

Application-Oriented Manual

CANopen® STX API

60881083

We automate your success.

2 Jetter AG

Introduction

Item # 60881083
Revision 1.10
July 2018 / Printed in Germany

This document has been compiled by Jetter AG with due diligence, and based on the known state of the art.
In the case of modifications, further developments or enhancements to products shipped in the past, a revised document
will be supplied only if required by law, or deemed appropriate by Jetter AG. Jetter AG shall not be liable for errors in form
or content, or for missing updates, as well as for damages or disadvantages resulting from such failure.
The logos, brand names, and product names mentioned in this document are trademarks or registered trademarks of
Jetter AG, of associated companies or other title owners and must not be used without consent of the respective title
owner.

Jetter AG 3

CANopen® STX API Contents

Table of Contents

1 CANopen® 5

Reference model .. 7
Data interchange via CAN bus ... 9
Device model ... 10
Object dictionary .. 11
CANopen® communication .. 13
The process data object PDO .. 15
The service data object SDO ... 17
Network management (NMT) ... 19

2 CANopen® STX API 21

STX function: CanOpenInit() .. 22
STX function: CanOpenSetCommand() .. 24
STX function: CanOpenUploadSDO() ... 26
STX function: CanOpenDownloadSDO() ... 29
STX function: CanOpenAddPDORx() .. 32
STX function: CanOpenAddPDOTx() .. 37
Heartbeat monitoring ... 41
CANopen® object dictionary .. 45

3 Jetter-specific use of CANopen® object dictionaries 49

Jetter AG 5

CANopen® STX API CANopen®

1 CANopen®

CAN (Controller Area Network) was developed for data transmission in
vehicles in the mid-eighties. Data transmission takes place on a serial data
bus within real-time applications. In 1995, the specifications made so fare
were handed over to the CiA e.V. (CAN in Automation association). From then
on, the standard has been maintained and further developed within the
framework of the CAN association. Since 2002, it has been available as a
European standard (EN 50325-4 2002 Part 4: CANopen).
The hardware having got a CAN transceiver and a CAN controller to ISO
11898 is a prerequisite of applying CANopen®.

The CANopen® standard describes data interchange in a CAN-based
network. According to this standard, both the basic communication mechanism
(communication profile) and the functioning of the communicating devices
(device profile) have been defined. This means that also the interpretation of
process data that are being transmitted via bus is set under CANopen®.

The CANopen® specifications can be obtained from the CiA e.V.
http://www.can-cia.org homepage. The key specification documents are:

 CiA DS 301 - This document is also known as the communication profile
and describes the fundamental services and protocols used under
CANopen®.

 CiA DS 302 - Framework for programmable devices (CANopen® Manager,
SDO Manager)

 CiA DR 303 - Information on cables and connectors
 CiA DS 4xx - These documents describe the behavior of a number of

device classes in, what are known as, device profiles.

The CANopen® protocol makes use of the CAN bus as transmission medium
and sets the basic structures for network management, the usage of the CAN
identifiers (message address), the timing behavior on the bus, the way of data
transmission and user-specific profiles.
CANopen® defines the application layer as the common communication
profile specified by the CiA within the standard DS 30x. It determines the
individual communication pathway. As it is the case with some other field
buses as well, a difference is made between real-time data and parameter
data.
CAN has only been standardized for ISO-OSI layers 1 and 2 defined in ISO
11898.

The CANopen® standard

Documentation

Structural model of
CANopen®

http://www.can-cia.org/

6 Jetter AG

1 CANopen®

ISO/OSI layer 1: Physical Layer

ISO/OSI layer 2: Data Link Layer

ISO/OSI layer 7: Application Layer Communication Profile
CiA / DS 30x

CANopen Device
Profile CiA / DS 40x

Standard ISO 11898

Profile
I/O

Profile
HMI

Profile
Motion

other
Profiles

CAN

CAN

Topic Page
Reference model ... 7
Data interchange via CAN bus.. 9
Device model .. 10
Object dictionary ... 11
CANopen® communication .. 13
The process data object PDO ... 15
The service data object SDO .. 17
Network management (NMT) ... 19

Contents

Jetter AG 7

CANopen® STX API CANopen®

Reference model

The communication concept can be described in a similar way as the ISO-OSI
reference model.
The following illustration shows the layers involved:

CANopen
Application

Layer

CAN Data Link
Layer

CAN Physical
Layer

CANopen
Application

Layer

CAN Data Link
Layer

CAN Physical
Layer

ID + Data

Object at Index

ID + Data

CAN_L CAN_L
CAN_H

...

The application layer provides a concept for configuration and communication
of real-time data and of mechanisms for synchronizing various devices.
The functions being supplied by the application layer of an application have
been distributed logically amont various service objects in the application
layer. One service object offers one specific feature including all related
services. These services are described in the service specification of the
respective service object.
To make various applications interact, call the services of a service object in
the application layer. To physically establish these services, the respective
object interchanges data with one or several other service objects via CAN
network by means of a protocol. This protocol is described in the protocol
specification of the related service object.

By means of service elements, the application interacts with the application
layer. There are four different types of service elements:

 The application issues a request for a service to the application layer.
 The application layer issues an indication to the application to signalize a

service being requested.
 The application issues a response to the application layer, in order to reply

to an indication received.
 The application layer issues a confirmation to the application, in order to

signalize the event of a request being issued before.

CANopen® reference
model

Application layer

Service elements

8 Jetter AG

1 CANopen®

A service type defines the service elements being exchanged between the
application layer and the corresponding applications for a certain service of a
service object.

Application X

Application X Application XApplication Y, Z, ... Application Y

Local Service

Unconfirmed Service Confirmed Service

Request

Request
Indication

Indication

Response

Request

Confirmation

 A Local Service only comprises the local service object. The application
issues a request via its local service object. The requested service is
executed without communicating with one or several partner service
objects via CANopen® bus.
This local service is performed, for example, in Jetter AG products if a
CANopen® device changes its state in the state machine from, for
example, pre-operational to operational.

 An Unconfirmed Service comprises one or more than one partner service
objects. The application issues a request to its local service object. This
request is forwarded to the partner service objects. These forward each
request as an indication to its corresponding application. The result is not
confirmed.
This unconfirmed service is performed, for example, in Jetter AG products
if PDOs (process data objects) are to be sent.

 A Confirmed Service can only comprise one partner service object. The
application issues a request to its local service object. This request is
forwarded to the partner service object. It forwards the request in the shape
of an indication to the receiving application. The receiving application
issues a response. The response is caused to the root service object,
which, in turn, issues a confirmation to the requesting application.
This confirmed service is performed, for example, in Jetter AG products if
SDOs (service data objects) are to be sent.

Service types

Jetter AG 9

CANopen® STX API CANopen®

Data interchange via CAN bus

At CAN bus data transmission, no devices are addressed. Yet, the content of a
message is flagged by an unambiguous identifier.
Besides flagging the content, the identifier also sets the priority of the
message.
If any device is to send a message, it transmits both the message and the
identifier to the CAN controller. The CAN controller takes on transmitting the
message. If it is the only sending device at a certain moment, or if the
message sent has got highest priority, all other controllers in the network will
receive this message. The receiving CAN controller already decides whether
this message is needed for its individual device. In order to perform the
selection, the CAN controller is told during initializing, which messages must
be assigned to the device. If the received message is not relevant for a
device, it is ignored by its CAN controller.
Messages are transmitted bit by bit on a differential line pair (CAN high and
CAN low line). In this case, there are two different states (dominant = 0 and
recessive = 1) for bit information.

