

JCM-350-E03

Controller on the CAN Bus

2 Jetter AG

Introduction

Variant: Jetter
Item # 60877279
Revision 1.09.2
November 2011 / Printed in Germany

Jetter AG reserve the right to make alterations to their products in the interest of technical progress. These alterations will
not necessarily be documented in every single case.
This user manual and the information contained herein have been compiled with due diligence. However, Jetter AG
assume no liability for printing or other errors or damages arising from such errors.
The brand names and product names mentioned in this manual are trade marks or registered trade marks of the
respective title owner.

Jetter AG 3

JCM-350-E03 Introduction

How To Contact us:

Jetter AG

Graeterstrasse 2

D-71642 Ludwigsburg

Germany

Phone - Switchboard: +49 7141 2550-0

Phone - Sales: +49 7141 2550-433

Phone - Technical Hotline: +49 7141 2550-444

Fax - Sales: +49 7141 2550-484

E-Mail - Sales: sales@jetter.de

E-Mail - Technical Hotline: hotline@jetter.de

This user manual is an integral part of JCM-350-E03:

Type:

Serial #:

Year of construction:

Order #:

To be entered by the customer:

Inventory #:

Place of operation:

Address

Assignment to Product

4 Jetter AG

Introduction

Significance of this user manual

The user manual is an integral part of JCM-350-E03:

 It must be kept in a way that it is always at hand, until the JCM-350-E03
will be disposed of.

 If the JCM-350-E03 is sold or loaned/leased out, the user manual has to be
passed on.

In any case you encounter difficulties to clearly understand this user manual,
please contact the manufacturer.
We would appreciate any suggestions and contributions on your part and
would ask you to contact us by our e-mail address info@jetter.de. This will
help us to produce manuals that are more user-friendly and to address your
wishes and requirements.

This user manual contains important information on how to transport, erect,
install, operate, maintain and repair the JCM-350-E03.
Therefore, the persons carrying out these jobs must carefully read, understand
and observe this user manual, and especially the safety instructions.

Missing or inadequate knowledge of the user manual results in the loss of any
claim of liability on part of Jetter AG. Therefore, the operating company is
recommended to have the instruction of the persons concerned confirmed in
writing.

Significance

Jetter AG 5

JCM-350-E03 Introduction

Hazard Levels

This topic describes the safety labels and hazard levels used in this manual.

Signs using this symbol are to warn you of inuries or even death. It is
imperative to follow the instructions to prevent hazards.

Safety information is classified into the following hazard levels:

Hazard Level Consequences Probability

 DANGER Death/severe injury (irreversible) The hazard is imminent

 WARNING Death/severe injury (irreversible) Potential occurrence

 CAUTION Slight injury (reversible) Potential occurrence

 CAUTION Material damage Potential occurrence

Introduction

Safety Labels

Hazard Levels

Jetter AG 7

JCM-350-E03 Contents

Table of Contents

Hazard Levels .. 5

1 Safety Instructions 11

General Safety Instructions .. 12
Residual Dangers and Protective Measures ... 14

2 Product Description and Design 15

Product Description - JCM-350-E03 .. 16
Parts and Interfaces ... 17
Order Reference / Options ... 18
Physical Dimensions .. 19

3 Identifying the Controller 21

3.1 Identification by Means of the Nameplate ... 22
Nameplate .. 23

3.2 Electronic Data Sheet EDS .. 24
EDS File "eds.ini" ... 25
EDS Registers.. 27

3.3 Version Registers ... 29
Hardware Revisions ... 30
Software Versions .. 31

3.4 Identifying a JXM-IO-E02 via CAN Bus .. 33
Electronic Data Sheet (EDS) and Software Version .. 34

4 Mounting and Installation 35

4.1 Wiring .. 36
Wiring Principle .. 37
Example of Wiring Layout .. 38
Connecting the Power Supply and the 5 V Output .. 39
CAN Interface and Node ID ... 41
Specification - CANopen® Bus Cable .. 43
Connecting Digital Inputs and Outputs .. 45
Connecting Analog Inputs and Outputs ... 50

4.2 Installing the JCM-350-E03 ... 53
Installing the JCM-350-E03 .. 54

5 Initial Commissioning 59

Preparatory Work for Initial Commissioning ... 60
Initial Commissioning in JetSym .. 62
Information on Communication with a JXM-IO-E02 ... 67

6 CANopen® STX API 69

STX Function CanOpenInit .. 70
STX Function CanOpenSetCommand ... 72
STX Function CanOpenUploadSDO ... 74

8 Jetter AG

Contents

STX Function CanOpenDownloadSDO .. 78
STX Function CanOpenAddPDORx ... 83
STX Function CanOpenAddPDOTx .. 89

7 CANopen® Objects 95

7.1 CANopen® Object Dictionary for JCM-350-E03 ... 96
Supported CANopen® SDO Objects .. 97

7.2 CANopen® Object Dictionary for JXM-IO-E02 ... 99
Objects Ranging from Index 0x1000 through 0x2000 ... 101
Digital Inputs Object (Index 0x2100) ... 103
Universal I/O Object (Index 0x2101) ... 105
Tri-State Inputs Object (Index 0x2102) .. 107
Switch Feed Output Object (Index 0x2103) .. 109
Analog Input Objects (Index 0x2200 through 0x2203) ... 110
Voltage Sense Analog Input Object (Index 0x2210) .. 112
Feed Currents Object (Index 0x2211) .. 113
Analog Output Object (Index 0x2300) .. 114
Objects "PWM Output" (Index 0x2400 through 0x2402) .. 116
H-Bridge Object (Index 0x2500) .. 120
Frequency Input Objects (Index 0x2600 through 0x2601) .. 122
OS Update (Index 0x4554) and EDS Objects (Index 0x4555) .. 124
Object "System Parameters" (Index 0x4556) .. 125
Detailed Software Version Object (Index 0x4559) .. 133
User EEPROM Access Object (Index 0x5000) ... 134

