) has to be used?
 Is it a client or a server that has to be installed?

Function ConnectionCreate(ClientServerType:Int,

 IPType:Int,

 IPAddr:Int,

 IPPort:Int,

 Timeout:Int):Int;

Description of the function parameters:

Parameter Value Comment
ClientServerType Client = 1 =

CONNTYPE_CLIENT
Server = 2 =
CONNTYPE_SERVER

IPType UDP/IP = 1 =
IPTYPE_UDP
TCP/IP = 2 =
IPTYPE_TCP

IPAddr Valid IP address Required only for TCP/IP
client

IPPort Valid IP port number Will be ignored for UDP/IP
client

Timeout 0 ... 1,073,741,824 [ms] 0 = infinitely

If the return value was positive, the connection could be established. If the
returned value was negative, an error occurred and the connection could not
be established.

Return value

> 0 A positive return value must be stored in a variable. It must
be made available as a handle at activating the functions
Send data, Receive data, and Terminate connection.

-1 Error during connection set-up

-2 Internal error

-3 Invalid parameter

-8 Timeout

Introduction

Function declaration

Function parameters

Return value

36 Jetter AG

2 User-programmable IP interface

If a client is to establish a TCP/IP connection to a server, you can invoke the
function and assign the return value of a variable for further evaluation as
follows:

Result := ConnectionCreate(CONNTYPE_CLIENT,

 IPTYPE_TCP,

 IP#192.168.75.123,

 46000,

 T#10s);

The task stops at the program line until the connection is established or the
specified timeout has elapsed. This function is processed in the following
steps:

Step Description

1 The device tries to establish a TCP/IP connection via port 46000 to the
network client with IP address 192.168.75.123.

2 If then ...

 the network client has accepted the
connection,

the function is terminated and a
positive value is returned as handle
for further access to the connection.

 the connection could not be
established and the timeout of
10 seconds has not elapsed yet,

step 1 is carried out.

 an error has occurred or the
timeout has elapsed,

the function is terminated and a
negative value is returned.

If a server is to establish a TCP/IP connection to a client, you can invoke the
function and assign the return value of a variable for further evaluation as
follows:

Result := ConnectionCreate(CONNTYPE_SERVER,

 IPTYPE_TCP,

 0,

 46000,

 T#100s);

Using this function with
a TCP/IP client

Functioning principle
with a TCP/IP client

Using this function with
a TCP/IP server

Jetter AG 37

User-programmable Prim interfaces User-programmable IP interface

The task stops at the program line until the connection is established or the
specified timeout has elapsed. This function is processed in the following
steps:

Step Description

1 The device sets up TCP/IP port 46000 for receiving connection requests.

2 If then ...

 the network client has established
a connection,

no further connection requests to
this port are accepted, the function
is terminated and a positive value is
returned as handle for further
access to the connection.

 the connection could not be
established and the timeout
of 100 seconds has not elapsed
yet,

the system waits for a connection to
be established.

 an error has occurred or the
timeout has elapsed,

the function is terminated and a
negative value is returned.

If a client is to establish a UDP/IP connection to a server, you can invoke the
function and assign the return value of a variable for further evaluation as
follows:

Result := ConnectionCreate(CONNTYPE_CLIENT,

 IPTYPE_UDP,

 0,

 0,

 0);

UDP is a connectionless communication mode. For this reason, the device
opens only one communication channel for sending data to a network client.
This function is processed in the following steps:

Step Description

1 The device sets up a UDP/IP communication channel for sending data.

2 If then ...

 no error has occurred, the function is terminated and a
positive value is returned as handle
for further access to the connection.

 an error has occurred, the function is terminated and a
negative value is returned.

Functioning principle
with a TCP/IP server

Using this function with
a UDP/IP client

Functioning principle
with a UDP/IP client

38 Jetter AG

2 User-programmable IP interface

If a server is to establish a UDP/IP connection to a server, you can invoke the
function and assign the return value of a variable for further evaluation as
follows:

Result := ConnectionCreate(CONNTYPE_SERVER,

 IPTYPE_UDP,

 0,

 46000,

 0);

UDP is a connectionless communication mode. For this reason, the device
opens only one communication channel for receiving data from a network
client. This function is processed in the following steps:

Step Description

1 The device sets up a UDP/IP communication channel at port 46000 for
receiving data.

2 If then ...

 no error has occurred, the function is terminated and a
positive value is returned as handle
for further access to the connection.

 an error has occurred, the function is terminated and a
negative value is returned.

 Terminating a connection (see page 44)
 Sending data (see page 39)
 Receiving data (see page 41)
 Initializing the user-programmable IP interface (see page 34)

Using this function with
a UDP/IP server

Functioning principle
with a UDP/IP server

Related topics

Jetter AG 39

User-programmable Prim interfaces User-programmable IP interface

Sending data

Data can be sent via a previously established connection.

Function ConnectionSendData(IPConnection:Int,

 IPAddr:Int,

 IPPort:Int,

 Const Ref SendData,

 DataLen:Int):Int;

Description of the function parameters:

Parameter Value Comment
IPConnection Handle Return value of the function

ConnectionCreate()

IPAddr Valid IP address Required only for UDP/IP
client

IPPort Valid IP port number Required only for UDP/IP
client

SendData address of the data block to
be sent

DataLen 1 ... 4,000 Data block length in bytes

The following return values are possible:

Return value

0 Data have been sent successfully

-1 Error when sending, e.g. connection interrupted

-3 Invalid handle, e.g. sending via a UDP/IP server

If data are to be sent via a TCP/IP connection, you can invoke the function
and assign the return value of a variable for further evaluation as follows:

Result := ConnectionSendData(hConnection,

 0,

 0,

 SendBuffer,

 SendLen);

Introduction

Function declaration

Function parameters

Return value

Using this function with
a TCP/IP connection

40 Jetter AG

2 User-programmable IP interface

When using TCP/IP, data are sent via a previously opened connection.
Therefore, specification of the IP address and IP port number is not required
anymore and can be ignored in the function.
In the following situations, the task is not processed further after issuing this
function call:

 The data have been sent and their reception has been confirmed.
 An error has occurred.

If, with a client, data are to be sent via a UDP/IP connection, you can invoke
the function and assign the return value of a variable for further evaluation as
follows:

Result := ConnectionSendData(hConnection,

 IP#192.168.75.123,

 46000,

 SendBuffer,

 SendLen);

With UDP/IP there is no connection between two given network clients.
Therefore, with each function call data can be sent to another client or another
port. The task will pause at this function call, until the data are sent.
You will not get any acknowledgment of the remote network client having
received the data.

A UDP/IP-client connection is for sending data only. The sending port is set by
the operating system.
A UDP/IP-server connection is for both sending and receiving data. The port
which was specified at opening up the communication is used as sending port.

 Initializing the user-programmable IP interface (see page 34)
 Establishing a connection (see page 35)
 Terminating a connection (see page 44)
 Receiving data (see page 41)

Functioning principle
with a TCP/IP connection

Using this function with
a UDP/IP connection

Functioning principle
with a UDP/IP connection

UDP/IP-client and -server

Related topics

Jetter AG 41

User-programmable Prim interfaces User-programmable IP interface

Receiving data

Data can be sent via a previously established TCP/IP connection or via a
UDP/IP connection of a server.
Via UDP/IP connection of a client data can not be received, but only sent.

Data packets which are received via network must be fetched by the
application program. Per connection, four packets as a maximum are stored
temporarily in the operating system of the controller. All further packets are
discarded.