In principle, all devices at the CAN bus have got the same rights. In the bus,
question/response behavior is not provided. Rather, each device is to trigger
data transfer by itself. Arbitration is to be executed within a message and
without destroying it.
On the bus, the level "active" being marked by "0" in the CAN frame is called
dominant and the level "passive" marked by "1" in the CAN frame is called
recessive. As a rule, a dominant level overrides a recessive bus state. This
means that a device which is going to send a recessive level to the bus will be
overridden by a dominant sending device.
As a rule, each device at the CAN bus overhears messages to be sent via the
bus. Transmitting may only be started, if the bus is not occupied by a CAN
frame at that instance. At transmitting, the present state of the bus is always
compared with the own transmission frame.
If several controllers start transmitting simultaneously, the first dominant bit on
the line determines prioritization of the message (dominance is given priority).
If a device which is going to write a recessive level to the bus recognizes that
there is a dominant level on the bus, it interrupts its own transmission
procedure to retry later. This way, the message of higher priority (the message
of the lowest identifier) is kept on the bus in error-free state.

Arbitration results in the following demands:

 0 in a CAN frame represents the dominant level on the bus. This means
that CAN identifiers of lower numbers have got higher priority.
Thus, the more a message sent via the bus is prioritized, the lower must be
the value of the identifier applied.

 Prioritizing is always carried out within a bit. This means that all network
nodes must be within the line delay of 1 bit time (more precisely: 3/4). This
relates to the forward and return travel of the signal.

 Because arbitration must take place within the identifier, there must be one
sender per each identifier. This identifier, though, may be received by
several devices at the CAN bus.

Principle

Arbitration in the CAN
network

Demands on the CAN
network

10 Jetter AG

1 CANopen®

Device model

The model of a CANopen® device is shown below.

Application
object

Application
object

Application
object

Application
object

Comm.
object

Comm.
object

Comm.
object

Comm.
object

State machine

PDO
Index Object

Communication

Bus system Process

ApplicationObject Dictionary

SDO

1000H
1001H

1600H
.
..

It consists of the following elements:

 Communication:
The functional unit lets communication objects and the related function
transport data items via the basic network structure.

 Object dictionary:
The object dictionary is a collection of all data items which influence the
behavior of the application and communication objects as well as the state
machine on this device.

 Application:
In this context, application is the function range of the device regarding its
interaction with the process environment.

Device model

Jetter AG 11

CANopen® STX API CANopen®

Object dictionary

In the object dictionary, all variables and parameters (objects) of a CANopen®
device are assembled. There, the process map is applied to the data. By
means of the parameters, the functioning of a CANopen® device can be
influenced.

An object dictionary is structured in a way that several parameters for all
devices of this category are obligatory, while others can be freely defined and
used.
In CANopen®, the objects are assigned a number (the so-called index), by
which they can be unambiguously identified and addressed. The objects can
be simple data types, such as, for example, bytes, integers, longs or strings. In
case of more complex structures, such as, for example, arrays and structures,
a subindex is applied for addressing the individual elements.
The structure of the object dictionary, the assignment of the index numbers,
and some obligatory entries are specified in the device profiles.

By means of a 16-bit index, any entry into the object library can be called. In
case of a simple variable, the index directly relates to the value of this
variable. In case of data records and arrays, though, the index addresses the
entire data structure.
A subindex is defined, in order to be able to address individual data structure
elements via the network. For individual entries in the object dictionary, such
as, for example, UNSIGNED8, BOOLEAN, INTEGER32, etc., the subindex
value is always zero. In case of complex entries into the object dictionary,
such as, for example, arrays or data records of several data fields, the
subindex relates to fields within a data structure, to which the index relates.
The fields addressed by the subindex can consist of various data types.

For the user, the object dictionary has been stored as EDS (Electronic Data
Sheet) file. This EDS file contains all objects with their respective index,
sub-index, name, data type, default value, minimum and maximum value and
access options (read/write, transmission via SDO only, transmission via PDO,
etc.).
This means that in an EDS file the entire function range of a CANopen®
device is stored.

Introduction

Configuration

The usage of index and
subindex

EDS file

12 Jetter AG

1 CANopen®

Below, an overview of the default object dictionary is given.

Index (hex) Function

0000 Unassigned

0001 - 001F Static Data Types

0020 - 003F Complex Data Types

0040 - 005F Manufacturer Specific Complex Data Types

0060 - 007F Device Profile Specific Static Data Types

0080 - 009F Device Profile Specific Complex Data Types

00A0 - 0FFF Reserved for later use

1000 - 1FFF Communication Profile Area

2000 - 5FFF Manufacturer Specific Profile Area

6000 - 9FFF Standardized Device Profile Area

A000 - BFFF Standardized Interface Profile Area

C000 - FFFF Reserved for later use

Basic assignment of the
object index numbers

Jetter AG 13

CANopen® STX API CANopen®

CANopen® communication

Data interchange in CANopen® takes place via frames, by which the
application data are transferred. For this, the service data objects (SDO),
which serve data interchange with the object dictionary, and process data
objects (PDO), which serve information interchange on the respective process
states must be distinguished. Further, frames for network management and for
error messages are defined.

Generally, all entries of the object dictionary can be accessed via SDOs. In
practice, SDOs are mostly used for initializing only during bootup. Within an
SDO, only one object can be accessed. As a rule, SDOs are answered.

In principle, PDOs are a summary of objects (variables, respectively
parameters) taken from the object dictionary. In a PDO, there can be 8 bytes
max., which can consist of several objects, The technical expression is that
the objects are mapped into a PDO.

PDO (Process Data Object) SDO (Service Data Object)

Real-time data System parameters

No reply is transmitted to the frame
(faster transmission)

A reply is transmitted to the frame
(slower transmission)

High-priority identifiers Low-priority identifiers

8 bytes max. per frame Data are distributed to several frames

Previously agreed on data format Indexed data addressing

For network management and error messages, there are the following
predefined logic communication channels:

 Communication objects for boot-up (i.e. network startup)
Startup, stopping, reset of a node, etc.

 Communication objects for dynamic distribution of identifiers to DBT
(Distributor)

 Communication objects for nodeguarding and lifeguarding - this way, the
network can be monitored

 One communication object for synchronizing
 Communication objects for emergency messages (Emergency)

These have been set in CANopen®. They have got the characteristics of
global broadcast (Broadcast).

Introduction

SDO and PDO - a
comparison

Further communications
channels

14 Jetter AG

1 CANopen®

For CANopen® the following identifier distribution is predefined: In this case,
the node number is embedded in the identifier.

11-bit identifier
(binary)

Identifier
(decimal)

Identifier
(hexadecimal)

Function

000000000000 0 0 Network management

000100000000 128 80h Synchronization

0001xxxxxxxx 129 - 255 81h - FFh Emergency

0011xxxxxxxx 385 - 511 181h - 1FFh PDO1 (tx)

0100xxxxxxxx 513 - 639 201h - 27Fh PDO1 (rx)

0101xxxxxxxx 641 - 767 281h - 2FFh PDO2 (tx)

0110xxxxxxxx 769 - 895 301h - 37Fh PDO2 (rx)

0111xxxxxxxx 897 - 1023 381h - 3FFh PDO3 (tx)

1000xxxxxxxx 1025 - 1151 401h -47Fh PDO3 (rx)

1001xxxxxxxx 1153 - 1279 481h - 4FFh PDO4 (tx)

1010xxxxxxxx 1281 - 1407 501h - 57Fh PDO4 (rx)

1011xxxxxxxx 1409 - 1535 581h - 5FFh Send SDO

1100xxxxxxxx 1537 - 1663 601h - 67Fh Receive SDO

1110xxxxxxxx 1793 - 1919 701h - 77Fh NMT Error Control

xxxxxxxx = Node number 1 - 127

By means of the PDOx (tx) function, a device connected to the CANopen®
bus can request another device connected to the bus to send a PDO frame
with the same identifier and the desired data. This PDO frame will then be
read by the requesting device.
By means of the PDOx (rx) function, a device connected to the CANopen®
bus can request another device connected to the bus to read this PDO frame
sent with the request and the data.