7.3 CANopen® PDO Specification ... 136
TX PDO Allocation on the JXM-IO-E02 ... 137
RX PDO Allocation on the JXM-IO-E02 .. 138

8 SAE J1939 STX API 139

Content of a J1939 Message .. 140
STX Function SAEJ1939Init .. 142
STX Function SAEJ1939SetSA .. 143
STX Function SAEJ1939GetSA .. 144
STX Function SAEJ1939AddRx .. 145
STX Function SAEJ1939AddTx .. 148
STX Function SAEJ1939RequestPGN ... 152
STX Function SAEJ1939GetDM1 ... 155
STX Function SAEJ1939GetDM2 ... 158
STX Function SAEJ1939SetSPNConversion ... 161
STX Function SAEJ1939GetSPNConversion ... 162

9 Programming 163

Abbreviations, Module Register Properties and Formats ... 164
9.1 Memory Overview .. 165

File System Memory .. 166
Operating System Memory ... 167
Application Program Memory .. 168
Memory for Non-Volatile Application Program Registers .. 169
Memory for Non-Volatile Application Program Variables .. 170
Special Registers ... 172
Flags .. 173

9.2 Runtime Registers ... 174
Description of Runtime Registers .. 175

Jetter AG 9

JCM-350-E03 Contents

Sample Program - Runtime Registers ... 177
9.3 Addressing the JXM-IO-E02 via CANopen®.. 178
9.4 Digital Outputs.. 179

Reading In the Number of Available Digital Outputs Per SDO .. 180
Setting Digital Outputs Per PDO .. 182

9.5 Digital Inputs ... 184
Digital Inputs SDO .. 185
Digital Inputs PDO .. 187

9.6 H-Bridge .. 189
Configuring the H-Bridge by Using SDO and PDO .. 190

9.7 PWM Outputs .. 192
Configuring the PWM Output 1 by Using SDO and PDO .. 193

10 Protection and Diagnostic Features - JXM-IO-E02 195

Standard Feed Power Input (STANDARD FEED) ... 196
Safety Feed Power Input (SAFETY FEED) ... 197
Digital Outputs 1 ... 8 (Standard Outputs) .. 198
Digital Outputs 9 ... 16 (Safety Outputs) .. 199
Analog Output .. 200
PWM Outputs 1 ... 3 ... 201
H-Bridge ... 202
Switch Feed Outputs 1 ... 2 .. 203
Safety Switch (Relay) ... 204
5 V Reference Output .. 205
Generic Fault Detection ... 206

11 Operating System Update 207

11.1 Updating the Operating System of the Controller .. 208
Operating System Update Using JetSym .. 209

12 Application Program 211

Loading an Application Program .. 212
Application Program - Default Path ... 213

13 Quick Reference - JCM-350 215

Appendix 219

A: Technical Data .. 220
Technical Specifications ... 221
Physical Dimensions .. 226
Operating Parameters - Environment and Mechanics ... 228
Operating Parameters - EMC .. 229

B: Index .. 230

Jetter AG 11

JCM-350-E03 Safety Instructions

1 Safety Instructions

This chapter contains the general safety instructions and warns of possible
residual dangers.

This chapter contains the following topics:

Topic Page
General Safety Instructions .. 12
Residual Dangers and Protective Measures .. 14

Introduction

Contents

12 Jetter AG

1 Safety Instructions

General Safety Instructions

This device complies with the valid safety regulations and standards. Special
emphasis was given to the safety of the users.
Of course, the user should adhere to the following regulations:

 relevant accident prevention regulations;
 accepted safety rules;
 EC guidelines and other country-specific regulations

Usage according to the intended conditions of use implies operation in
accordance with this user manual.
The controller JCM-350-E03 has been developed and designed to control
certain applications for commercial vehicles and mobile machines, such as
sweepers, fire-fighting vehicles, harvesting and construction machinery.
The controller JCM-350-E03 meets the requirements of the European
Automotive EMC Directive for electric/electronic subassemblies. The controller
JCM-350-E03 is intended for installation in a mobile machine.
The controller JCM-350-E03 must be operated within the limits and conditions
established in the technical specifications. The operating voltage of the
controller JCM-350-E03 is classified as SELV (Safety Extra Low Voltage).
Therefore, the JCM-350-E03 controller is not subject to the EU Low Voltage
Directive.

This device must not be used in technical systems which to a high degree
have to be fail-safe, e.g. ropeways and aeroplanes.
The JCM-350-E03 is no safety-related part as per Machinery Directive
2006/42/EC. This device is not qualified for safety-relevant applications and
must, therefore, NOT be used to protect persons.
If the device is to be run under ambient conditions which differ from the
allowed operating conditions, Jetter AG is to be contacted beforehand.

Depending on the life cycle of the product, the persons involved must possess
different qualifications. These qualifications are required to ensure proper
handling of the device in the corresponding life cycle.

Product Life Cycle Minimum Qualification

Transport / Storage: Trained and instructed personnel with knowledge in
handling electrostatic sensitive components.

Mounting / Installation: Specialized personnel with training in
electrical/automotive engineering, such as automotive
mechatronics fitters.

Commissioning /
Programming:

Trained and instructed experts with profound
knowledge of, and experience with, automotive /
automation technology, such as automotive
engineers for mobile machinery.