Function ConnectionReceiveData(IPConnection:Int,

 Ref IPAddr:Int,

 Ref IPPort:Int,

 Ref ReceiveData,

 DataLen:Int,

 Timeout:Int):Int;

Description of the function parameters:

Parameter Value Comment
IPConnection Handle Return value of the function

ConnectionCreate()

IPAddr Address of a variable for
saving the IP address of
the sender

Required only for UDP/IP
server

IPPort Address of a variable for
saving the IP port number
of the sender

Required only for UDP/IP
server

ReceiveData Address of the data block
to be received

DataLen 1 ... 4,000 Maximum data block length
in bytes

Timeout 0 ... 1,073,741,824 [ms] 0 = infinite

The following return values are possible:

Return value

> 0 Number of received data bytes

-1 Error when receiving data, e.g. connection interrupted

-3 Invalid handle, e.g. receiving data via a UDP/IP client

-8 Timeout

Introduction

Restrictions

Function declaration

Function parameters

Return value

42 Jetter AG

2 User-programmable IP interface

If data are to be received via a TCP/IP connection, you can invoke the function
and assign the return value of a variable for further evaluation as follows:

Result := ConnectionReceiveData(hConnection,

 Dummy,

 Dummy,

 ReceiveBuffer,

 sizeof(ReceiveBuffer),

 T#10s);

When using TCP/IP, data are sent via a previously opened connection.
Therefore, specification of the IP address and IP port number is not required
anymore and can be ignored in the function.
In the following situations, the task is not processed further after issuing this
function call:

 The data have been received.
 An error has occurred.

In case of a TCP/IP connection, data are sent as data stream.
The device processes this function in the following steps:

Step Description

1 The device waits until data have been received, but no longer than the
specified timeout.

2 If then ...

 the timeout has elapsed or the
connection has been terminated,

the function is exited and an error
message is issued.

 data have been received, they are copied to the receive buffer
given along with the data (but not
exceeding the amount given along
with the data). Then, the function
continues with stage 3.

3 If then ...

 more data have been received than
could have been copied into the
receive buffer,

these are buffered by the device to
be fetched by further function calls.

4 The function is exited and the number of data, which have been copied
into the receive buffer, is returned.

If, with a server, data are to be received via a UDP/IP connection, you can
invoke the function and assign the return value of a variable for further
evaluation as follows:

Result := ConnectionReceiveData(hConnection,

 IPAddr,

 IPPort,

 ReceiveBuffer,

 sizeof(ReceiveBuffer),

 T#10s);

Using this function with
a TCP/IP connection

Functioning principle
with a TCP/IP connection

Using this function with
a UDP/IP server

Jetter AG 43

User-programmable Prim interfaces User-programmable IP interface

In the following situations, the task is not processed further after issuing this
function call:

 All data have been received.
 An error has occurred.

In case of a UDP/IP connection, data are sent as datagram.
The device processes this function in the following steps:

Step Description

1 The device waits until all data of a datagram have been received, but no
longer than the specified timeout.

2 If then ...

 the timeout has elapsed or the
connection has been terminated,

the function is exited and an error
message is issued.

 data have been received, they are copied to the receive buffer
given along with the data (but not
exceeding the amount given along
with the data). Then, the function
continues with stage 3.

3 If then ...

 ... more data have been received
than could be copied into the
receive buffer - that is, if the sent
datagram is too large,

... these data are discarded.

4 The sender's IP address and IP port number are transferred into the
variables which are given along with the data.

5 The function is exited and the number of data, which have been copied
into the receive buffer, is returned.

 Initializing the user-programmable IP interface (see page 34)
 Establishing a connection (see page 35)
 Terminating a connection (see page 44)
 Sending data (see page 39)

Functioning principle
with a UDP/IP server

Related topics

44 Jetter AG

2 User-programmable IP interface

Terminating a connection

Clear all connections which are no longer required as the number of
concurrently opened connections is limited.

Function ConnectionDelete(IPConnection:Int):Int;

Description of the function parameters:

Parameter Value Comment
IPConnection Handle Return value of the function

ConnectionCreate()

The following return values are possible:

Return value

0 Connection terminated and deleted

-1 Invalid handle

This way, you can invoke the function and assign its return value to a variable
for further utilization:

Result := ConnectionDelete(hConnection);

 Establishing a connection (see page 35)
 Sending data (see page 39)
 Receiving data (see page 41)
 Initializing the user-programmable IP interface (see page 34)

Introduction

Function declaration

Function parameters

Return value

How to use this function

Related topics

Jetter AG 45

User-programmable Prim interfaces User-programmable IP interface

2.2 Registers

This chapter describes the registers of the device which contain the current
connection list of the user-programmable IP interface. These registers can be
used for debugging or diagnostic purposes. However, they can't be used for
other functions such as establishing or terminating a connection.

Topic Page
Register numbers ... 46
Registers - Description ... 47

Introduction

Contents

46 Jetter AG

2 User-programmable IP interface

Register numbers

Data of one connection each are displayed within the registers of a coherent
register block. The basic register number of this block is dependent on the
controller.

Basic register number Register numbers

350000 350000 ... 350007

In this chapter only the last figure of a register number is specified, for
example MR 1. To calculate the complete register number, add the basic
register number of the corresponding device to this figure, e.g. 350000.

Register Description

MR 0 Selecting a connection

MR 1 Type of connection

MR 2 Transport protocol

MR 3 IP address

MR 4 IP port number

MR 5 State

MR 6 Number of sent bytes

MR 7 Number of received bytes

MR 8 Number of discarded bytes

MR 9 Number of discarded packets

Introduction

Register numbers

Determining the register
number

Registers - Overview

Jetter AG 47

User-programmable Prim interfaces User-programmable IP interface

Registers - Description

The operating system manages the established connections in a list. Module
register MR 0 Selection of a connection is used to copy connection details into
other registers of a register block.

Selecting a connection

Connections are selected by writing values to this register. This register is
used to display whether the following registers contain usage data.

Module register properties

Reading values 0 Connection exists

 -1 Connection does not exist

Module register properties

Writing values 0 Address the first connection in the list

 > 0 Address the next connection in the list

 < 0 Address the previous connection in the list

Type of connection

The value in this register shows whether the connection is a client or a server
connection.

Module register properties

Values 1 Client

 2 Server

Transport protocol

The value in this register shows whether TCP or UDP is used as transport
protocol.

Module register properties

Values 1 UDP

 2 TCP

Introduction

MR 0

MR 1

MR 2

48 Jetter AG

2 User-programmable IP interface

IP address

The value in this register shows the configured IP address.

Module register properties

Values 0.0.0.0 ... 255.255.255.255

IP port number

The value in this register shows the configured IP port number.

Module register properties

Values 0 ... 65.535

Indication

The value in this register shows status the connection is currently in.

Module register properties

Values 0 Connection terminated

 1 Connection is being established

 2 Connection is established

 3 TCP/IP server: Waiting for connection
request from client

 4 Internal usage

Number of sent bytes

The value in this register shows the number of data bytes sent via the given
connection. Since this is a signed 32-bit register and the sent bytes are added
each time, the number range may be exceeded from the positive maximum
value to the negative maximum value.

Module register properties

Values -2.147.483.648 ... 2.147.483.647

MR 3

MR 4

MR 5

MR 6

Jetter AG 49

User-programmable Prim interfaces User-programmable IP interface

Number of received bytes

The value in this register shows the number of data bytes received via the
given connection. Since this is a signed 32-bit register and the received bytes
are added each time, the number range may be exceeded from the positive
maximum value to the negative maximum value.

Module register properties

Values -2.147.483.648 ... 2.147.483.647

Number of discarded bytes

The value in this register indicates the data bytes which could not be received,
because the application program had not taken the cached data bytes.

Module register properties

Values 0 ... 2.147.483.647

Number of discarded packets

The value in this register indicates the data packets which could not be
received, because the application program had not taken the cached data
packages.