Default identifier
distribution

Note on default identifier
distribution

Jetter AG 15

CANopen® STX API CANopen®

The process data object PDO

The process data interchange with CANopen® is also a pure CAN bus, that is,
without a protocol overhead. The broadcast property of the CAN bus
completely remains as it is. This way, a message can be received and
evaluated by all devices connected to the bus.

As the protocol structure is missing in the frame, the node(s) at the bus, to
which these data have been assigned, must be notified of how information is
integrated into the data range of the PDO (which bit/byte is which value). For
this declaration, so-called PDO mapping is applied, which allows for placing
the desired information at a certain location in the data range of a PDO.

To allow for variable PDO data configuration, mapping itself is carried out in a
specific mapping object. In principle, this is a table into which the objects to be
mapped are entered.

Object Dictionary Mapping Object 2

(Application Object A)

(3 mapped objects)

(Application Object B)

(Application Object C)

(Mapping Object 1)

(Mapping Object 2)

(Mapping Object x)

max. 8 byte datafield

(1) 8 Bit (3) 8 Bit(2) 16 Bit

header
(Application
Objekt B)

(Application
Objekt A)

empty or
not valid

(Application
Objekt C)

yyh

zzh

xxh 8

8

0

1

2

3

3

16

xxhxxxxh

xxxxh

yyh

zzh

nnh

ooh

yyyyh

yyyyh

zzzzh

zzzzh

nnnnh

ooooh

...

...

...

...

...

...

PDO 2

Introduction

PDO mapping

16 Jetter AG

1 CANopen®

Process data can generally be exchanged in various ways which can be
applied within one network simultaneously (as a mixture, so to say).

 Event-driven data transfer
 Timer-driven data transfer
 Polling by remote frames
 Synchronized mode

In this case, the data of a node are transmitted as a message, as soon as the
state has been changed.
If, for example, the level at a digital input of a CAN I/O device changes,
transmitting the assigned message (PDO) is triggered.
If, for example, a device has got threshold values for an analog value, and if
the threshold is reached, the assigned message (PDO) is sent as well.

In intervals of the so-called event time, messages are continually sent, even if
the data haven't changed in between.
The inhibit time defines the minimum interval between two calls of a PDO
service.

In case of Remote Frame Polling, the CAN node which functions as master in
the network, requires the desired information by query (by means of Remote
Frame).
The node which owns this information, respectively the required data, then
replies by transmitting the requested data.
As with CANopen® the message identifier also specifies the device address,
the query is usually directed towards a specific device. All other CAN
controllers in the network ignore this query.

CANopen® lets you query inputs and states of various nodes simultaneously
and to make changes to inputs respectively states simultaneously.
This is supported by the synchronizing frame (SYNC). The sync frame is a
broadcast of high importance, yet, without data content, to all bus nodes. The
sync frame is dispatched by a bus node in cyclic mode and in set intervals
(communication cycle).
Devices functioning in synchronized mode read their inputs (actual states)
when the sync frame is received and send the data directly after this, as soon
as the bus permits.
After the following sync frame, output data (state changes instructed via bus)
are written to the outputs and executed.

Various kinds of process
data interchange

Event-driven data
transfer

Timer-controlled data
transfer

Polling by remote frames

Synchronized mode

Jetter AG 17

CANopen® STX API CANopen®

The service data object SDO

All CANopen® devices are equipped with a so-called object dictionary, which
lets you access all parameters that are supported by the assembly.
As can be seen from the object dictionary, the object data have got an index of
16 bits. Parameters can be directly accessed via this index. Further, with each
index there is a sub-index of 8 bits which enables further structuring within an
index.
For this reason, a service data frame must have a protocol structure which
exactly defines which parameter is to be addressed and how this parameter is
to be dealt with.
A service data object consists of a domain protocol (8 bits), the index (16 bits),
the sub-index (8 bits) and of up to 4 data bytes altogether.
The domain protocol specifies what is to be done to the parameters referred to
by index and sub-index. New values which are to be assigned to certain
parameters can be transferred within the data bytes.

Domain
Protocol

16 bit Index

Byte 0 Byte 1 - 3: Multiplexer Byte 4 - 7: Data

- Upload
- Download
- Data Length
- Expedited
 Transfer
- Abort
- Toggle Bit

8 bit
Subindex 1 - 4 byte bit parameter data

Index

Object dictionary

Subindex Description Value

The 8 bytes of the SDO (as shown here) have been stored to the data range
of the CAN message. The device is addressed by means of the SDO in the
identifier.
An SDO transfer always comprises two frames as a minimum.

Protocol structure

18 Jetter AG

1 CANopen®

The following illustration shows data exchange in the case of an SDO
download protocol being applied.
The data are written to the object dictionary of the server. The reply directed to
the Client has got the same index and sub-index.

Request Indication

Confirm Response

8 bit
Subindex

8 bit
Subindex

Parameter data

No data (reserved)

SDO Download Protocol Write data from client to server object dictionary

Download
request

Download
response

16 bit Index

16 bit Index

Byte 0

Byte 0

Byte 1 + 2

Byte 1 + 2

Byte 3

Byte 3

Byte 4 - 7

Byte 4 - 7

Client Server

The following illustration shows data exchange in the case of an SDO upload
protocol being applied.
The data are read from the object dictionary of the server and transferred to
the client. The reply directed to the Client has got the same index and
sub-index.

Upload
request

Upload
response

16 bit Index

16 bit Index

Request Indication

Confirm Response

8 bit
Subindex

8 bit
Subindex

Parameter data

No data (reserved)

SDO Upload Protocol Read data from server object dictionary to the client

Byte 0

Byte 0

Byte 1 + 2

Byte 1 + 2

Byte 3

Byte 3

Byte 4 - 7

Byte 4 - 7

Client Server

Download protocol

Upload protocol

Jetter AG 19

CANopen® STX API CANopen®

Network management (NMT)

Each CANopen® device comprises a state machine which, after power-up,
takes on the pre-operational state. In this state, the CANopen® device can be
configured and parameterized via SDO. Communication via PDO is not
permitted.

CANopen® devices by Jetter AG change their state my making a function call
(CanOpenSetCommand) out of an STX program. This means that the device
on which the program is running, sets all CANopen® devices (nodes) at the
bus to the "Operational" state. In this state, PDO frames are sent and
received. Access to the object dictionary via SDO is possible as well.

If a CANopen® device is set to Stop, communication via PDO or SDO is not
possible any more. This state is made use of to evoke a certain behavior of
the application. Defining this behavior belongs to the task area of the device
profiles.

Power-On or Hardware Reset

R
es

et
 C

om
m

un
ic

at
io

n

Reset Node

Initialization

Pre-Operational

Operational

Stopped

State machine

Jetter AG 21

CANopen® STX API CANopen® STX API

2 CANopen® STX API

This chapter describes the STX functions of the CANopen® STX API.

These STX functions are used in communication between this device and
other CANopen® nodes.

In this chapter, the following terms and abbreviations are used:

Term Description

Node ID Node identification number of the device:
This ID lets you address the device.

NMT Network management

RO Read only access

R/W Read/write access

The following devices have got the CANopen®-STX-API feature:

Category Designation

Controller JC-360(MC), JC-365(MC), JC-440(MC)
JCM-350-E00, JCM-350-E01/E02, JCM-350-E03, JCM-511,
JCM-521, JCM-630

HMI JV-1005/7/10-...-B9-CO
BTM09B, BTM011B, JVM-104, JVM-407B, JVM-507B,
JVM-604B

Topic Page
STX function: CanOpenInit() .. 22
STX function: CanOpenSetCommand() ... 24
STX function: CanOpenUploadSDO() .. 26
STX function: CanOpenDownloadSDO() ... 29
STX function: CanOpenAddPDORx()... 32
STX function: CanOpenAddPDOTx() ... 37
Heartbeat monitoring .. 41
CANopen® object dictionary .. 45

Introduction

Application

Terms and abbreviations

Devices

Contents

22 Jetter AG

2 CANopen® STX API

STX function: CanOpenInit()

The function CanOpenInit() lets you initialize one of the CAN busses. The
device then automatically sends the heartbeat message every second with the
following communication object identifier (COB-ID): Node ID + 0x700.