Operation: Trained, instructed and assigned personnel with
knowledge in operating electronic devices for mobile
machinery.

Introduction

Intended Conditions of
Use

Usage Other Than
Intended

Personnel Qualification

Jetter AG 13

JCM-350-E03 Safety Instructions

Product Life Cycle Minimum Qualification

Decommissioning: Specialized personnel with training in
electrical/automotive engineering, such as automotive
mechatronics fitters.

For safety reasons, no modifications and changes to the device and its
functions are permitted.
Any modifications to the device not expressly authorized by Jetter AG will
result in a loss of any liability claims to Jetter AG.
The original parts are specifically designed for the device. Parts and
equipment from other manufacturers are not tested on our part, and are,
therefore, not released by Jetter AG.
The installation of such parts may impair the safety and the proper functioning
of the device.
Any liability on the part of Jetter AG for any damages resulting from the use of
non-original parts and equipment is excluded.

The JCM-350-E03 contains electrostatic sensitive components which can be
damaged if not handled properly.
To exclude damages to the JCM-350-E03 during transport it should only be
shipped in its original packaging or in packaging protecting against
electrostatic discharge. This is particularly true for transport via mail.

 Use an appropriate outer packaging to protect the JCM-350-E03 against
impact or shock.

 In case of damaged packaging inspect the device for any visible damage.
Inform your freight forwarder and the manufacturer, if applicable.

When storing the JCM-350-E03 observe the environmental conditions given in
the technical specification.

This device must not be repaired by the operators themselves. The device
does not contain any parts that could be repaired by the operator.
The device must be sent to Jetter AG for repair.

When disposing of devices, the local environmental regulations must be
complied with.

Modifications and
Alterations to the Device

Transport

Storing

Repair and Maintenance

Disposal

14 Jetter AG

1 Safety Instructions

Residual Dangers and Protective Measures

Consider the residual dangers mentioned in this chapter when assessing the
risks associated with your machine.

 DANGER

Hazard in explosive gas atmosphere!

This device can become a source of ignition in potentially explosive
atmospheres.

 Do not use this device in potentially explosive atmospheres.

 WARNING

Hot surface hazard!

The JCM-350-E03 can heat up during operation. During operation the
surface temperature of this device will become hot enough (> 60 °C) to
cause burns.

 Take protective measures to prevent inadvertent contact with
the device, e.g. install protective covers.

 Allow the device to cool down for some time before you start
working on it, e.g. to carry out maintenance jobs.

 CAUTION

 Possible occurrence of malfunctions!

CAN wires which have not been twisted may increase susceptibility to
noise. This may disturb communications with the device which, in turn,
may cause malfunctions.

 Make sure that twisted pair cables are used for connecting the
CAN interfaces.

Residual Dangers

Jetter AG 15

JCM-350-E03 Product Description and Design

2 Product Description and Design

This chapter covers the design of the device, as well as how the order
reference is made up including all options.

Topic Page
Product Description - JCM-350-E03 ... 16
Parts and Interfaces.. 17
Order Reference / Options ... 18
Physical Dimensions .. 19

Introduction

Contents

16 Jetter AG

2 Product Description and Design

Product Description - JCM-350-E03

The controller JCM-350 has especially been designed for use in the harsh
environment of commercial vehicles and mobile machines.

The JCM-350-E03 consists of the controller JCM-350 and the I/O module
JXM-IO-E02 which are internally connected via CAN bus. The CAN bus is
brought out to allow communication with other CANopen® nodes. The default
node ID of the JXM-IO-E02 is 16, the default node ID of the JCM-350 is 127.
This way, both components within the JCM-350-E03 can be addresses
separately.

The features of this product are listed below:

 CANopen® node with 1 or 2 interfaces to
CAN-2.0B

 16 digital active-high inputs

 10 digital active-high outputs supplying up to 2.5 A

 6 digital active-high outputs supplying up to 5 A

 5 digital inputs which can be configured as
active-high or active-low inputs

 1 analog output (resolution: 8 bits)

 4 analog inputs
(voltage, current, resolution: 10 bits)

 2 frequency inputs
(5 Hz ... 20 kHz, resolution: 10 Hz)

 3 PWM outputs, 2.5 A max.

 1 H-bridge, 2.5 A max.

 2 tri-state inputs for setting the node ID

 Powerful programming language JetSym STX

 Non-volatile registers: 6.000

 RAM memory: 16 MBytes

 Flash memory: 16 MBytes

 Realtime clock (without buffer)

Controller JCM-350-E03

JCM-350-E03 -
Configuration

Product Features

Jetter AG 17

JCM-350-E03 Product Description and Design

Parts and Interfaces

This chapter describes the parts and interfaces of the JCM-350-E03.

The JCM-350-E03 features the following parts and interfaces:

321 4

Number Content Description

1 Nameplate For identifying the JCM-350-E03

2 Connector For connecting external components and
the controller

3 Pressure compensation
membrane

Compensation of inside and outside air
pressure

4 Fastening lugs For screwing down the JCM-350-E03

Introduction

Parts and Interfaces

18 Jetter AG

2 Product Description and Design

Order Reference / Options

The JCM-350-E03 is available in the following configurations. To order a
specific module from Jetter AG please specify the corresponding part number.

Part Number Order Reference Name

10000753 JCM-350-E03-G06-K00 Controller

Order Reference

Jetter AG 19

JCM-350-E03 Product Description and Design

Physical Dimensions

This chapter details the physical dimensions of the JCM-350-E03 and the
conditions for installation.

The diagram shows the dimensions of the JCM-350-E03.

The diagram shows the space required for the JCM-350-E03.