Module register properties

Values 0 ... 2.147.483.647

MR 7

MR 8

MR 9

Jetter AG 51

User-programmable Prim interfaces User-programmable CAN-Prim interface

3 User-programmable CAN-Prim interface

The user-programmable CAN-Prim interface allows to send and receive CAN
messages. The CAN messages are completely processed in the application
program.

This feature is not only apt for CANopen® devices. The customer can rather
communicate with third-party devices which are based on a CAN protocol.

The user-programmable CAN-Prim interface can be used for the following
applications:

 Devices which are equipped with a CAN interface can be controlled via
proprietary protocols.

 Controlling of CANopen® capable devices
 ...

To be able to program user-programmable CAN-Prim interfaces basic
knowledge of Controller Area Networks (CAN) is required. These are some of
them:

 Structure of CAN messages
 CANopen® features

As a hardware, a JetControl is required which has got a CAN interface and/or
a JX2 system bus.

A JC-3xx register number consists of the following elements:

2 0 0 0 z z z z z

Element Meaning Value range

zzzzz Module register number 2029, 2077
10500 ...10599

Register numbers for the submodule JX6-SB(-I) connected to a JC-9xx
consist of the following elements:

2 0 S J z z z z z

Element Meaning Value range

S Number of the riser card 1 ... 3

J Number of the submodule JX6-SB-I located on the
riser card

1 ... 2

zzzzz Module register number 2029, 2077
10500 ...10599

CAN-Prim interface

CAN-Prim - The benefit

Applications

Required programmer's
skills

Hardware prerequisites

Register numbers for
JC-3xx

Register numbers for
JC-9xx

52 Jetter AG

3 User-programmable CAN-Prim interface

Topic Page
Restrictions regarding the CAN-Prim interface ... 53
User-programmable CAN-Prim interface - Operating principle 57
Internal processes of the CAN-Prim interface .. 58
Register description - CAN-Prim interface .. 59
CAN message box - Description of registers for direct access 64
CAN message box - Description of registers for indirect access.................. 70
Using the CAN-Prim interface (direct access) .. 74
Using CAN-ID masks .. 77
RTR frames via CAN-Prim interface ... 78

Contents

Jetter AG 53

User-programmable Prim interfaces User-programmable CAN-Prim interface

Restrictions regarding the CAN-Prim interface

When using the user-programmable CAN-Prim interface, the following
restrictions apply:

 If 29-bit CAN identifiers are used, the serial number of non-intelligent
JX2-I/O module must start with 2.

Between launching the device and starting the application program (boot
phase of the JX2 system bus), the connected CAN modules are not permitted
to send any CAN messages.

The interval between two CAN messages received via CAN interface should
be at least 10 ms. In case of shorter time intervals, the device is not able to
process all CAN messages for CAN-Prim reception.

If several CAN messages of the same CAN-ID are to be received, an
application program featuring a high reaction and processing speed is
required to prevent buffer overflows (overrun-bit). Adjusting the task switch
procedure and task prioritization (TASKPRIORITY) do not necessarily grant
processing all CAN messages.

When peripheral modules are simultaneously operated on the JX2 system bus
and the CAN-Prim interface, certain CAN-IDs are earmarked.

Modules on the JX2 system
bus

Earmarked CAN-IDs

For all modules 0x100, 0x701, 0x702, 0x703, 0x704, 0x705, 0x706,
0x707, 0x708, 0x709, 0x70A, 0x732, 0x733, 0x734,
0x735, 0x736, 0x737, 0x738, 0x739, 0x73A, 0x73B,
0x746, 0x747, 0x748, 0x749, 0x74A, 0x74B, 0x74C,
0x74D, 0x74E, 0x74F

JX2-I/O modules 0x180, 0x181, 0x182, 0x183, 0x184, 0x185, 0x186,
0x187, 0x188, 0x189, 0x18A, 0x18B, 0x18C, 0x18D,
0x18E, 0x18F, 0x190, 0x191, 0x192, 0x193, 0x194,
0x195, 0x196, 0x197, 0x198, 0x199, 0x19A, 0x19B,
0x19C, 0x19D, 0x19E, 0x19F, 0x1A0, 0x1A1, 0x1A2,
0x1A3, 0x1A4, 0x1A5, 0x1A6, 0x1A7, 0x1A8, 0x1A9,
0x1AA, 0x1AB, 0x1AC, 0x1AD, 0x1AE, 0x1AF,
0x1B0, 0x1B1, 0x1B2, 0x1B3, 0x1B4, 0x1B5, 0x1B6,
0x1B7, 0x1B8, 0x1B9, 0x1BA, 0x1BB, 0x1BC,
0x1BD, 0x1BE, 0x1BF, 0x380, 0x381, 0x382, 0x383,
0x384, 0x385, 0x386, 0x387, 0x388, 0x389, 0x38A,
0x38B, 0x38C, 0x38D, 0x38E, 0x38F, 0x390, 0x391,
0x392, 0x393, 0x394, 0x395, 0x396, 0x397, 0x398,
0x399, 0x39A, 0x39B, 0x39C, 0x39D, 0x39E, 0x39F,
0x3A0, 0x3A1, 0x3A2, 0x3A3, 0x3A4, 0x3A5, 0x3A6,
0x3A7, 0x3A8, 0x3A9, 0x3AA, 0x3AB, 0x3AC,
0x3AD, 0x3AE, 0x3AF, 0x3B0, 0x3B1, 0x3B2, 0x3B3,
0x3B4, 0x3B5, 0x3B6, 0x3B7, 0x3B8, 0x3B9, 0x3BA,
0x3BB, 0x3BE, 0x3BF

Restrictions regarding
connectable modules

CAN messages during
boot phase

Time response

Earmarked CAN-IDs

54 Jetter AG

3 User-programmable CAN-Prim interface

Modules on the JX2 system
bus

Earmarked CAN-IDs

JX2 slave modules 0x081, 0x082, 0x083, 0x084, 0x085, 0x086, 0x087,
0x088, 0x089, 0x08A, 0x08B, 0x08C, 0x08D, 0x08E,
0x08F, 0x090, 0x09F, 0x0A0, 0x0A1, 0x0A2, 0x0A3,
0x0A4, 0x0A5, 0x0A6, 0x0A7, 0x0A8, 0x0A9, 0x0AA,
0x0AB, 0x0AC, 0x0AD, 0x0AE, 0x0AF, 0x161, 0x162,
0x163, 0x164, 0x165, 0x166, 0x167, 0x168, 0x169,
0x16A, 0x16B, 0x16C, 0x16D, 0x16E, 0x16F, 0x1D1,
0x1D2, 0x1D3, 0x1D4, 0x1D5, 0x1D6, 0x1D7,
0x1D8, 0x1D9, 0x1DA, 0x1DB, 0x1DC,0x1DD,
0x1DE, 0x1DF

