Introduction

This application note describes the configuration of a master-master communication between a DELTA and a PASE-E as well as an additional remote scan of the PASE-E on remote D32 I/Os. Communication takes place by means of D-INT1 and E-INT5 modules via the JetWay-R fieldbus without affecting the respective CPU.

Configuration

DELTA

<table>
<thead>
<tr>
<th>Slot</th>
<th>Module</th>
<th>Submodule 1</th>
<th>Submodule 2</th>
<th>Submodule 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CPU</td>
<td>D-INT1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PASE - E

<table>
<thead>
<tr>
<th>Slot</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E-INT5</td>
</tr>
</tbody>
</table>

Schematic Configuration

DELTA

PASE-E

- **D-INT1**
 - Port 2
 - Multimaster
 - Network address 1

- **E-INT5**
 - Port 1 Multimaster
 - Network address 2
 - Port 3 remote scan
 - Network address 1

- **Slave 1**
 - Network address 2

- **Slave n**
 - Network address n+1

Remote D32

Remote D32

115200 baud

19200 baud

19200 baud

All rights reserved.

Jetter AG reserves the right to make alterations to its products in the interest of technical progress. These alterations need not be documented in every single case.

This application note and the information contained herein have been compiled with due diligence. However, Jetter AG assumes no liability for printing or other errors or damages arising from such errors.

The brand names and product names used in this document are trademarks or registered trademarks of the respective title owner.

Jetter AG

Gräterstrasse 2

D-71642 Ludwigsburg

Germany

Phone - Switchboard: +49 7141 2550-0

Phone - Sales: +49 7141 2550-530

Phone - Technical Hotline: +49 7141 2550-444

Telefax: +49 7141 2550-425

E-Mail - Sales: sales@jetter.de

E-Mail - Technical Hotline: hotline@jetter.de

Internet Address: http://www.jetter.de

Article #: 60862516

December 2001 / Helmut Schaile

Edition: 1
Cable Connections

The following pin assignment applies depending on the port of the D-INT board utilized:

Cable from D-INT1 to E-INT5

<table>
<thead>
<tr>
<th>Port 1</th>
<th>Port 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>JetWay-R Cable</td>
<td>JetWay-R Cable</td>
</tr>
<tr>
<td>SUB-D 25 pin male connector</td>
<td>Sub-D 9 pin female connector</td>
</tr>
<tr>
<td>D-INT1 Signal</td>
<td>E-INT5</td>
</tr>
<tr>
<td>Pin 7 Gnd</td>
<td>Pin 5</td>
</tr>
<tr>
<td>Pin 8 Data+</td>
<td>Pin 1</td>
</tr>
<tr>
<td>Pin 9 Data-</td>
<td>Pin 6</td>
</tr>
</tbody>
</table>

Cable from D-INT1 to E-INT5

<table>
<thead>
<tr>
<th>Port 2</th>
<th>Port 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>JetWay-R Cable</td>
<td>JetWay-R Cable</td>
</tr>
<tr>
<td>Sub-D 25 pin male connector</td>
<td>Sub-D 9 pin female connector</td>
</tr>
<tr>
<td>D-INT1 Signal</td>
<td>E-INT5</td>
</tr>
<tr>
<td>Pin 19 Gnd</td>
<td>Pin 5</td>
</tr>
<tr>
<td>Pin 20 Data+</td>
<td>Pin 1</td>
</tr>
<tr>
<td>Pin 21 Data-</td>
<td>Pin 6</td>
</tr>
</tbody>
</table>

Cable from E-INT5 to D32

<table>
<thead>
<tr>
<th>Port 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>JetWay -R Cable</td>
</tr>
<tr>
<td>Sub-D 9 pin female connector</td>
</tr>
<tr>
<td>E-INT5 Signal</td>
</tr>
<tr>
<td>Pin 5 Gnd</td>
</tr>
<tr>
<td>Pin 1 Data+</td>
</tr>
<tr>
<td>Pin 6 Data-</td>
</tr>
</tbody>
</table>

Cable from D32 to D32

<table>
<thead>
<tr>
<th>Port 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>JetWay -R Cable</td>
</tr>
<tr>
<td>Sub-D 9 pin female connector</td>
</tr>
<tr>
<td>D32 Signal</td>
</tr>
<tr>
<td>Pin 7 Gnd</td>
</tr>
<tr>
<td>Pin 8 Data+</td>
</tr>
<tr>
<td>Pin 9 Data-</td>
</tr>
</tbody>
</table>

All cables must be shielded in conformity with EMC standards. It is important that
- the shielding is clamped under a strain relief with the greatest possible surface area,
- the connection between the housing and the shielding is electrically conducting,
- the distance between unshielded conductor ends is as short as possible.

Important!