Ensure there is enough space around the connector for servicing
requirements. It should be possible to disconnect the connector at any time.

Introduction

Physical Dimensions

Space Required for
Installation and Service

20 Jetter AG

2 Product Description and Design

The diagram indicates the safety distances to protect against overheating.

Please note:

 The JCM-350-E03 increases the temperature of the environment as a
result of heat emission under load.

 The JCM-350-E03 operates without interruption at an ambient temperature
of up to +85 °C.

Consider the heat emission from the device, in particular when installing it in a
critical environment:

 in the vicinity of the fuel tank
 in the vicinity of the fuel pipe
 in the vicinity of flammable vehicle components
 in the vicinity of thermally malleable vehicle components

Space Required to
Protect Against
Overheating

Jetter AG 21

JCM-350-E03 Identifying the Controller

3 Identifying the Controller

This chapter is for supporting you in identifying the following information with
regard to JCM-350-E03:

 Hardware revision.
 Electronic data sheet (EDS). Numerous production-relevant data are

permanently stored in the EDS.
 Identifying the OS Release of the Controller and Software Components.

To be able to identify the JCM-350-E03 controller the following prerequisites
have to be fulfilled:

 The controller is connected to a PC.
 The programming tool JetSym 4.3 or higher is installed on the PC.

If you have to contact the hotline of Jetter AG in case of a problem, please
have the following information on the JCM-350-E03 controller ready:

 Serial number
 OS version number of the controller
 Hardware revision

Topic Page
Identification by Means of the Nameplate .. 22
Electronic Data Sheet EDS .. 24
Version Registers.. 29
Identifying a JXM-IO-E02 via CAN Bus .. 33

Purpose of this Chapter

Prerequisites

Information for Hotline
Requests

Contents

22 Jetter AG

3 Identifying the Controller

3.1 Identification by Means of the Nameplate

The nameplate is attached to the housing of the JCM-350-E03 and contains
details, such as hardware revision number and serial number. You will need
this information when contacting the Jetter AG hotline in case of a problem.

Topic Page
Nameplate ... 23

Introduction

Contents

Jetter AG 23

JCM-350-E03 Identifying the Controller

Nameplate

The nameplate of a JCM-350-E03 contains the following information:

Number Description

1 Controller type

2 Serial number

3 Part number

4 Hardware revision

Nameplate

24 Jetter AG

3 Identifying the Controller

3.2 Electronic Data Sheet EDS

The controller JCM-350-E03 features an electronic data sheet (EDS).
Numerous production-relevant data are permanently stored in the EDS. The
EDS data can be read out via files in the file system of the controller or via
special registers.

Topic Page
EDS File "eds.ini" .. 25
EDS Registers .. 27

Introduction

Contents

Jetter AG 25

JCM-350-E03 Identifying the Controller

EDS File "eds.ini"

EDS data can be read out from the file "eds.ini".

 The file can be accessed via file system of the controller.
 For an FTP connection, the user must have administrator rights (e.g. user

"admin") or system rights (e.g. user "system").
 The EDS file of the controller is located in the subdirectory "/System".
 This file is read-only.
 Formatting the flash disk has no impact on this file.

The illustration below shows an example of the directory "/System" containing
the EDS files of the controller:

The EDS file is a text file the entries of which are grouped into several
sections.

This is an example of an EDS file belonging to a JCM-350:

;Jetter AG JetControl Electronic Data Sheet

[IDENTIFICATION]

Version = 0

Code = 928

Name = JCM-350

PcbRev = 01

PcbOpt = 00

[PRODUCTION]

Version = 0

SerNum = 10080703010015

Day = 4

Month = 7

Year = 2010

TestNum = 1

TestRev = 01.10.03.50

Introduction

Properties

Path to EDS Files

File Structure

Example - Controller

26 Jetter AG

3 Identifying the Controller

[FEATURES]

Version = 1

MAC-Addr = 00:50:CB:00:05:F0

STX = 1

NVRegs = 6000

The hardware configuration can be seen from section [IDENTIFICATION].

Name Example Description

Version 0 Version of this section

Code 928 Module code for JCM-350

Name JCM-350 Corresponds to the information on the
nameplate

PcbRev 01 Hardware revision

PcbOpt 00 Hardware option

The serial number and production date can be seen from the section
[PRODUCTION].

Name Example Description

Version 0 Version of this section

SerNum 10080703010015 Corresponds to the information on the
nameplate

Day 04 Production date: Day

Month 07 Production date: Month

Year 2010 Production date: Year

TestNum 1 Internal usage

TestRev 01.10.03.50 Internal usage

In the section [FEATURES] special properties of the controller are specified.
Properties, which have no entries in the file, are regarded as as non-existing
by the controller.

Name Example Description

Version 1 Version of this section

MAC Addr 00:50:CB:00:05:F0 Ethernet MAC address

STX 1 Runtime environment for application
program is available

NVRegs 6000 Number of remanent registers

 EDS Registers on page 27

Section
[IDENTIFICATION]

Section [PRODUCTION]

Section [FEATURES]

Related Topics

Jetter AG 27

JCM-350-E03 Identifying the Controller

EDS Registers

Entries in the Electronic Data Sheet (EDS) can be read by the controller via
EDS registers.

The basic register number is dependent on the controller. The register number
is calculated by adding the number of the module register (MR) and the basic
register number.

Controller Basic Register Number Register Numbers

JCM-350 100000 100500 ... 100817

The following table lists the EDS registers of a controller, as well as their
connection to the entries in the EDS file "/System/eds.ini". As there is only one
register set, the required module has to be selected via module registers 500
and 501. The contents of the selected EDS are then displayed in the following
registers.