JX3 modules 0x180, 0x181, 0x182, 0x183, 0x184, 0x185, 0x186,
0x187, 0x188, 0x189, 0x18A, 0x18B, 0x18C, 0x18D,
0x18E, 0x18F, 0x190, 0x191, 0x192, 0x193, 0x194,
0x195, 0x196, 0x197, 0x198, 0x199, 0x19A, 0x19B,
0x19C, 0x19D, 0x19E, 0x19F, 0x1A0, 0x1A1, 0x1A2,
0x1A3, 0x1A4, 0x1A5, 0x1A6, 0x1A7, 0x1A8, 0x1A9,
0x1AA, 0x1AB, 0x1AC, 0x1AD, 0x1AE, 0x1AF,
0x1B0, 0x1B1, 0x1B2, 0x1B3, 0x1B4, 0x1B5, 0x1B6,
0x1B7, 0x1B8, 0x1B9, 0x1BA, 0x1BB, 0x1BC,
0x1BD, 0x1BE, 0x1BF, 0x320, 0x321, 0x322, 0x323,
0x324, 0x325, 0x326, 0x327, 0x328, 0x329, 0x32A,
0x32B, 0x32C, 0x32D, 0x32E, 0x32F, 0x330, 0x331,
0x332, 0x333, 0x334, 0x335, 0x336, 0x337, 0x338,
0x339, 0x33A, 0x33B, 0x33C, 0x33D, 0x33E, 0x380,
0x381, 0x382, 0x383, 0x384, 0x385, 0x386, 0x387,
0x388, 0x389, 0x38A, 0x38B, 0x38C, 0x38D, 0x38E,
0x38F, 0x390, 0x391, 0x392, 0x393, 0x394, 0x395,
0x396, 0x397, 0x398, 0x399, 0x39A, 0x39B, 0x39C,
0x39D, 0x39E, 0x39F, 0x3A0, 0x3A1, 0x3A2, 0x3A3,
0x3A4, 0x3A5, 0x3A6, 0x3A7, 0x3A8, 0x3A9, 0x3AA,
0x3AB, 0x3AC, 0x3AD, 0x3AE, 0x3AF, 0x3B0,
0x3B1, 0x3B2, 0x3B3, 0x3B4, 0x3B5, 0x3B6, 0x3B7,
0x3B8, 0x3B9, 0x3BA, 0x3BB, 0x3BE, 0x3BF, 0x3E0,
0x3E1, 0x3E2, 0x3E3, 0x3E4, 0x3E5, 0x3E6, 0x3E7,
0x3E8, 0x3E9, 0x3EA, 0x3EB, 0x3EC, 0x3ED,
0x3EE, 0x3EF, 0x3F0, 0x3F1, 0x3F2, 0x3F3, 0x3F4,
0x3F5, 0x3F6, 0x3F7, 0x3F8, 0x3F9, 0x3FA, 0x3FB,
0x3FC, 0x3FD, 0x3FE

Jetter AG 55

User-programmable Prim interfaces User-programmable CAN-Prim interface

Modules on the JX2 system
bus

Earmarked CAN-IDs

JX-SIO and
CANopen® modules

0x1C6, 0x1C7, 0x1C8, 0x1C9, 0x1CA, 0x1CB,
0x1CC, 0x1CD, 0x1CE, 0x1CF, 0x246, 0x247, 0x248,
0x249, 0x24A, 0x24B, 0x24C, 0x24D, 0x24E, 0x24F,
0x2C6, 0x2C7, 0x2C8, 0x2C9, 0x2CA, 0x2CB,
0x2CC, 0x2CD, 0x2CE, 0x2CF, 0x346, 0x347, 0x348,
0x349, 0x34A, 0x34B, 0x34C, 0x34D, 0x34E, 0x34F,
0x3C6, 0x3C7, 0x3C8, 0x3C9, 0x3CA, 0x3CB,
0x3CC, 0x3CD, 0x3CE, 0x3CF, 0x446, 0x447, 0x448,
0x449, 0x44A, 0x44B, 0x44C, 0x44D, 0x44E, 0x44F,
0x4C6, 0x4C7, 0x4C8, 0x4C9, 0x4CA, 0x4CB,
0x4CC, 0x4CD, 0x3CE, 0x4CF, 0x581, 0x582, 0x583,
0x584, 0x585, 0x586, 0x587, 0x588, 0x589, 0x58A,
0x5B2, 0x5B3, 0x5B4, 0x5B5, 0x5B6, 0x5B7, 0x5B8,
0x5B9, 0x5BA, 0x5BB, 0x5C6, 0x5C7, 0x5C8,
0x5C9, 0x5CA, 0x5CB, 0x5CC, 0x5CD, 0x5CE,
0x5CF, 0x601, 0x602, 0x603, 0x604, 0x605, 0x606,
0x607, 0x608, 0x609, 0x60A, 0x632, 0x633, 0x634,
0x635, 0x636, 0x637, 0x638, 0x639, 0x63A, 0x63B,
0x646, 0x647, 0x648, 0x649, 0x64A, 0x64B, 0x64C,
0x64D, 0x64E, 0x64F, 0x732, 0x733, 0x734, 0x735,
0x736, 0x737, 0x738, 0x739, 0x73A, 0x73B, 0x746,
0x747, 0x748, 0x749, 0x74A, 0x74B, 0x74C, 0x74D,
0x74E, 0x74F

Festo CP-FB modules 0x010, 0x110, 0x120, 0x130, 0x140, 0x150, 0x1E0,
0x1F0, 0x250, 0x260, 0x270, 0x350, 0x360, 0x370,
0x3B0

LioN-S modules 0x2E0, 0x2E1, 0x2E2, 0x2E3, 0x2E4, 0x2E5, 0x2E6,
0x2E7, 0x2E8, 0x2E9, 0x2EA, 0x2EB, 0x2EC,
0x2ED, 0x2EE, 0x2EF, 0x2F0, 0x2F1, 0x2F2, 0x2F3,
0x2F4, 0x2F5, 0x2F6, 0x2F7, 0x2F8, 0x2F9, 0x2FA,
0x2FB, 0x2FC, 0x2FD, 0x2FE, 0x360, 0x361, 0x362,
0x363, 0x364, 0x365, 0x366, 0x367, 0x368, 0x369,
0x36A, 0x36B, 0x36C, 0x36D, 0x36E, 0x36F, 0x370,
0x371, 0x372, 0x373, 0x374, 0x375, 0x376, 0x377,
0x378, 0x379, 0x37A, 0x37B, 0x37C, 0x37D, 0x37E,
0x581, 0x582, 0x583, 0x584, 0x585, 0x586, 0x587,
0x588, 0x589, 0x58A, 0x58B, 0x58C, 0x58D, 0x58E,
0x58F, 0x590, 0x591, 0x592, 0x593, 0x594, 0x595,
0x596, 0x597, 0x598, 0x599, 0x59A, 0x59B, 0x59C,
0x59D, 0x59E, 0x59F, 0x5A0, 0x601, 0x602, 0x603,
0x604, 0x605, 0x606, 0x607, 0x608, 0x609, 0x60A,
0x60B, 0x60C, 0x60D, 0x60E, 0x60F, 0x610, 0x611,
0x612, 0x613, 0x614, 0x615, 0x616, 0x617, 0x618,
0x619, 0x61A, 0x61B, 0x61C, 0x61D, 0x61E, 0x61F,
0x620, 0x701, 0x702, 0x703, 0x704, 0x705, 0x706,
0x707, 0x708, 0x709, 0x70A, 0x70B, 0x70C, 0x70D,
0x70E, 0x70F, 0x710, 0x711, 0x712, 0x713, 0x714,
0x715, 0x716, 0x717, 0x718, 0x719, 0x71A, 0x71B,
0x71C, 0x71D, 0x71E, 0x71F, 0x720