- The multimaster protocol is only available on the first port (port 1, upper connector) of the E-INT5.
- If one of the ports of the E-INT5 is set to a transmission rate of 115200 baud, the other port can still be operated with max. 19200 baud.
- This restriction does not apply to the D-INT1
DELTA Program

0: TASK 0
1: ; ***************************************
2: ; * Initializing Multimaster Mode *
3: ; * D-INT on CPU module port 1 *
4: ; * at D-INT port 2 *
5: ; ***************************************
6: ;
7: REGISTER_LOAD [111210 with 5] ;Protocol 5 multimaster
8: REGISTER_LOAD [111207 with 35] ;Interface config. JetWay
9: REGISTER_LOAD [111208 with 11] ;Baud rate 11 (115200Baud)
10: REGISTER_LOAD [111211 with 1] ;Network address 1
11: REGISTER_LOAD [111212 with 2] ;Next master 2
12: ; Slave list (bit-coded)
13: ; Bit0 = slave address 1
14: ; Bit1 = slave address 2
15: ;
16: REGISTER_LOAD [111213 with 2] ;Slave list
17: REGISTER_LOAD [111214 with 25] ;Start loc. reg. range
18: REGISTER_LOAD [111215 with 34] ;End loc. reg. range
19: REGISTER_LOAD [111216 with 35] ;Start reg. range slave
20: REGISTER_LOAD [111217 with 50] ;Slave timeout
21: REGISTER_LOAD [111219 with 2] ;Highest network address
22: REGISTER_LOAD [111221 with 12] ;Send register
23: REGISTER_LOAD [111201 with 15] ;Multimaster mode enabled
24: REGISTER_LOAD [111201 with 10] ;Register transfer ON
25: ;
26: LABEL lMainLoop
27: COPY [n=10, from 100 to 111225] ;Write transmit data
28: DELAY 1
29: COPY [n=10, from 111235 to 200] ;Write receive data
30: DELAY 1
31: IF
32: BIT_SET [Reg=111200, Bit=21] ;Network timeout
33: OR
34: BIT_SET [Reg=111200, Bit=22] ;Checksum error
35: OR
36: BIT_SET [Reg=111200, Bit=23] ;Error message from slave
37: THEN
38: GOTO 0 ;Re-initialization
39: ELSE
40: GOTO lMainLoop ;Copy loop

End of program
PASE-E Program

Task Multimaster Mode

0: TASK 0 _______________________________________
1: ;
2: ; ****************************
3: ; * Initializing Multimaster Mode *
4: ; * E-INT5 in slot 8 of E-GRU *
5: ; * at E-INT5 port 1 *
6: ; ****************************
7: ;
8: REGISTER_LOAD [18199 with 5] ;Protocol 5 Multimaster
10: REGISTER_LOAD [18108 with 1020] ;Baud rate 1020 (115200)
11: REGISTER_LOAD [18110 with 2] ;Network address 2
12: REGISTER_LOAD [18111 with 3] ;Master timeout
13: ; Slave list (bit-codiert)
14: ; Bit0 = slave address 1
15: ; Bit1 = slave address 2
16: ;
17: REGISTER_LOAD [18112 with 1] ;Slave list
18: REGISTER_LOAD [18113 with 25] ;Start loc. reg. range
19: REGISTER_LOAD [18114 with 34] ;End loc. reg. range
20: REGISTER_LOAD [18115 with 35] ;Start reg. range slave
21: REGISTER_LOAD [18116 with 25] ;Slave timeout
22: REGISTER_LOAD [18101 with 12] ;Send register
23: REGISTER_LOAD [18101 with 15] ;Multimaster mode enabled
24: REGISTER_LOAD [18101 with 10] ;Register transfer ON
25: ;
26: LABEL lPlcNet2Loop
27: COPY [n=10, from 100 to 18125] ;Write transmit data
28: DELAY 1
29: COPY [n=10, from 18135 to 200] ;Write receive data
30: DELAY 1
31: IF
32: BIT_SET [Reg=18100, Bit=17] ;Transmission error
33: THEN
34: GOTO 0 ;Re-initialization
35: ELSE
36: GOTO lPlcNet2Loop ;Copy loop
37: ;
38: ;
PASE-E Program

Task Remote Scan

39: TASK 1
40: ;
41: ; ***************************************
42: ; * Initializing Remote Scan *
43: ; * E-INT5 in slot 8 of E-GRU *
44: ; * at E-INT5 port 3 *
45: ; ***************************************
46: ;
47: REGISTER_LOAD [18399 with 10] ;Protocol 10 Remote Scan
48: REGISTER_LOAD [18308 with 1000] ;Baud rate 1000 (19200)
49: REGISTER_LOAD [18311 with 25] ;Timeout 250ms
50: REGISTER_LOAD [18315 with 2] ;Last remote slave 2
51: REGISTER_LOAD [18316 with -1] ;Read/write config.
52: ; I/O Type (bit-coded)
53: ; Bit0 = 0, Slave 2 -> 16 I/Os
54: ; Bit0 = 1, Slave 2 -> 32 I/Os
55: ; Bit1 = 0, Slave 3 -> 16 I/Os
56: ;
57: REGISTER_LOAD [18317 with 0] ;Slave 2 = 16 I/Os
58: REGISTER_LOAD [18319 with 2] ;Number of repetitions
59: REGISTER_LOAD [18301 with 10] ;All slave outputs
60: REGISTER_LOAD [18301 with 14] ;Start remote scan
61: LABEL lRemScanLoop
62: IF
63: BIT_SET [Reg=18300, Bit=16] ;Input data valid
64: THEN
65: COPY [n=16, from 18344 to 300] ;Fetch inputs
66: COPY [n=16, from 300 to 18320] ;Write outputs
67: THEN
68: GOTO lRemScanLoop
End of program