Registers Section in
eds.ini

Name in
eds.ini

Description

MR 500 - - Functional group:

0 Controller

1 JXM modules

MR 501 - - Module number (if MR 500 > 0)

MR 600 IDENTIFICATIO
N

Version Version of this section

MR 601 Code Module code

MR 602 to
MR 612

 Name Module name or controller name

MR 613 PcbRev Hardware revision

MR 614 PcbOpt Hardware revision

MR 700 PRODUCTION Version Version of this section

MR 701 to
MR 707

 SerNum Serial number

MR 708 Day Production date: Day

MR 709 Month Production date: Month

MR 710 Year Production date: Year

MR 711 TestNum Internal usage

MR 712 TestRev Internal usage

MR 800 FEATURES Version Version of this section

MR 801 MAC Addr MAC address (manufacturer section)

MR 802 MAC Addr MAC address (device section)

MR 805 STX Runtime environment for application
program

Introduction

Register Numbers

EDS Registers of a
Controller

28 Jetter AG

3 Identifying the Controller

Registers Section in
eds.ini

Name in
eds.ini

Description

MR 806 NVRegs Number of remanent registers

MR 810 MotionControl MC software

 EDS File "eds.ini" on page 25

Related Topics

Jetter AG 29

JCM-350-E03 Identifying the Controller

3.3 Version Registers

The operating system of the JCM-350-E03 provides several registers which
can be used to read out the version numbers of the OS and its components.
You will need this information when contacting the hotline of Jetter AG in case
of a problem.

Topic Page
Hardware Revisions ... 30
Software Versions ... 31

Introduction

Contents

30 Jetter AG

3 Identifying the Controller

Hardware Revisions

The controller JCM-350 features special registers which can be used to
identify the hardware.

The following registers can be read to obtain the hardware revision:

Registers Description

108021 Hardware revision - CPU board

200170 Controller type

The following screenshot shows a JetSym setup window displaying the
version registers:

 Software Versions on page 31

Introduction

Overview of Registers

Version Numbers in
JetSym Setup

Related Topics

Jetter AG 31

JCM-350-E03 Identifying the Controller

Software Versions

The controller JCM-350 features software with unique version numbers which
can be read out via special registers.

The software version number of the JCM-350-E03 is a four-figure value.

1 . 2 . 3 . 4

Number Description

1 Major or main version number

2 Minor or secondary version number

3 Branch or intermediate version number

4 Build version number

A released version can be recognized by both Branch and Build having got
value zero.

The following registers are used for reading out software versions:

Registers Description

200168 Boot loader version

200169 Operating system version

210001 Version of the execution unit for the STX application program

The following screenshot shows a JetSym setup window displaying version
registers. For displaying the version number in the setup window of JetSym,
please select the format "IP address".

Number Content Description

1 V 1.04.00.134 OS version of the controller
JetSym displays this information in the title bar of
each setup window.

Introduction

Format of Software
Version Numbers

Released Version

Overview of Registers

Version Numbers in
JetSym Setup

32 Jetter AG

3 Identifying the Controller

 Hardware Revisions on page 30

Related Topics

Jetter AG 33

JCM-350-E03 Identifying the Controller

3.4 Identifying a JXM-IO-E02 via CAN Bus

The module JXM-IO-E02 features an Electronic Data Sheet (EDS). Numerous
production-relevant data are permanently stored in the EDS. EDS data can be
read via CAN bus.

Topic Page
Electronic Data Sheet (EDS) and Software Version 34

Introduction

Inhalt

34 Jetter AG

3 Identifying the Controller

Electronic Data Sheet (EDS) and Software Version

Communication with the JXM-IO-E02 module takes place via CAN bus. As
protocol the CANopen® standard is used. CANopen® is an open standard for
networking and communication in the automobile sector.
The CANopen® protocol has been further developed by the CiA e.V. (CAN in
Automation) and works on the physical layer with CAN Highspeed in
accordance with ISO 11898.

The Electronic Data Sheet (EDS) provides information clearly identifying the
module. Data contained in the EDS are production-specific and are relevant
for support purposes. If required, the data can be read using the object
"Electronic Data Sheet" (0x4555).

Use the object "Detailed Software Version" (0x4559) to read out the version of
the software running in the JXM-IO-E02. This read-only object supplies the
same software version as object 0x100A, but in a 32-bit unsigned integer
format which is compatible with the standard IP-type version numbers used at
Jetter AG.
Example:
The 32-bit word 0x01070001 translates to a software version of 1.07.0.01.

The CANopen® specifications can be obtained from the CiA e.V.
http://www.can-cia.org homepage. The key specification documents are:

 CiA DS 301 - This document is also known as the communication profile
and describes the fundamental services and protocols used under
CANopen®.

 CiA DS 302 - Framework for programmable devices (CANopen® Manager,
SDO Manager)

 CiA DR 303 - Information on cables and connectors
 CiA DS 4xx - These documents describe the behavior of a number of

device classes in, what are known as, device profiles.