56 Jetter AG

3 User-programmable CAN-Prim interface

Modules on the JX2 system
bus

Earmarked CAN-IDs

BWU1821 0x281, 0x282, 0x283, 0x284, 0x285, 0x286, 0x287,
0x288, 0x289, 0x28A, 0x28B, 0x28C, 0x28D, 0x28E,
0x28F, 0x290, 0x291, 0x292, 0x293, 0x294, 0x295,
0x296, 0x297, 0x298, 0x299, 0x29A, 0x29B, 0x29C,
0x29D, 0x29E, 0x29F, 0x301, 0x302, 0x303, 0x304,
0x305, 0x306, 0x307, 0x308, 0x309, 0x30A, 0x30B,
0x30C, 0x30D, 0x30E, 0x30F, 0x310, 0x311, 0x312,
0x313, 0x314, 0x315, 0x316, 0x317, 0x318, 0x319,
0x31A, 0x31B, 0x31C, 0x31D, 0x31E, 0x31F, 0x481,
0x482, 0x483, 0x484, 0x485, 0x486, 0x487, 0x488,
0x489, 0x48A, 0x48B, 0x48C, 0x48D, 0x48E, 0x48F,
0x490, 0x491, 0x492, 0x493, 0x494, 0x495, 0x496,
0x497, 0x498, 0x499, 0x49A, 0x49B, 0x49C, 0x49D,
0x49E, 0x49F, 0x501, 0x502, 0x503, 0x504, 0x505,
0x506, 0x507, 0x508, 0x509, 0x50A, 0x50B, 0x50C,
0x50D, 0x50E, 0x50F, 0x510, 0x511, 0x512, 0x513,
0x514, 0x515, 0x516, 0x517, 0x518, 0x519, 0x51A,
0x51B, 0x51C, 0x51D, 0x51E, 0x51F, 0x5C6, 0x5C7,
0x5C8, 0x5C9, 0x5CA, 0x5CB, 0x5CC, 0x5CD,
0x5CE, 0x5CF, 0x646, 0x647, 0x648, 0x649, 0x64A,
0x64B, 0x64C, 0x64D, 0x64E, 0x64F, 0x746, 0x747,
0x748, 0x749, 0x74A, 0x74B, 0x74C, 0x74D, 0x74E,
0x74F

LJX7-CSL 0x481, 0x482, 0x483, 0x484, 0x485, 0x486, 0x487,
0x488, 0x489, 0x48A, 0x48B, 0x48C, 0x48D, 0x48E,
0x48F, 0x490, 0x491, 0x492, 0x493, 0x494, 0x495,
0x496, 0x497, 0x498, 0x499, 0x49A, 0x49B, 0x49C,
0x49D, 0x49E, 0x49F, 0x501, 0x502, 0x503, 0x504,
0x505, 0x506, 0x507, 0x508, 0x509, 0x50A, 0x50B,
0x50C, 0x50D, 0x50E, 0x50F, 0x510, 0x511, 0x512,
0x513, 0x514, 0x515, 0x516, 0x517, 0x518, 0x519,
0x51A, 0x51B, 0x51C, 0x51D, 0x51E, 0x51F, 0x581,
0x582, 0x583, 0x584, 0x585, 0x586, 0x587, 0x588,
0x589, 0x58A, 0x58B, 0x58C, 0x58D, 0x58E, 0x58F,
0x590, 0x591, 0x592, 0x593, 0x594, 0x595, 0x596,
0x597, 0x598, 0x599, 0x59A, 0x59B, 0x59C, 0x59D,
0x59E, 0x59F, 0x5A0, 0x601, 0x602, 0x603, 0x604,
0x605, 0x606, 0x607, 0x608, 0x609, 0x60A, 0x60B,
0x60C, 0x60D, 0x60E, 0x60F, 0x610, 0x611, 0x612,
0x613, 0x614, 0x615, 0x616, 0x617, 0x618, 0x619,
0x61A, 0x61B, 0x61C, 0x61D, 0x61E, 0x61F, 0x620,
0x701, 0x702, 0x703, 0x704, 0x705, 0x706, 0x707,
0x708, 0x709, 0x70A, 0x70B, 0x70C, 0x70D, 0x70E,
0x70F, 0x710, 0x711, 0x712, 0x713, 0x714, 0x715,
0x716, 0x717, 0x718, 0x719, 0x71A, 0x71B, 0x71C,
0x71D, 0x71E, 0x71F, 0x720

Jetter AG 57

User-programmable Prim interfaces User-programmable CAN-Prim interface

User-programmable CAN-Prim interface - Operating principle

The user-programmable CAN-Prim interface uses message boxes for data
exchange between CAN bus and application program. Each message box is
able to accommodate a complete CAN message.
16 message boxes are available to the user. Each of these boxes can be
configured either as inbox or as outbox with a specific CAN-ID.

Function Description

CAN-ID 11-bit or 29-bit

Number of message boxes 16

The CAN-Prim interface is enabled via Bits in MR 2077 JX2-system bus -
special functions Register description MR 2077. (see page 59)

Funktion

Technical specifications

Enabling the
user-programmable
CAN-Prim interface

58 Jetter AG

3 User-programmable CAN-Prim interface

Internal processes of the CAN-Prim interface

The CAN-Prim interface processes the following tasks independently:

 Sending of CAN messages
 Reception of CAN messages
 Filtering of CAN messages on reception

The CAN-Prim interface receives new CAN messages in the following way:

Step Description

1 The CAN bus receives a valid CAN message.

2 The CAN-ID matches the receiving mask.

3 The CAN-ID matches the CAN-ID of a message box which has been
configured as inbox.

4 If in MR 10530 + message box
number*20 of the message box

...

... then ...

 ... bit 1 NEW-DAT = 0, ... bit 1 NEW-DAT becomes = 1;
proceed with step 5

 ... bit 1 NEW-DAT = 1, ... bit 2 OVERRUN becomes = 1;
CAN message data are discarded.

5 The value of MR 10503 FIFO Occupancy is increased by one.
This register shows whether new CAN messages have been received, as
well as the number of messages.

6 The message box number is entered into MR 10504 FIFO data.
This register shows which of the messages boxes has received a new
CAN message.

7 In MR 10500 CAN-Prim Status, bit 1 NEW DAT = 1.

Introduction

Internal reception of
CAN messages

Jetter AG 59

User-programmable Prim interfaces User-programmable CAN-Prim interface

Register description - CAN-Prim interface

The CAN-Prim interface is enabled in MR 2077 JX2-system bus special
functions.

Register Description

MR 2029 JX2 system bus - Baud rate

MR 2077 JX2 system bus special functions

Registers Description

MR 10500 CAN-Prim status register

MR 10501 CAN-Prim command register

MR 10503 FIFO occupancy - Number of received messages

MR 10504 FIFO data -
Numbers of message boxes which have received new messages

MR 10506 Global reception mask

MR 10507 Global reception ID

CANopen®-STX-API has not been implemented:
Enabling JX2 system bus special functions

The value of this register influences the behavior at initializing the JX2 system
bus.

Meaning of the individual bits

Bit 2 Activate CAN-Prim in addition to JX2 system bus

 1 = The CAN-Prim interface and the JX2 system bus are enabled
following the next launch of the JX2 system bus. This requires a
restart of the controller.
This function lets you connect JX2 expansion modules.

Bit 3 Enable CAN-Prim only

 1 = Only the CAN-Prim interface is enabled following the next launch
of the JX2 system bus. This requires a restart of the controller.
All node IDs can be used without any restrictions.
The controller does not initialize any JX2 expansion modules on
the JX2 system bus. For this reason, JX2 expansion modules
cannot be connected.

Bit 4 CAN IDs 0x081 ... 9x09F for CAN-Prim

 1 = The CAN-Prim interface allows communication with the CAN IDs
0x081 ... 0x09F.
Generally, master-slave operations with JX2 slave modules and
MC axes are executed via these CAN IDs, .

Registers for configuring
the JX2 system bus

Registers for configuring
the CAN-Prim interface

MR 2077

60 Jetter AG

3 User-programmable CAN-Prim interface

Module register properties

Value after reset Remanent; factory setting: 0

Takes effect Next time when the controller is launched

CANopen®-STX-API has been implemented:
Enabling JX2 system bus special functions

The value of this register influences the behavior at initializing of the JX2
system bus (CAN 1).