Function CanOpenInit(

 CANNo:Int,

 NodeID:Int,

 const ref SWVersion:String,

) :Int;

The function CanOpenInit() has got the following parameters.

Parameter Description Value

CANNo CAN bus number 0 ... CANMAX

NodeID Node ID of the given device 1 ... 127

SWVersion Reference to own software
version
This software version is entered
into the index 0x100A in the
object directory.

String up to 255
characters

This function transfers the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters

-3 Initialization has not worked

-4 The JX2 system bus driver is activated

This parameter specifies the number of the CAN interface. CANNo = 0 is
assigned to the first interface. The number of CAN interfaces depends on the
device. For information on the maximum number of CAN interfaces
(CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

Introduction

Function declaration

Function parameters

Return value

CANNo parameter

Jetter AG 23

CANopen® STX API CANopen® STX API

This function lets you initialize CAN bus 0. The device has node ID 20 (0x14).

Result := CanOpenInit(0, 20, 'Version: 01.00.0.00');

During initialization, the device processes the following process steps:

Step Description

1 First, the bootup message is sent as a heartbeat message.

2 As soon as the device goes into pre-operational status, it sends the
heartbeat message pre-operational.

If the device is in pre-operational state, it lets you access the object directory
using SDO.

After initialization, NMT messages can be sent and received. The own
heartbeat status can be changed with the function CanOpenSetCommand.

 STX function CanOpenSetCommand (see page 24)

How to use this function

Operating principle

Access to the object
directory

NMT messages

Related topics

24 Jetter AG

2 CANopen® STX API

STX function: CanOpenSetCommand()

The function CanOpenSetCommand() lets you change the heartbeat status of
the device itself and of all other devices (NMT slaves) on the CAN bus.

Function CanOpenSetCommand(

 CANNo:Int,

 iType:Int,

 Value:Int,

) :Int;

The function CanOpenSetCommand() has got the following parameters:

Parameter Description Value

CANNo CAN bus number 0 ... CANMAX

iType Command selection See table below.

iType Description: Value

CAN_CMD_HEARTBEAT Only the own heartbeat status is changed. Selecting
heartbeat states:
CAN_HEARTBEAT_STOPPED (0x04)
CAN_HEARTBEAT_OPERATIONAL (0x05)
CAN_HEARTBEAT_PREOPERATIONAL (0x7F)

CAN_CMD_NMT The heartbeat status is changed for all other devices or
for a specific device on the CAN bus. Selecting
heartbeat states (NMT master):
CAN_NMT_OPERATIONAL (0x01) or
CAN_NMT_START (0x01)
CAN_NMT_STOP (0x02)
CAN_NMT_PREOPERATIONAL (0x80)
CAN_NMT_RESET (0x81)
CAN_NMT_RESETCOMMUNICATION (0x82)

CAN_CMD_TIME_CONS
UMER

This command lets you set the device to
ready-to-receive state to allow time synchronization via
CAN bus (CAN ID 0x100). Refer to document by CiA
e.V. DS301 V402 Selecting Synchronization, page 59.
CAN_TIME_CONSUMER_DISABLE = 0
CAN_TIME_CONSUMER_ENABLE = 1

CAN_CMD_TIME_PROD
UCER

The time is published on the CAN bus. For more
information on the structure refer to document DS301
by CiA e.V., CAN ID 0x100:
CAN_TIME_PRODUCER_SEND = 1 (for sending
TIME_OF_DAY once)

Introduction

Function declaration

Function parameters

Jetter AG 25

CANopen® STX API CANopen® STX API

The macro function CAN_CMD_NMT_Value(NodeID, CAN_CMD_NMT) is
used to select the command CAN_CMD_NMT.
Values from 0 to 127 are permitted for the node ID parameter. 1 to 127 is the
node ID for a specific device. If the command is to be sent to all devices on
the CAN bus, use the parameter CAN_CMD_NMT_ALLNODES(0).

This parameter specifies the number of the CAN interface. CANNo = 0 is
assigned to the first interface. The number of CAN interfaces depends on the
device. For information on the maximum number of CAN interfaces
(CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

This function sends the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters
Command not known

Task: Set the own heartbeat status to operational.

Result := CanOpenSetCommand(0, CAN_CMD_HEARTBEAT,
CAN_HEARTBEAT_OPERATIONAL);

Task: Set the own heartbeat status and the status of all other devices on the
CAN bus to operational.

Result := CanOpenSetCommand(0, CAN_CMD_NMT,
CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES, CAN_NMT_OPERATIONAL));

Task: Set the heartbeat status of the device with the node ID 60 (0x3C) to
operational.

Result := CanOpenSetCommand(0, CAN_CMD_NMT, CAN_CMD_NMT_Value(60,
CAN_NMT_OPERATIONAL));

Task: Enable time synchronization via CAN bus (CAN ID 0x100).

Result := CanOpenSetCommand(0, CAN_CMD_TIME_CONSUMER,
CAN_TIME_CONSUMER_ENABLE);

Task: Publish the time on the CAN bus.

Result := CanOpenSetCommand(0, CAN_CMD_TIME_PRODUCER,
CAN_TIME_PRODUCER_SEND);

Note

CANNo parameter

Return value

How to use this function
(example 1)

How to use this function
(example 2)

How to use this function
(example 3)

How to use this function
(example 4)

How to use this function
(example 5)

26 Jetter AG

2 CANopen® STX API

STX function: CanOpenUploadSDO()

The function CanOpenUploadSDO() lets you access a particular object in the
object directory of the message recipient and read the value of the object.
Data is exchanged in accordance with the SDO upload protocol. Supported
transfer types are segmented (more than 4 data bytes) and expedited (up to
4 data bytes).

Function CanOpenUploadSDO(

 CANNo:Int, // Number of the bus line

 NodeID:Int, // Device ID

 wIndex:Word,

 SubIndex:Byte,

 DataType:Int, // Type of the data to be received

 // Data length for the global variable DataAddr
 DataLength:Int,

 // Global variable into which the received value is entered
 const ref DataAddr,

 ref Busy: Int, // Status of the SDO transmission

) :Int;

The CanOpenUploadSDO() function has got the following parameters:

Parameter Description Value

CANNo CAN bus number 0 ... CANMAX

NodeID Node ID of the message
recipient

1 ... 127

wIndex Index number of the object 0 ... 0xFFFF

SubIndex Subindex number of the object 0 ... 255

DataType Type of data to be received 2 ... 27

DataLength Data length of the global variable
DataAddr

DataAddr Global variable into which the
received value is to be entered

Busy Status of the SDO transmission

Introduction

Function declaration

Function parameters

Jetter AG 27

CANopen® STX API CANopen® STX API

This function sends the following return values to the higher-level program.

Return value

0 OK

-1 Error in checking parameters

-2 Device in Stop status

-3 DataType is greater than DataLength

-4 Insufficient memory

This parameter specifies the number of the CAN interface. CANNo = 0 is
assigned to the first interface. The number of CAN interfaces depends on the
device. For information on the maximum number of CAN interfaces
(CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

The following data types can be received.