 Electronic Datasheet Object on page 124
 Detailed Software Version Object on page 133

Communication with
JXM-IO-E02

Electronic Data Sheet
(EDS)

JXM-IO-E02 - Software
Version

Useful Documents

Related Topics

http://www.can-cia.org/

Jetter AG 35

JCM-350-E03 Mounting and Installation

4 Mounting and Installation

This chapter is for supporting you in mounting and installing the JCM-350-E03
as regards the following points:

 Planning the wiring of a JCM-350-E03
 Connecting sensors and actuators to the JCM-350-E03
 Installation
 CAN Bus - Project Work

Topic Page
Wiring .. 36
Installing the JCM-350-E03 .. 53

Purpose of this Chapter

Contents

36 Jetter AG

4 Mounting and Installation

4.1 Wiring

This chapter covers wiring of the JCM-350-E03 and contains the following
topics:

 Wiring principle
 Pin Assignment
 Example of Wiring
 Technical Specifications

Topic Page
Wiring Principle ... 37
Example of Wiring Layout ... 38
Connecting the Power Supply and the 5 V Output 39
CAN Interface and Node ID .. 41
Specification - CANopen® Bus Cable... 43
Connecting Digital Inputs and Outputs ... 45
Connecting Analog Inputs and Outputs .. 50

Purpose of this Chapter

Contents

Jetter AG 37

JCM-350-E03 Mounting and Installation

Wiring Principle

This chapter covers the wiring principle of the JCM-350-E03.

The JCM-350-E03 is connected through a wiring harness with external
components, such as:

 Power Supply
 Controller
 Peripheral Module
 Sensors
 Actuators
 Indicator Lights

The wiring harness ends in a connector which is not included in the scope of
delivery of the device. This connector is available as accessory.

The connector specification is listed below:

Connector Specification

Manufacturer/Model Tyco AMP

Article # 963484

Design 70-pin

Coding A 1

The diagram shows an example of a layout using a wiring harness.

2 43 5 61

Number Description

1 Module JXM-IO-E02

2 Ignition lock

3 Door contact switch

4 Indicator light

5 Battery

6 Controller JCM-350-E03

Introduction

Wiring Principle

Connector Specification

Example

38 Jetter AG

4 Mounting and Installation

Example of Wiring Layout

This chapter uses an example to show how the JCM-350-E03 is connected.

The diagram shows an example of a wiring layout.

Number Function

1 Ignition lock

2 Contacts (e.g. reed contacts or limit switch)

3 Indicator light

4 Power supply (battery)

5 Actuator (e.g. proportional valve)

6 Actuator (e.g. electric motor)

Introduction

Example

Jetter AG 39

JCM-350-E03 Mounting and Installation

Connecting the Power Supply and the 5 V Output

The following diagrams show the pin assignment of the connector (view from
the front):

24

1

25

48

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69 70

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Pin Function Terminal number in vehicles

1 SAFETY FEED
(+12 VDC or +24 VDC)

Terminal # 30

2 Ignition (+) (IGNITION FEED) Terminal # 15

24 STANDARD FEED
(+12 VDC or +24 VDC)

Terminal # 30

25 Ground Terminal # 31

 IGNITION FEED sources the digital electronics that control the inputs and
outputs.

 The ignition must be active for the JCM-350-E03 to be active.
 The JCM-350-E03 will continue to run on a minimum input voltage of 5.9 V

(on IGNITION FEED) in order to survive engine cranking (ISO 7637-2 Test
Pulse 5 compliant). The JCM-350-E03 is designed to work with an input
power voltage range of 8 V up to 32 V.

 The maximum current draw on this line is 2 A.
 Internal protection circuits protect against brief voltage drops on this line to

ensure continued operation of the JCM-350-E03.

 STANDARD FEED provides power for some of the outputs of the
JCM-350-E03.

 The maximum current draw on this line is 52 A.
 However, internal current measurement will cut outputs if the current

exceeds the 30 A limit. The current on STANDARD FEED is monitored by
software.

 SAFETY FEED provides power for some of the outputs of the
JCM-350-E03.

 The maximum current draw on this line is 40 A.
 However, internal current measurement will cut outputs if the current

exceeds the 30 A limit. SAFETY FEED is protected by solid state switches
which also implements a hardware current limit of 30 A.

To start the JCM-350-E03, pin 2 (IGNITION FEED) must be connected with
pin 24 (STANDARD FEED). The ignition control signal is issued when the key
is in position "Ignition ON".

Introduction

Power Supply

Ignition (IGNITION FEED)

STANDARD FEED

SAFETY FEED

Note on Ignition

40 Jetter AG

4 Mounting and Installation

Parameter Description

Rated voltage DC 12 V or DC 24 V

Permissible voltage range DC 8 ... 32 V

Current consumption at 12 V tbd

Current consumption at 24 V tbd

The base current consumption is measured shortly after switching on the
JCM-350-E03 while there are no active output signals and input signals are
not connected. Active outputs and also certain connected input signals will
affect the current consumption.

24

1

25

48

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Pin Function

66 Regulated 5 V output

Parameter Description

Regulated voltage DC 5 V

Load current max. 250 mA

Overcurrent detection Yes

Power Supply - Technical
Data

Note on Current
Consumption

Regulated 5 V Output

Technical Data -
Regulated Output

Jetter AG 41

JCM-350-E03 Mounting and Installation

CAN Interface and Node ID

The following diagrams show the pin assignment of the connector (view from
the front):

24

1

25

48

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Pin Function

62 OUT_CAN_L

63 OUT_CAN_H

64 IN_CAN_L

65 IN_CAN_H

24

1

25

48

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Pin Function

67 Node ID (tri-state input # 1)

68 Node ID (tri-state input # 2)

Parameter Description

Application for device coding
 as digital inputs

Type of inputs Pull-up resistor to IGNITION FEED
and pull-down resistor to ground

Tri-state detection Tri-state operation is detected by a
pull-down resistor to ground.

Rated voltage IGNITION FEED

Threshold level OFF < 1.0 V

Threshold level ON > 4.0 V

Note that because these inputs are tri-state enabled, they will always have
bias voltage on the pin capable of sourcing current.