Meaning of the individual bits

Bit 3,
bit 2

Activate CAN-Prim in addition to JX2 system bus

 01 = The CAN-Prim interface and the JX2 system bus are enabled
following the next launch of the JX2 system bus. This requires a
restart of the controller.
This function lets you connect JX2 expansion modules.

Bit 3,
bit 2

Enable CAN-Prim and CANopen® STX API only.

 1x = At the next restart, the JX2 system bus is not initialized. The
CAN-Prim interface can be used.
All node IDs can be used without any restrictions.
The controller does not initialize any JX2 expansion modules on
the JX2 system bus. For this reason, JX2 expansion modules
cannot be connected.
The CANopen® STX API can be used.

Bit 4 CAN IDs 0x081 ... 9x09F for CAN-Prim

 1 = The CAN-Prim interface allows communication with the CAN IDs
0x081 ... 0x09F.
Generally, master-slave operations with JX2 slave modules and
MC axes are executed via these CAN IDs, .

Module register properties

Value after reset Remanent; factory setting: 0

Takes effect Next time when the controller is launched

CAN-Prim status register

Via MR 10500, the status of the CAN-Prim interface can be evaluated.

Meaning of the individual bits

Bit 1 NEW-DAT

 1 = At least one message box has received a new CAN message.

MR 2077

MR 10500

Jetter AG 61

User-programmable Prim interfaces User-programmable CAN-Prim interface

Meaning of the individual bits

Bit 2 Length of CAN ID

 0 = The length of sent/received CAN IDs is 11 bits

 1 = The length of sent/received CAN IDs is 29 bits

Module register properties

Type of access Read access

Takes effect When the CAN-Prim interface is enabled

CAN-Prim command register

Via MR 10501, certain commands are transmitted to the CAN-Prim interface.
These commands apply for both direct and indirect access to the CAN
message box.

CAN-Prim interface - Commands

7 Clearing the FIFO buffer

 This command is for clearing all entries in the FIFO buffer.
Result: MR 10503 = 0

8 Set the standard ID length to 11 bits

 The ID length for all CAN messages is set to 11 bits.
Result:
Bit 2 = 0 in MR 10500
MR 10506 := 0
MR 10507 := 0
MR 10542 + message box number *20 := 0x7FF (in all message boxes)

9 Set the standard ID length to 29 bits

 The ID length for all CAN messages is set to 29 bits.
Result:
Bit 2 = 1 in MR 10500
MR 10506 := 0
MR 10507 := 0
MR 10542 + message box number*20 := 0x7FFFFFFF (in all message
boxes)

10 Check message boxes for receiving new messages

 The CAN-Prim interface automatically checks the inbox for new CAN
messages. Command 10 forces manual checking of pending messages.
By now, issuing command 10 is not obligatory any more.

Module register properties

Takes effect When the CAN-Prim interface is enabled

MR 10501

62 Jetter AG

3 User-programmable CAN-Prim interface

FIFO buffer occupancy

MR 10503 shows if further CAN messages have been received, as well as the
number of messages.
Subtracting the number read first from the number read next renders the
number of new messages received.

Module register properties

Values Number of received messages: 0 ... 16

Type of access Read access

Takes effect When the CAN-Prim interface is enabled

FIFO data

MR 10504 shows which of the messages boxes has received the latest new
CAN message. At reading MR 10504, the Fifo is cleared from the value just
read. Accordingly, the value of MR 10503 is incremented by one.
Notice!
Each read access to this register, even via an active JetSym setup screen,
decrements the number of received CAN messages.

Module register properties

Values No FIFO data available: -1

 Number of the message box
containing new data:

0 ... 15

Type of access Read access removes
characters

Value after reset -1

Takes effect When the CAN-Prim interface is enabled

MR 10503

MR 10504

Jetter AG 63

User-programmable Prim interfaces User-programmable CAN-Prim interface

Global reception mask

The global receiving mask is for filtering the bits of the received CAN IDs. If
the bit of the global reception mask is set, the received bit of the CAN ID is
compared with the global reception ID as shown in MR 10507.

Module register properties

Values In the case of 11-bit CAN IDs 0 ... 0x7FF

 In the case of 29-bit CAN IDs 0 ... 0x1FFFFFFF

Bit = 0 The bit is not compared with MR 10507

Bit = 1 The bit is compared with MR 10507

Takes effect When the CAN-Prim interface is enabled

Global reception ID

By means of the global reception ID and MR 10506 Global Reception Mask a
range of CAN IDs is set, which is transmitted to the CAN-Prim interface.

Module register properties

Values In the case of 11-bit CAN IDs 0 ... 0x7FF

 In the case of 29-bit CAN IDs 0 ... 0x1FFFFFFF

Takes effect When the CAN-Prim interface is enabled

MR 10506

MR 10507

64 Jetter AG

3 User-programmable CAN-Prim interface

CAN message box - Description of registers for direct access

Direct access to the message box via the JX6-SB(-I) submodule is not
possible.

For programming purposes, always use registers for direct access to message
boxes. 20 registers with identical functions are assigned to each message
box. The registers of individual message boxes start from a certain basic
register number.

Message box number Module register number

0 MR 10530

1 MR 10550

2 MR 10570

3 MR 10590

4 MR 10610

5 MR 10630

6 MR 10650

7 MR 10670

8 MR 10690

9 MR 10710

10 MR 10730

11 MR 10750

12 MR 10770

13 MR 10790

14 MR 10810

15 MR 10830

20 registers with identical functions are assigned to each message box. The
register number of individual message boxes is calculated from the basic
register number and the message box number (0 ... 15).

Module register Description

MR 10530 +
message box number*20

Message box status register

MR 10531 +
message box number*20

Message box configuration register

MR 10532 +
message box number*20

CAN-ID

MR 10533 +
message box number*20

Number of data bytes

MR 10534 +
message box number*20

Data byte 0

Submodule JX6-SB(-I)

Direct access

Registers for message
boxes of the CAN-Prim
interface

Jetter AG 65

User-programmable Prim interfaces User-programmable CAN-Prim interface

Module register Description

MR 10535 +
message box number*20

Data byte 1

MR 10536 +
message box number*20

Data byte 2

MR 10537 +
message box number*20

Data byte 3

MR 10538 +
message box number*20

Data byte 4

MR 10539 +
message box number*20

Data byte 5

MR 10540 +
message box number*20

Data byte 6

MR 10541 +
message box number*20

Data byte 7

MR 10542 +
message box number*20

CAN-ID mask

MR 10543 +
message box number*20

Box command register

MR 10544 +
message box number*20

Received CAN-ID

MR 10545 +
message box number*20

Not used

MR 10546 +
message box number*20

Not used

MR 10547 +
message box number*20

Not used

MR 10548 +
message box number*20

Not used

MR 10549 +
message box number*20

Not used

Message box status register

This register shows the status of the message box.

Meaning of the individual bits

Bit 0 Valid

 1 = The message box is enabled

Bit 1 NEW-DAT

 1 = The message box has received a CAN message. Reception of
additional CAN messages is blocked.

Bit 2 OVERRUN

 1 = A new CAN message for this message box was being received
while bit 1 NEW-DAT was = 1.
The new message is discarded.

MR 10530 + message
box number*20

66 Jetter AG

3 User-programmable CAN-Prim interface

Meaning of the individual bits

Bit 3 Sending error

 1 = An error has occurred when sending a CAN message from this
message box.

Module register properties

Type of access Read access

Takes effect When the CAN-Prim interface is enabled

Box command register

R 200010543 + message box number *20 is used to transfer certain
commands to the message box.