Byte types CANopen® format Jetter format

1 CANOPEN_INTEGER8
CANOPEN_UNSIGNED8

Byte

2 CANOPEN_INTEGER16
CANOPEN_UNSIGNED16

Word

3 CANOPEN_INTEGER24
CANOPEN_UNSIGNED24

-

4 CANOPEN_INTEGER32
CANOPEN_UNSIGNED32
CANOPEN_REAL

Int

5 CANOPEN_INTEGER40
CANOPEN_UNSIGNED40

-

6 CANOPEN_INTEGER48
CANOPEN_UNSIGNED48
CANOPEN_TIME_OF_DAY
CANOPEN_TIME_DIFFERENCE

-

7 CANOPEN_INTEGER56
CANOPEN_UNSIGNED46

-

8 CANOPEN_INTEGER64
CANOPEN_UNSIGNED64
CANOPEN_REAL64

-

n CANOPEN_VISIBLE_STRING
CANOPEN_OCTET_STRING
CANOPEN_UNICODE_STRING
CANOPEN_DOMAIN

String

Return value

CANNo parameter

DataType parameter

28 Jetter AG

2 CANopen® STX API

After successfully calling up the function, the Busy parameter is set to
SDOACCESS_INUSE. With an error in transmission, Busy is set to
SDOACCESS_ERROR. With a successful transmission, the function returns
the number of bytes transmitted.

With an error in transmission, Busy returns an error code. The following error
codes are available:

SDOACCESS_STILLUSED
Another task is communicating with the same node ID.

SDOACCESS_TIMEOUT
The task has been timed out because the device with the specified node ID is
not responding.
If the specified node ID does not respond within 1 second, the timeout bit is
set.

SDOACCESS_ILLCMD
The response to the request is invalid.

SDOACCESS_ABORT
Access to the device with the specified node ID was aborted.

SDOACCESS_SYSERROR
General internal error

The following macros have been defined in connection with this function:

SDOACCESS_FINISHED (busy)
This macro checks whether communication has finished.

SDOACCESS_ERROR (busy)
This macro checks whether an error has occurred.

Busy parameter

Busy - Error codes

Macro definitions

Jetter AG 29

CANopen® STX API CANopen® STX API

STX function: CanOpenDownloadSDO()

The function CanOpenDownloadSDO() lets you access a particular object in
the Object Directory of the message recipient and specify the value of the
object. Data is exchanged in accordance with the SDO upload protocol.
Supported transfer types are segmented or block (more than 4 data bytes)
and expedited (up to 4 data bytes).

Function CanOpenDownloadSDO(

 CANNo:Int, // Number of the bus line

 NodeID:Int, // Device ID

 wIndex:Word,

 SubIndex:Byte,

 DataType:Int, // Type of the data to be sent

 // Data length of the global variable DataAddr
 DataLength:Int,

 // Global variable holding the value to be sent
 const ref DataAddr,

 ref Busy: Int, // Status of the SDO transmission

) :Int;

The CanOpenDownloadSDO() function has got the following parameters:

Parameter Description Value

CANNo CAN bus number 0 ... CANMAX

NodeID Node ID of the message recipient 1 ... 127

wIndex Index number of the object 0 ... 0xFFFF

SubIndex Subindex number of the object 0 ... 255

DataType Type of data to be sent 2 ... 27

DataLength Data length of the global variable
DataAddr

DataAddr Global variable into which the value to
be sent is to be entered

Busy Status of the SDO transmission

This function sends the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters

-2 Device in Stop status (own heartbeat status)

-3 DataType is greater than DataLength

-4 Insufficient memory

Introduction

Function declaration

Function parameters

Return value

30 Jetter AG

2 CANopen® STX API

This parameter specifies the number of the CAN interface. CANNo = 0 is
assigned to the first interface. The number of CAN interfaces depends on the
device. For information on the maximum number of CAN interfaces
(CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

The following data types can be received.

Byte types CANopen® format Jetter format

1 CANOPEN_INTEGER8
CANOPEN_UNSIGNED8

Byte

2 CANOPEN_INTEGER16
CANOPEN_UNSIGNED16

Word

3 CANOPEN_INTEGER24
CANOPEN_UNSIGNED24

-

4 CANOPEN_INTEGER32
CANOPEN_UNSIGNED32
CANOPEN_REAL

Int

5 CANOPEN_INTEGER40
CANOPEN_UNSIGNED40

-

6 CANOPEN_INTEGER48
CANOPEN_UNSIGNED48
CANOPEN_TIME_OF_DAY
CANOPEN_TIME_DIFFERENCE

-

7 CANOPEN_INTEGER56
CANOPEN_UNSIGNED46

-

8 CANOPEN_INTEGER64
CANOPEN_UNSIGNED64
CANOPEN_REAL64

-

n CANOPEN_VISIBLE_STRING
CANOPEN_OCTET_STRING
CANOPEN_UNICODE_STRING
CANOPEN_DOMAIN

String

CANNo parameter

DataType parameter

Jetter AG 31

CANopen® STX API CANopen® STX API

After successfully calling up the function, the Busy parameter is set to
SDOACCESS_INUSE. With an error in transmission, Busy is set to
SDOACCESS_ERROR. With a successful transmission, the function returns
the number of bytes transmitted.

With an error in transmission, Busy returns an error code. The following error
codes are available:

SDOACCESS_STILLUSED
Another task is communicating with the same node ID.

SDOACCESS_TIMEOUT
The task has been timed out because the device with the given node ID is not
responding.
If the specified node ID does not respond within 1 second, the timeout bit is
set.

SDOACCESS_ILLCMD
The response to the request is invalid.

SDOACCESS_ABORT
Access to the device with the specified node ID was aborted.

SDOACCESS_BLKSIZEINV
Communication error with Block Download

SDOACCESS_SYSERROR
General internal error

The following macros have been defined in connection with this function:

SDOACCESS_FINISHED (busy)
This macro checks whether communication has finished.

SDOACCESS_ERROR (busy)
This macro checks whether an error has occurred.

Busy parameter

"Busy" error codes

Macro definitions

32 Jetter AG

2 CANopen® STX API

STX function: CanOpenAddPDORx()

The function CanOpenAddPDORx() lets you specify which process data, sent
by other CANopen® devices, must be received.
Process data can be received only when a CANopen® device is sending
them.

 Only if the CANopen® devices on the bus are in state operational, the
PDO telegram is transmitted.

 The smallest time unit for the event time is 1 ms.
 The smallest time unit for the inhibit time is 1 ms.

Function CanOpenAddPDORx(

 CANNo:Int, // Number of the bus line

 CANID:Int, // CAN identifier

 // Starting position of data to be received
 BytePos:Int,

 DataType:Int, // Data type of the data to be received

 // Data length of the global variable VarAddr
 DataLength:Int,

 // Global variable into which the received value is entered
 const ref VarAddr,

 // Cycle time for receiving a telegram
 // Event time
 EventTime: Int,

 // Minimum interval between two received messages
 // Inhibit time
 InhibitTime: Int,

 Paramset: Int, // Bit-coded parameter

) :Int;

The CanOpenAddPDORx() function has got the following parameters:

Parameter Description Value

CANNo CAN bus number 0 ... CANMAX

CANID CAN identifier 11-bit
CAN identifier 29-bit

0 ... 0x7FF
0 ... 0x1FFFFFFF

BytePos Starting position of data to be
received

0 ... 7

DataType Data type of data to be received 2 ... 13, 15 ... 27

DataLength Data length of the global variable
VarAddr

VarAddr Global variable into which the
received value is entered

EventTime Time lag between two telegrams
(> InhibitTime)

Introduction

Notes

Function declaration

Function parameters

Jetter AG 33

CANopen® STX API CANopen® STX API

Parameter Description Value

InhibitTime Minimum time lag between two
telegrams received
(< EventTime)

Paramset Bit-coded parameter

This function sends the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters

-3 DataType is greater than DataLength

-4 Insufficient memory

This parameter specifies the number of the CAN interface. CANNo = 0 is
assigned to the first interface. The number of CAN interfaces depends on the
device. For information on the maximum number of CAN interfaces
(CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

Return value

CANNo parameter

34 Jetter AG

2 CANopen® STX API

The CANID parameter is used to transfer the CAN identifier. The CAN
identifier is generated with a macro. The CAN identifier depends on the node
ID of the other communicating user and on whether it is a PDO1, PDO2,
PDO3 or PDO4 message.