Introduction

CANopen®

Node ID

Technical Data - Tri-State
Inputs

Note

42 Jetter AG

4 Mounting and Installation

The following table shows the effective node ID given that the default base ID
of 0x10 is used:

State of pin 67 State of pin 68 CANopen® Node ID

Not Connected Not Connected 0x10

Not Connected OFF 0x11

Not Connected ON 0x12

OFF Not Connected 0x13

OFF OFF 0x14

OFF ON 0x15

ON Not Connected 0x16

ON OFF 0x17

ON ON 0x18

 Specification - CAN Bus Cable on page 43

Calculating the Node ID
Based on Tri-State Input
State

Related Topics

Jetter AG 43

JCM-350-E03 Mounting and Installation

Specification - CANopen® Bus Cable

Jetter AG CANopen® devices are wired in accordance with the following
diagram.

O
U

T_
C

A
N

_H

CAN_H CAN_H

CAN_LCAN_L

O
U

T_
C

A
N

_H

O
U

T_
C

A
N

_H

IN
_C

A
N

_H

IN
_C

A
N

_H

IN
_C

A
N

_H

IN
_C

A
N

_L

IN
_C

A
N

_L

IN
_C

A
N

_L

O
U

T_
C

A
N

_L

O
U

T_
C

A
N

_L

O
U

T_
C

A
N

_L

120 Ohm 120 Ohm

1

2

Number Description

1 CAN bus

2 Jetter AG CANopen® devices

There is an option to enable a resistor in the device as a bus termination
resistor of 120 Ohm.
The stub length with this type of wiring is practically zero.
The CAN_L and CAN_H cables must be twisted together.

Layout of CAN Bus
Wiring

44 Jetter AG

4 Mounting and Installation

Parameter Description

Core cross-sectional area 1000 kBaud: 0.25 ... 0.34 mm2
500 kBaud: 0.34 ... 0.50 mm2
250 kBaud: 0.34 ... 0.60 mm2
125 kBaud: 0.50 ... 0.60 mm2

Cable capacitance 60 pF/m max.

Resistivity 1000 kBaud: max. 70 Ω/km
500 kBaud: max. 60 Ω/km
250 kBaud: max. 60 Ω/km
125 kBaud: max. 60 Ω/km

Number of cores 2

Shield Complete shielding, no paired shielding

Twisting Core pairs CAN_L and CAN_H are twisted

The maximum permitted cable length depends on the baud rate used and the
number of CANopen® devices connected.

Baud Rate Cable length Stub length Overall stub length

1000 kBaud max. 25 m max. 0.3 m 3 m

500 kBaud max. 100 m max. 1.0 m 39 m

250 kBaud max. 200 m max. 3.0 m 78 m

125 kBaud max. 200 m - -

CAN Bus Cable
Specification

Cable Lengths

Jetter AG 45

JCM-350-E03 Mounting and Installation

Connecting Digital Inputs and Outputs

The following diagrams show the pin assignment of the connector (view from
the front):

24

1

25

48

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Pin Description

3 Digital input 1

4 Digital input 2

5 Digital input 3

6 Digital input 4

7 Digital input 5

Parameter Description

Type of inputs Software selectable with either 2 kΩ
pull-up to STANDARD FEED or 2 kΩ
pull-down to ground.

Rated voltage STANDARD FEED

Permissible voltage range DC 8 ... 32 V

Threshold level OFF < 1.0 V

Threshold level ON > 3.5 V

24

1

25

48

2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Pin Description

8 Universal I/O: IN 6 / OUT 1

9 Universal I/O: IN 7 / OUT 2

10 Universal I/O: IN 8 / OUT 3

11 Universal I/O: IN 9 / OUT 4

12 Universal I/O: IN 10 / OUT 5

13 Universal I/O: IN 11 / OUT 6

14 Universal I/O: IN 12 / OUT 7

Introduction

Digital Inputs

Technical Data -
Digital Inputs IN 1
through IN 5

Digital Universal I/Os
(STANDARD)

46 Jetter AG

4 Mounting and Installation

Pin Description

15 Universal I/O: IN 13 / OUT 8

32 Ground Return: IN 6 / OUT 1

33 Ground Return: IN 7 / OUT 2

34 Ground Return: IN 8 / OUT 3

35 Ground Return: IN 9 / OUT 4

36 Ground Return: IN 10 / OUT 5

37 Ground Return: IN 11 / OUT 6

38 Ground Return: IN 12 / OUT 7

39 Ground Return: IN 13 / OUT 8

Parameter Description

Type of inputs Can be configured as active-high
inputs

Rated voltage STANDARD FEED

Permissible voltage range DC 8 ... 32 V

Threshold level OFF 51 % of IGNITION FEED

Threshold level ON 51 % of IGNITION FEED

Input impedance 100 kΩ

Parameter Description

Type of outputs Active-high output

Rated voltage STANDARD FEED

Permissible voltage range DC 8 ... 32 V

Signal voltage OFF < 1.0 V

Signal voltage ON USTANDARD - 0.5 V

Load current of OUT 1 through OUT 8 max. 2.5 A

Maximum inrush current tbd

Short-circuit proof Yes

Overcurrent detection Yes

No-load detection Yes

Technical Data -
Digital Inputs IN 6
through IN 13

Technical Data -
Digital Outputs
(STANDARD FEED)