CAN-Prim interface - Commands

1 Enabling the message box

 The message box is enabled. When enabling the message box, the system
checks whether the CAN-ID of the message box has been reserved by the
JX2 system bus or not.
Result, if the CAN-ID has not been reserved:
Bit 0 = 1 in MR 10530 + message box number*20

2 Disabling the message box

 The message box is disabled.
Result:
Bit 0 = 0 in MR 10530 + message box number*20

3 Sending CAN messages

 A CAN message is sent.

4 Clearing the NEW DAT bit

 Clears bit 1 NEW-DAT in MR 10530 + message box number*20.
The message box is able to receive CAN messages again.
Result:
Bit 1 = 0 in MR 10530 + message box number*20
If for all message boxes the NEW DAT bit is 0, bit 1 = 0 in MR 10500.

5 Clearing the OVERRUN bit

 Clears bit 2 OVERRUN in MR 10530 + message box number*20 of the
message box.
Result:
Bit 2 = 0 in MR 10530 + message box number*20

6 Clearing the sending error bit

 Clears bit 3 Sending error in MR 10530 + message box number*20 of the
message box.
Result:
Bit 3 = 0 in MR 10530 + message box number*20

MR 10543 + message
box number*20

Jetter AG 67

User-programmable Prim interfaces User-programmable CAN-Prim interface

Module register properties

Takes effect When the CAN-Prim interface is enabled

Message box configuration register

MR 10531 + message box number*20 is for configuring the message box.

Configuration values

0 Inbox

 For configuring the message box as inbox

1 Outbox

 For configuring the message box as outbox for standard frames

2 Outbox RTR

 For configuring the message box as outbox for RTR frames

Module register properties

Takes effect When the CAN-Prim interface is enabled

CAN-ID

In the case of an outbox, a CAN message is sent using the CAN-ID.
In the case of an inbox, CAN messages with this CAN-ID - which is masked
by the CAN-ID mask - are received.

Module register properties

Values In the case of 11-bit CAN IDs 0 ... 0x7FF

 In the case of 29-bit CAN IDs 0 ... 0x1FFFFFFF

Takes effect When the CAN-Prim interface is enabled and the message
box is disabled, i.e. if bit 0 = 0 in MR 10530 + message box
number*20

MR 10531 + message
box number*20

MR 10532 + message
box number*20

68 Jetter AG

3 User-programmable CAN-Prim interface

CAN-ID mask

The CAN-ID mask can be used to configure which bits of a received CAN-ID
are compared with the configured CAN-ID of the message box.

Module register properties

Values Bit = 0 Bit is not compared with CAN-ID

 Bit = 1 Bit is compared with CAN-ID

Takes effect When the CAN-Prim interface is enabled

Received CAN-ID

In the case of an inbox, the CAN-IDs of received CAN messages are entered
here.

Module register properties

Type of access Read access

Values In the case of 11-bit CAN IDs 0 ... 0x7FF

 In the case of 29-bit CAN IDs 0 ... 0x1FFFFFFF

Takes effect When the CAN-Prim interface is enabled

Number of data bytes

In the case of an outbox, a CAN message is sent with this number of data
bytes.
In the case of an inbox, the number of received data bytes is entered.

Module register properties

Values Number of data bytes: 0 ... 8

Takes effect When the CAN-Prim interface is enabled

MR 10542 + message
box number*20

MR 10544 + message
box number*20

MR 10533 + message
box number*20

Jetter AG 69

User-programmable Prim interfaces User-programmable CAN-Prim interface

Data bytes 0 through 7

In the case of an outbox, a CAN message is sent with these data bytes.
In the case of an inbox, the received data bytes are entered.

Module register properties

Values Data of data bytes: 0 ... 255

Takes effect When the CAN-Prim interface is enabled

MR 10534 ... MR 10541 +
message box number*20

70 Jetter AG

3 User-programmable CAN-Prim interface

CAN message box - Description of registers for indirect access

To get indirect access to message boxes of the CAN-Prim interface, always
select the message box using MR 10502 Message Box Number.
To allow compatibility with previous OS versions the registers for indirect
access are still supported. Always use the registers for direct access when
programming the CAN-Prim interface.

CAN-Prim command register

Via MR 10501, certain commands are transmitted to the CAN-Prim interface.

CAN-Prim interface - Commands

1 Enabling the message box

 The message box selected via MR 10502 is enabled. When enabling the
message box, the system checks whether the CAN-ID of the message box
has been reserved by the system bus or not.
Result:
Bit 0 = 1 in MR 10510

2 Disabling the message box

 The message box selected via MR 10502 is disabled.
Result:
Bit 0 = 0 in MR 10510

3 Sending CAN messages

 A CAN message is sent containing the data of the selected message box.

4 Clearing the NEW DAT bit

 This command is for clearing bit 1 NEW-DAT in MR 10510 which enables
the selected message box to receive CAN messages again.
Result:
Bit 1 = 0 in MR 10510

5 Clearing the OVERRUN bit

 Clears bit 2 OVERRUN in MR 10510 of the selected message box.
Result:
Bit 2 = 0 in MR 10510

6 Clearing the sending error bit

 Clears bit 3 Sending error in MR 10510 of the selected message box.
Result:
Bit 3 = 0 in MR 10510

7 Clearing the FIFO buffer

 This command is for clearing all entries in the FIFO buffer.
Result:
MR 10503 = 0

Indirect access

MR 10501

Jetter AG 71

User-programmable Prim interfaces User-programmable CAN-Prim interface

CAN-Prim interface - Commands

8 Set the standard ID length to 11 bits

 The ID length for all CAN messages is set to 11 bits.
Result:
Bit 2 = 0 in MR 10500
MR 10506 := 0
MR 10507 := 0

9 Set the standard ID length to 29 bits

 The ID length for all CAN messages is set to 29 bits.
Result:
Bit 2 = 1 in MR 10500
MR 10506 := 0
MR 10507 := 0

10 Check message boxes for receiving new messages

 The CAN-Prim interface automatically checks the inbox for new CAN
messages. Command 10 forces manual checking of pending messages.
By now, issuing command 10 is not obligatory any more.

Module register properties

Takes effect When the CAN-Prim interface is enabled

Message box number

Via MR 10502, a message box is selected. The data contained in the
message box can then be accessed via MR 10510 to MR 10521.

Module register properties

Values Message box number: 0 ... 15

Takes effect When the CAN-Prim interface is enabled

MR 10502

72 Jetter AG

3 User-programmable CAN-Prim interface

Message box status register

This register shows the status of the message box.

Meaning of the individual bits

Bit 0 Valid

 1 = The message box is enabled

Bit 1 NEW-DAT

 1 = The message box has received a CAN message. Reception of
additional CAN messages is blocked.

Bit 2 OVERRUN

 1 = A new CAN message for this message box was being received
while bit 1 NEW-DAT was = 1.
The new message is discarded.

Bit 3 Sending error

 1 = An error has occurred when sending a CAN message from this
message box.

Module register properties

Type of access Read access

Takes effect When the CAN-Prim interface is enabled

Message box configuration register

MR 10511 is for configuring the message box.

Configuration values

0 Inbox

 For configuring the message box as inbox

1 Outbox

 For configuring the message box as outbox for standard frames

2 Outbox RTR

 For configuring the message box as outbox for RTR frames

Module register properties

Takes effect When the CAN-Prim interface is enabled

MR 10510

MR 10511

Jetter AG 73

User-programmable Prim interfaces User-programmable CAN-Prim interface

CAN-ID

In the case of an outbox, a CAN message is sent using the CAN-ID.
In the case of an inbox, only CAN messages with this CAN-ID are received.