Macro definitions:
#Define CANOPEN_PDO1_RX (NodeID) ((NodeID) + 0x180)
#Define CANOPEN_PDO2_RX (NodeID) ((NodeID) + 0x280)
#Define CANOPEN_PDO3_RX (NodeID) ((NodeID) + 0x380)
#Define CANOPEN_PDO4_RX (NodeID) ((NodeID) + 0x480)

#Define CANOPEN_PDO1_TX (NodeID) ((NodeID) + 0x200)
#Define CANOPEN_PDO2_TX (NodeID) ((NodeID) + 0x300)
#Define CANOPEN_PDO3_TX (NodeID) ((NodeID) + 0x400)
#Define CANOPEN_PDO4_TX (NodeID) ((NodeID) + 0x500)

Example for calling up the macro:
CANOPEN_PDO2_RX (64)
 The resulting CAN identifier is: 2C0h = 40h + 280h

For CANopen® the following CAN identifier distribution is predefined. In this
case, the node number is embedded in the identifier.

11-bit identifier
(binary)

Identifier
(decimal)

Identifier
(hexadecimal)

Description

000000000000 0 0 Network management

000100000000 128 80h Synchronization

0001xxxxxxxx 129 - 255 81h - FFh Emergency

0011xxxxxxxx 385 - 511 181h - 1FFh PDO1 (tx)

0100xxxxxxxx 513 - 639 201h - 27Fh PDO1 (rx)

0101xxxxxxxx 641 - 767 281h - 2FFh PDO2 (tx)

0110xxxxxxxx 769 - 895 301h - 37Fh PDO2 (rx)

0111xxxxxxxx 897 - 1023 381h - 3FFh PDO3 (tx)

1000xxxxxxxx 1025 - 1151 401h -47Fh PDO3 (rx)

1001xxxxxxxx 1153 - 1279 481h - 4FFh PDO4 (tx)

1010xxxxxxxx 1281 - 1407 501h - 57Fh PDO4 (rx)

1011xxxxxxxx 1409 - 1535 581h - 5FFh Send SDO

1100xxxxxxxx 1537 - 1663 601h - 67Fh Receive SDO

1110xxxxxxxx 1793 - 1919 701h - 77Fh NMT error control

xxxxxxxx = Node number 1 - 127

CANID parameter

Default CAN identifier
distribution

Jetter AG 35

CANopen® STX API CANopen® STX API

The following data types can be received.

Byte types CANopen® format Jetter format

1 CANOPEN_INTEGER8
CANOPEN_UNSIGNED8

Byte

2 CANOPEN_INTEGER16
CANOPEN_UNSIGNED16

Word

3 CANOPEN_INTEGER24
CANOPEN_UNSIGNED24

-

4 CANOPEN_INTEGER32
CANOPEN_UNSIGNED32
CANOPEN_REAL

Int

5 CANOPEN_INTEGER40
CANOPEN_UNSIGNED40

-

6 CANOPEN_INTEGER48
CANOPEN_UNSIGNED48
CANOPEN_TIME_OF_DAY
CANOPEN_TIME_DIFFERENCE

-

7 CANOPEN_INTEGER56
CANOPEN_UNSIGNED46

-

8 CANOPEN_INTEGER64
CANOPEN_UNSIGNED64
CANOPEN_REAL64

-

n CANOPEN_VISIBLE_STRING
CANOPEN_OCTET_STRING
CANOPEN_UNICODE_STRING
CANOPEN_DOMAIN

String

The following parameters can be transferred to the function. Several
parameters can be linked together using the Or function.

CANOPEN_ASYNCPDORTRONLY
Receive asynchronous PDOs by sending an RTR frame to the sender (after
each expired EventTime). If there is no response to RTR frames, the request
time increases to five times the EventTime.

CANOPEN_ASYNCPDO
Receive asynchronous PDOs.

CANOPEN_PDOINVALID
PDO not received. Disk space is reserved.

CANOPEN_NORTR
PDO cannot be requested by RTR (Remote Request).
Only if CANOPEN_ASYNCPDORTROnly has been set, an RTR is sent.

CANOPEN_29BIT

DataType parameter

Paramset parameter

36 Jetter AG

2 CANopen® STX API

Use 29-bit identifier
Default: 11-bit identifier

Jetter AG 37

CANopen® STX API CANopen® STX API

STX function: CanOpenAddPDOTx()

By calling up the CanOpenAddPDOTx() function, process data can be
deposited on the bus.
However, that should not mean that other CANopen® devices on the bus can
also read this process data.

 Only if the CANopen® devices on the bus are in state operational, the
PDO telegram is transmitted.

 As soon as there are any changes to the process data, another PDO
telegram is transmitted immediately.

 The smallest time unit for the event time is 1 ms.
 The smallest time unit for the inhibit time is 1 ms.
 Any unused bytes of a telegram are sent as null.

Function CanOpenAddPDOTx(

 CANNo:Int, // Number of the bus line

 CANID:Int, // CAN identifier

 BytePos:Int, // Starting position of the data to be sent

 DataType:Int, // Data type of the data to be sent

 // Data length of the global variable VarAddr
 DataLength:Int,

 // Global variable holding the value to be sent
 const ref VarAddr,

 // Cycle time for sending a telegram
 // Event time
 EventTime: Int,

 // Minimum interval between two transmitted messages
 // Inhibit time
 InhibitTime: Int,

 Paramset: Int, // Bit-coded parameter

) :Int;

The CanOpenAddPDOTx() function has got the following parameters:

Parameter Description Value

CANNo CAN bus number 0 ... CANMAX

CANID CAN identifier 11-bit
CAN identifier 29-bit

0 ... 0x7FF
0 ... 0x1FFFFFFF

BytePos Starting position of data to be
sent

0 ... 7

DataType Data type of data to be sent 2 ... 13, 15 ... 27

DataLength Data length of the global variable
VarAddr

VarAddr Global variable into which the
value to be sent is entered

Introduction

Notes

Function declaration

Function parameters

38 Jetter AG

2 CANopen® STX API

Parameter Description Value

EventTime Time lag between two telegrams
(> InhibitTime)

InhibitTime Minimum time lag between two
telegrams to be sent
(< EventTime)

Paramset Bit-coded parameter

This function sends the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters

-3 DataType is greater than DataLength

-4 Insufficient memory

This parameter specifies the number of the CAN interface. CANNo = 0 is
assigned to the first interface. The number of CAN interfaces depends on the
device. For information on the maximum number of CAN interfaces
(CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

The CANID parameter is used to transfer the CAN identifier. The CAN
identifier is generated with a macro. The CAN identifier depends on the node
ID of the other communicating user and on whether it is a PDO1, PDO2,
PDO3 or PDO4 message.

Macro definitions:
#Define CANOPEN_PDO1_RX (NodeID) ((NodeID) + 0x180)
#Define CANOPEN_PDO2_RX (NodeID) ((NodeID) + 0x280)
#Define CANOPEN_PDO3_RX (NodeID) ((NodeID) + 0x380)
#Define CANOPEN_PDO4_RX (NodeID) ((NodeID) + 0x480)

#Define CANOPEN_PDO1_TX (NodeID) ((NodeID) + 0x200)
#Define CANOPEN_PDO2_TX (NodeID) ((NodeID) + 0x300)
#Define CANOPEN_PDO3_TX (NodeID) ((NodeID) + 0x400)
#Define CANOPEN_PDO4_TX (NodeID) ((NodeID) + 0x500)

Example for calling up the macro:
CANOPEN_PDO2_RX (64)
 The resulting CAN identifier is: 2C0h = 40h + 280h

For CANopen® the following CAN identifier distribution is predefined. In this
case, the node number is embedded in the identifier.

Return value

CANNo parameter

CANID parameter

Default CAN identifier
distribution

Jetter AG 39

CANopen® STX API CANopen® STX API

11-bit identifier
(binary)

Identifier
(decimal)

Identifier
(hexadecimal)

Description

000000000000 0 0 Network management

000100000000 128 80h Synchronization

0001xxxxxxxx 129 - 255 81h - FFh Emergency

0011xxxxxxxx 385 - 511 181h - 1FFh PDO1 (tx)

0100xxxxxxxx 513 - 639 201h - 27Fh PDO1 (rx)

0101xxxxxxxx 641 - 767 281h - 2FFh PDO2 (tx)

0110xxxxxxxx 769 - 895 301h - 37Fh PDO2 (rx)

0111xxxxxxxx 897 - 1023 381h - 3FFh PDO3 (tx)

1000xxxxxxxx 1025 - 1151 401h -47Fh PDO3 (rx)

1001xxxxxxxx 1153 - 1279 481h - 4FFh PDO4 (tx)

1010xxxxxxxx 1281 - 1407 501h - 57Fh PDO4 (rx)

1011xxxxxxxx 1409 - 1535 581h - 5FFh Send SDO

1100xxxxxxxx 1537 - 1663 601h - 67Fh Receive SDO

1110xxxxxxxx 1793 - 1919 701h - 77Fh NMT error control

xxxxxxxx = Node number 1 - 127

The following data types can be received.

Byte types CANopen® format Jetter format

1 CANOPEN_INTEGER8
CANOPEN_UNSIGNED8

Byte

2 CANOPEN_INTEGER16
CANOPEN_UNSIGNED16

Word

3 CANOPEN_INTEGER24
CANOPEN_UNSIGNED24

-

4 CANOPEN_INTEGER32
CANOPEN_UNSIGNED32
CANOPEN_REAL

Int

5 CANOPEN_INTEGER40
CANOPEN_UNSIGNED40

-

6 CANOPEN_INTEGER48
CANOPEN_UNSIGNED48
CANOPEN_TIME_OF_DAY
CANOPEN_TIME_DIFFERENCE

-

7 CANOPEN_INTEGER56
CANOPEN_UNSIGNED46

-

8 CANOPEN_INTEGER64
CANOPEN_UNSIGNED64
CANOPEN_REAL64

-

DataType parameter

40 Jetter AG

2 CANopen® STX API

Byte types CANopen® format Jetter format

n CANOPEN_VISIBLE_STRING
CANOPEN_OCTET_STRING
CANOPEN_UNICODE_STRING
CANOPEN_DOMAIN

String

The following parameters can be transferred to the function. Several
parameters can be linked together using the Or function.

CANOPEN_ASYNCPDORTRONLY
Send asynchronous PDOs by receiving an RTR frame.
This feature is not yet supported at the moment.

CANOPEN_ASYNCPDO
Send asynchronous PDO.

CANOPEN_PDOINVALID
PDO not sent. The required disk space is reserved.

CANOPEN_NORTR
PDO cannot be requested by RTR (Remote Request).

CANOPEN_29BIT
Use 29-bit identifier
Default: 11-bit identifier

Paramset parameter

Jetter AG 41

CANopen® STX API CANopen® STX API

Heartbeat monitoring

The heartbeat protocol is for monitoring the activity of communication
partners. If the inactivity exceeds the set interval (Heartbeat consumer time),
the status is set to offline.
The application program lets you define heartbeat functions, such as

 Displaying information to the user
 Rebooting the device
 Ignoring process data

Heartbeat monitoring is available only for specific devices and its availability
depends on the OS version, for further details refer to the quick reference on
the respective device.

Heartbeat monitoring uses the following registers:

Register Description Data type Type of
access

40x001 Own heartbeat status of the device;
Value range:
0 = Bootup
4 = Stopped
5 = Operational
127 = Preoperational
255 = Offline (default value)

Int RO (read
only)

40x100 The heartbeat status of all monitored
node IDs has changed. Value range:
0 = False
1 = True

Bool R/W (read
and write)

40x101 ...
40x227

Heartbeat status of nodes with ID 1 ...
127; value range:
0 = Bootup
4 = Stopped
5 = Operational
127 = Preoperational
255 = Offline (default value)

Byte RO

40x229 ...
40x355

Heartbeat timeout of nodes with ID 1 ...
127; value range:
0 ... 65535 [ms]

Word R/W

In the register number, the letter x represents the number of the CAN bus line
used: x = 0 ... CANMAX.

Introduction

Prerequisites

Registers for heartbeat
monitoring

42 Jetter AG

2 CANopen® STX API

To launch heartbeat monitoring, proceed as follows:

Step Action

1 Enable heartbeat monitoring:
Enter the timeout value into the corresponding register. This value
must range between 1 and 65535 [ms]. Example:
For CAN 0 and node ID 1: Enter a timeout value of 3000 [ms] into
register 400229.

2 Define in your application program how the device is to respond to
individual values in the heartbeat status register.
When the state in register 40x101 ... 40x227 changes, the value in
register 40x100 changes to 1 (true).

3 Reset the value in register 40x100 to zero (false).
This step ensures that subsequent changes in register 40x101 ...
40x227 can be displayed.

Heartbeat monitoring starts on receipt of the first heartbeat (including bootup
message). The DLC (Data Length Code) of the heartbeat message must be 1.

To terminate heartbeat monitoring, proceed as follows:

Step Action

1 Disable heartbeat monitoring:
Enter a timeout value of 0 [ms] into the timeout register.

When a heartbeat timeout is detected, an emergency message is sent
automatically.
On receipt of the next heartbeat message, the emergency message is reset.

Example:
The following emergency message is tripped:

Reference Value

Error code 0x8130

Error Register 0x81

Manufacturer error 0x00,NodeID,0x00,0x00,0x00

The message on the CAN bus looks as shown below:

 Own NodeID 5
 Monitored NodeID 1
 ID: 0x85 DLC = 8 Data: 0x30 0x81 0x81 0x00 0x01 0x00 0x00 0x00

Launching heartbeat
monitoring

Terminating heartbeat
monitoring

Emergency message

Jetter AG 43

CANopen® STX API CANopen® STX API

The declaration of the emergency message Rx consists of the following
elements:

CanOpenAddEmergencyRx(

 CANNo:Int, // Number of the bus line

 NodeID:Int, // Node ID

 // Status, number of valid messages
 ref stCanOpenEmergencyStat:CanOpenEmergencyStat,

 // Array holding the emergency messages
 ref CanOpenEmergencyMSG:CanOpenEmergencyArray,

):int

Example:
The above program lines must be included into the corresponding tasks of
your application program. The example below shows an emergency message
from a device with node ID 21.

...

// Initializing the CAN bus once.

...

// Defining global variables
Var

 stCanOpenEmergencyMsg : ARRAY[5] of CanOpenEmergencyMsg;

 stCanOpenEmergencyStat : CanOpenEmergencyStat;

End_Var;

stCanOpenEmergencyStat.lBuffer := sizeof(stCanOpenEmergencyMsg);

iRet:= CanOpenAddEmergencyRx(0, // CANNo.

 21, // NodeID

 stCanOpenEmergencyStat, // Status

 stCanOpenEmergencyMsg); // Array

...

The above program lines produce the following result:
When the device with node ID 21 receives an emergency message, the value
in register 400100 switches from 0 to 1 (true).
Reset this value always to 0 (false). In doing so, you make sure that new
emergency messages are displayed.