Module register properties

Values In the case of 11-bit CAN IDs 0 ... 0x7FF

 In the case of 29-bit CAN IDs 0 ... 0x1FFFFFFF

Takes effect When a CAN-Prim interface is enabled and the message box
is disabled, i.e. if bit 0 = 0 in MR 10510.

Number of data bytes

In the case of an outbox, a CAN message is sent with this number of data
bytes.
In the case of an inbox, the number of received data bytes is entered.

Module register properties

Values Number of data bytes: 0 ... 8

Takes effect When the CAN-Prim interface is enabled

Data bytes 0 through 7

In the case of an outbox, a CAN message is sent with these data bytes.
In the case of an inbox, the received data bytes are entered.

Module register properties

Values Data of data bytes: 0 ... 255

Takes effect When the CAN-Prim interface is enabled

MR 10512

MR 10513

MR 10514 ... MR 10521

74 Jetter AG

3 User-programmable CAN-Prim interface

Using the CAN-Prim interface (direct access)

To initialize the CAN-Prim interface proceed as follows:

Step Action

1 Set bit 2 = 1 in MR 2077 JX2 system bus special functions.

2 Start up the JX2 system bus.

3 Configure the CAN ID length for all message boxes.

 If the CAN ID length... ... then ...

 ... is 11 bits, ... MR 10501 := 8;

 ... is 29 bits, ... MR 10501 := 9;

To configure a message box as outbox, proceed as follows:

Step Action

1 Select a message box. In this manual, message box 1 is used (MR
10550).

2 Configure message box 1 as outbox:
MR 10551 := 1;

3 Configure the CAN ID for sending messages
MR 10552 := CAN ID;

4 Activate message box 1:
MR 10563 := 1;
Result if configuration has been successful:
Bit 0 = 1 in MR 10550

Initialization

Configuring a message
box as outbox

Jetter AG 75

User-programmable Prim interfaces User-programmable CAN-Prim interface

To send a CAN message proceed as follows:

Step Action

1 Select a message box. In this manual message box 1 is used.

2 Enter the number of data bytes to be sent:
MR 10553 := Number of bytes;

3 Enter the content into the data bytes to be sent:
MR 10554 := Data byte 0;
MR 10555 := Data byte 1;
...
MR 10561 := Data byte 7;

4 Start transmission of the CAN message:
MR 10563 := 3;
Result if sending was successful:
Bit 3 = 0 in MR 10550

To configure a message box for receiving messages proceed as follows:

Step Action

1 Select a message box. In this manual, message box 0 is used (MR
10530).

2 Configure message box 0 as inbox:
MR 10531 := 0;

3 Configure the CAN ID for receiving messages
MR 10532 := CAN ID;

4 Activate message box 1:
MR 10543 := 1;
Result if configuration has been successful:
Bit 0 = 1 in MR 10530

Sending a CAN message

Configuring a message
box as inbox

76 Jetter AG

3 User-programmable CAN-Prim interface

To receive a CAN message in message box 0, proceed as follows:

Step Action

1 Check bit 1 NEW-DAT in MR 10500

 If then ...

 ... bit 1 NEW-DAT = 1 in MR 10500, ... a CAN message has been
received.
Proceed with step 2.

2 Read the number of the message box which has received a new CAN
message.
Message box number := MR 10504;

3 Check the message box for overflow.

 If then ...

 ... bit 2 OVERRUN = 1
in MR 10530,

... an overflow has occurred.

4 Read the number of received bytes
Number of bytes := MR 10533;

5 Read the received bytes.
Data byte 0 := MR 10534;
Data byte 1 := MR 10535;
...
Data byte 7 := MR 10541;

6 Acknowledge reception
MR 10543 := 4;
Result if message has been received successfully:
Bit 1 = 0 in MR 10530

Receiving a CAN
message

Jetter AG 77

User-programmable Prim interfaces User-programmable CAN-Prim interface

Using CAN-ID masks

Usually the CAN-Prim interface receives only CAN messages with a CAN-ID
which matches the configured CAN-ID of the message box.
You can use a mask to expand CAN-IDs of a message box which are to be
received. Each message box has got a CAN-ID and a CAN-ID mask of its
own.

If then ...

... bit = 0 in MR 10542 + message box
number*20,

... the bit of the CAN-ID received is not
evaluated.

... bit = 1 in MR 10542 + message box
number*20,

... the bit of the CAN-ID received must
match the configured CAN-ID.

Introduction

Functioning principle

78 Jetter AG

3 User-programmable CAN-Prim interface

RTR frames via CAN-Prim interface

RTR (Remote Transmission Request) frames are a type of message specific
to CAN. Using an RTR frame a CAN node A can prompt another CAN node B
to transmit a message. An RTR frame cannot be used to transmit user data.
Node B is prompted to transmit a frame of the same CAN-ID and the
corresponding data.

Transmitting RTR frames via the JX6-SB(-I) submodule is not possible.

Step Action

1 Select any message box for transmitting RTR frames and another
message box for receiving them.
In this manual message box 0 is used for transmitting and message box 1
for receiving RTR frames.

2 Configure message box 0 as outbox for RTR frames:
MR 10531 := 2;

3 Configure the CAN-ID of the RTR frame:
MR 10532 := CAN ID;

4 Activate message box 0:
MR 10543 := 1;
Result:
Bit 0 = 1 in MR 10530

5 Configure message box 1 as inbox for replies to an RTR frame:
MR 10551 := 0;

6 Configure the CAN-ID of the RTR frame:
MR 10552 := CAN ID;

7 Activate message box 1:
MR 10563 := 1;
Result:
Bit 0 = 1 in MR 10550

RTR frames

Submodule JX6-SB-I

Configuration for
transmitting and
receiving RTR frames

Jetter AG 79

User-programmable Prim interfaces User-programmable CAN-Prim interface

Step Action

1 Prompt transmitting an RTR frame from message box 0:
MR 10543 := 3;

2 Wait for a reply to the RTR frame in message box 1:

 If then ...

 ... bit 1 NEW-DAT = 1 in MR 10550, ... the controller has received the
reply to the RTR frame.
Proceed with step 3.

3 Read the number of received bytes
Number of bytes := MR 10553;

4 Read the received bytes
Data byte 0 := MR 10554;
Data byte 1 := MR 10555;
...
Data byte 7 := MR 10561;

5 Acknowledge reception
MR 10563 := 4;

 The message box is again ready to receive.

Transmitting and
receiving RTR frames

Jetter AG
Graeterstrasse 2
71642 Ludwigsburg | Germany

Phone +49 7141 2550-0
Fax +49 7141 2550-425
info@jetter.de
www.jetter.de

We automate your success.

	Application-Oriented Manual User-programmable Prim Interfaces
	Table of Contents

	1 User-programmable serial interface
	1.1 Connection
	Serial interface port X11

	1.2 Functioning principle of the user-programmable interface
	Functioning principle

	1.3 Registers
	Register numbers
	Registers - Description

	1.4 Programming
	Configuring the interface
	Sending characters
	Sending texts
	Sending values
	Receiving characters
	Receiving values

	2 User-programmable IP interface
	2.1 Programming
	Initializing the user-programmable IP interface
	Establishing a connection
	Sending data
	Receiving data
	Terminating a connection

	2.2 Registers
	Register numbers
	Registers - Description

	3 User-programmable CAN-Prim interface
	Restrictions regarding the CAN-Prim interface
	User-programmable CAN-Prim interface - Operating principle
	Internal processes of the CAN-Prim interface
	Register description - CAN-Prim interface
	CAN message box - Description of registers for direct access
	CAN message box - Description of registers for indirect access
	Using the CAN-Prim interface (direct access)
	Using CAN-ID masks
	RTR frames via CAN-Prim interface

	Addresses Jetter AG