Emergency message Rx

44 Jetter AG

2 CANopen® STX API

The declaration of the emergency message Tx consists of the following
elements:

CanOpenAddEmergencyTx(

 // Number of the bus line
 CANNo:int,

 // For error code see CiA DS 301 V4.02 page 60
 // or CiA DS 4xx (device profile)
 ErrorCode:word,

 // Error register (object 0x1001)
 ErrorRegister:byte,

 // 5 bytes can be used at the user's discretion
 ManufacturerArray:ByteArray5,

 // True = An error has occurred
 // False = Error has been cleared (acknowledged)
 bSet:bool

):Int;

Emergency message Tx

Jetter AG 45

CANopen® STX API CANopen® STX API

CANopen® object dictionary

The operating system of the CANopen® devices supports the following
objects:

Index
(hex)

Object
(code)

Object name Data type Type of
access

1000 VAR Device type Unsigned32 RO (read
only)

1001 VAR Error register Unsigned8 RO

1002 VAR Manufacturer status Unsigned32 RO

1003 ARRAY Pre-defined error field Unsigned32 RO

1008 VAR Manufacturer device name String const

1009 VAR Manufacturer hardware version String const

100A VAR Manufacturer software version String const

100B VAR Node ID Unsigned32 RO

1017 VAR Producer heartbeat time Unsigned16 R/W (read
& write)

1018 RECORD Identity Identity RO

1200 RECORD Server 1 - SDO parameter SDO
parameter

RO

1201 RECORD Server 2 - SDO parameter SDO
parameter

R/W

1203 RECORD Server 3 - SDO parameter SDO
parameter

R/W

1203 RECORD Server 4 - SDO parameter SDO
parameter

R/W

The structure of the Device Type object is shown in the following table.

Index Subindex Default Description

0x1000 0 0x0000012D Device type (read-only)

Supported objects

Device Type object
(index 0x1000)

46 Jetter AG

2 CANopen® STX API

The function CanOpenAddEmergencyTx() lets you set the bits in this
register.
The structure of the Error Register object is shown in the following table.

Index Subindex Default Description

0x1001 0 0 Error register (read-only)

This object implements the CANopen® error register functionality.
The following error messages may appear:

 Bit 0 = Generic error
 Bit 1 = Current error
 Bit 2 = Voltage error
 Bit 3 = Temperature error
 Bit 4 = Communication error (overrun, error state)
 Bit 5 = Specific device profile error
 Bit 6 = Reserved (always 0)
 Bit 7 = Manufacturer-specific error

The structure of the Pre-defined Error Field object is shown in the following
table.

Index Subindex Default Description

0x1003 0 0 Number of errors entered in the array's
standard error field

 1 0 Most recent error
0 indicates no error

 2 ... 254 - Earlier errors

This object shows a history list of errors that have been detected by the
device. The maximum length of the list is 254 errors. The list content is
deleted on restart.
Composition of standard error field
2-byte LSB: Error code
2-byte MSB: Additional information

The structure of the Manufacturer Device Name object is shown in the
following table.

Index Subindex Default Description

0x1008 0 device name Hardware name

Error Register object
(index 0x1001)

Pre-defined Error Field
object (index 0x1003)

Manufacturer Device
Name object (index
0x1008)

Jetter AG 47

CANopen® STX API CANopen® STX API

The structure of the Manufacturer Hardware Version object is shown in the
following table.

Index Subindex Default Description

0x1009 0 OS version of the device

The structure of the Manufacturer Software Version object is shown in the
following table.

Index Subindex Default Description

0x100A 0 Software version of the application
program that runs on the device

The entry in this index is made via the parameter SWVersion of the STX
function CanOpenInit().

The structure of the Node ID object is shown in the following table.

Index Subindex Default Description

0x100B 0 Node ID of the given device

The structure of the Producer Heartbeat Time object is shown in the
following table.

Index Subindex Default Description

0x1017 0 1,000 [ms] Heartbeat time

The table below lists the device registers associated with the CANopen®
Object Dictionary.
The letter x in the register number represents the CAN bus number ranging
from 0 ... CANMAX.

Register
number

Description Value range Type of
access

Data type

40x000 Own node ID 1 ... 127 R/W (read &
write)

Int

40x001 State of own
heartbeat

0 = Bootup
4 = Stopped
5 = Operational
127 =
Preoperational
255 = Offline

RO (read
only)

Int

40x002 Refer to object
0x1001

RO Int

40x019 CANopen® software
version

Version of Jetter
CANopen® stack

RO Int (IP
format)

Manufacturer Hardware
Version object (index
0x1009)

Manufacturer Software
Version object (index
0x100A)

Node ID object (index
0x100B)

Producer Heartbeat Time
object (index 0x1017)

CANopen® registers

48 Jetter AG

2 CANopen® STX API

Register
number

Description Value range Type of
access

Data type

40x020 SDO Server 0
Timeout

 R/W Int

40x021 SDO Server 1
Timeout

 R/W Int

40x022 SDO Server 2
Timeout

 R/W Int

40x023 SDO Server 3
Timeout

 R/W Int

40x030 SDO Client Timeout R/W Int

40x100 Heartbeat status has
changed.
This applies to all
monitored node IDs

TRUE/FALSE R/W Bool

40x400 EmergencyRx status
has changed

TRUE/FALSE R/W Bool

40x101 ...
40x227

State of node ID 1 ...
127

0 = Bootup
4 = Stopped
5 = Operational
127 =
Preoperational
255 = Offline
(default)

RO Byte

40x229 ...
40x355

Node ID 1 ... 127
timeout

0 ... 65535 ms R/W Word

Jetter AG 49

CANopen® STX API Jetter-specific use of CANopen® object dictionaries

3 Jetter-specific use of CANopen® object dictionaries

This chapter contain a table giving an overview of the generally known
CANopen® objects implemented by Jetter AG.

Index
(hex)

Object name Object
(code)

Type

1000 Device Type VAR Unsigned32

1001 Error Register VAR Unsigned8

1002 Manufacturer Status VAR Unsigned32

1003 Pre-defined Error Field ARRAY Unsigned32

1008 Manufacturer Device Name VAR String

1009 Manufacturer Hardware Version VAR String

100A Manufacturer Software Version VAR String

100B Node-ID VAR Unsigned32

1017 Producer Heartbeat Time VAR Unsigned16

1018 Identity RECORD Identity (23h)

1200 Server 1 - SDO parameter RECORD SDO parameter (22h)

1201 Server 2 - SDO parameter RECORD SDO parameter (22h)

1203 Server 3 - SDO parameter RECORD SDO parameter (22h)

1203 Server 4 - SDO parameter RECORD SDO parameter (22h)

1600 Receive PDO mapping Parameter ARRAY Unsigned32 (21h)

1A00 Transmit PDO mapping Parameter ARRAY Unsigned32 (21h)

2000 Features ARRAY Unsigned32

4554 OS Update ARRAY Unsigned32

4555 Electronic Datasheet ARRAY Unsigned32

4556 System Parameters ARRAY Unsigned32

4557 OS Status ARRAY Unsigned32

4559 Detailed Software Version ARRAY Unsigned32

4565 ENP SDO ARRAY Unsigned32

Purpose of this chapter

Jetter AG
Graeterstrasse 2
71642 Ludwigsburg | Germany

Phone +49 7141 2550-0
Fax +49 7141 2550-425
info@jetter.de
www.jetter.de

We automate your success.

mailto:info@jetter.de
http://www.jetter.de

	Application-oriented Manual CANopen® STX API
	Table of Contents

	1 CANopen®
	Reference model
	Data interchange via CAN bus
	Device model
	Object dictionary
	CANopen® communication
	The process data object PDO
	The service data object SDO
	Network management (NMT)

	2 CANopen® STX API
	STX function: CanOpenInit()
	STX function: CanOpenSetCommand()
	STX function: CanOpenUploadSDO()
	STX function: CanOpenDownloadSDO()
	STX function: CanOpenAddPDORx()
	STX function: CanOpenAddPDOTx()
	Heartbeat monitoring
	CANopen® object dictionary

	3 Jetter-specific use of CANopen® object dictionaries
	Addresses Jetter AG