Jetter AG 47

JCM-350-E03 Mounting and Installation

24

1

25

48

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Pin Description

16 Universal I/O: IN 14 / OUT 9

17 Universal I/O: IN 15 / OUT 10

18 Universal I/O: IN 16 / OUT 11

19 Universal I/O: IN 17 / OUT 12

20 Universal I/O: IN 18 / OUT 13

21 Universal I/O: IN 19 / OUT 14

22 Universal I/O: IN 20 / OUT 15

23 Universal I/O: IN 21 / OUT 16

40 Ground Return: IN 14 / OUT 9

41 Ground Return: IN 15 / OUT 10

42 Ground Return: IN 16 / OUT 11

43 Ground Return: IN 17 / OUT 12

44 Ground Return: IN 18 / OUT 13

45 Ground Return: IN 19 / OUT 14

46 Ground Return: IN 20 / OUT 15

47 Ground Return: IN 21 / OUT 16

Parameter Description

Type of inputs Can be configured as active-high
inputs

Rated voltage SAFETY FEED

Permissible voltage range DC 8 ... 32 V

Threshold level OFF < 51 % of IGNITION FEED

Threshold level ON > 51 % of IGNITION FEED

Input impedance 100 kΩ

Digital Universal I/Os
(SAFETY)

Technical Data -
Digital Inputs IN 14
through IN 21

48 Jetter AG

4 Mounting and Installation

Parameter Description

Type of outputs Active-high output

Rated voltage SAFETY FEED

Permissible voltage range DC 8 ... 32 V

Signal voltage OFF < 1.0 V

Signal voltage ON USAFETY - 0.5 V

Load current of OUT 9 through OUT 10 max. 2.5 A

Load current of OUT 11 through OUT 16 max. 5.0 A

Maximum inrush current tbd

Can be switched off by electronic safety
switch

Yes

Short-circuit proof Yes

Overcurrent detection Yes

No-load detection Yes

24

1

25

48

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Pin Description

30 Switch feed output 1

31 Switch feed output 2

Parameter Description

Type of switch outputs Active-high output

Rated voltage STANDARD FEED

Permissible voltage range DC 8 ... 32 V

Signal voltage OFF < 1.0 V

Signal voltage ON USTANDARD - 0.5 V

Load current each 2.5 A max.

Short-circuit proof Yes

Overcurrent detection Yes

No-load detection Yes

Technical Data - Digital
Outputs (SAFETY FEED)

Switch Feed Outputs

Technical Data - Switch
Outputs

Jetter AG 49

JCM-350-E03 Mounting and Installation

24

1

25

48

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Pin Description

56 PWM output 1

57 PWM output 2

58 PWM output 3

59 Ground Return: PWM output 1

60 Ground Return: PWM output 2

61 Ground Return: PWM output 3

Parameter Description

Operating Modes Current-controlled output
 PWM output with static duty cycle

Dither function Yes, at PWM freq: 2 kHz

Resolution 8 bits

Load current 0 ... 2.5 A

Short-circuit proof Yes

Overcurrent detection Yes

No-load detection Yes

PWM Outputs

Technical Data - PWM
Outputs

50 Jetter AG

4 Mounting and Installation

Connecting Analog Inputs and Outputs

The following diagrams show the pin assignment of the connector (view from
the front):

24

1

25

48

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Pin Description

25 Ground: Analog output

53 Analog Output

Parameter Description

Voltage range at 50 mA 0 ... STANDARD FEED

Current range 0 ... 100 mA

Resolution 10 bits

Electrical isolation none

Short circuit detection Yes

24

1

25

48

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Pin Description

26 Ground: Analog input 1

27 Ground: Analog input 2

28 Ground: Analog input 3

29 Ground: Analog input 4

49 Analog input 1

50 Analog input 2

51 Analog input 3

52 Analog input 4

Introduction

Analog Output

Technical Data - Analog
Output

Analog Inputs

Jetter AG 51

JCM-350-E03 Mounting and Installation

Parameter Description

Voltage range 0 ... 5 V
 0 ... IGNITION FEED

Current range 0 ... 20 mA
 4 ... 20 mA

Input impedance at 0 ... 5 V 100 kΩ

Input impedance at 0 ... IGNITION FEED 50 kΩ

Input impedance at 0 ... 20 mA 240 Ω

Resolution 10 bits

Electrical isolation none

24

1

25

48

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Pin Description

54 Frequency input 1

55 Frequency input 2

Parameter Description

Application as frequency counter
 as two digital inputs

Type of inputs Software selectable with either 2 kΩ
pull-up to STANDARD FEED or 2 kΩ
pull-down to ground.

Frequency measurement range 5 Hz ... 20 kHz

Measurement method time-based

Result of measurement Period of the signal in nanoseconds

Resolution 62.5 ns

Technical Data -
Analog Inputs

Frequency Inputs

Technical Data -
Frequency Inputs

52 Jetter AG

4 Mounting and Installation

24

1

25

48

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Pin Description

69
H-bridge outputs

70

Parameter Description

Application used as H-Bridge
 as two independent digital inputs

Rated output current max. 2.5 A

Accuracy of current measurement (H-bridge) < 100 mA

Short-circuit proof Yes

Overcurrent detection Yes

No-load detection Yes

H-Bridge Outputs

Technical Data -
H-Bridge

Jetter AG 53

JCM-350-E03 Mounting and Installation

4.2 Installing the JCM-350-E03

This chapter describes how to install the JCM-350-E03.

Topic Page
Installing the JCM-350-E03 .. 54

Introduction

Contents

54 Jetter AG

4 Mounting and Installation

Installing the JCM-350-E03

Select a suitable place for the device to be mounted.
A place is suitable if it fulfils the following requirements:

 The installation surface must be made from one of the following materials:
 aluminum plate
 galvanized steel plate
 lacquered steel plate

 The installation surface must be vertical.
 The installation surface must be level.
 The installation location must allow adequate air circulation.
 The installation location must be accessible for servicing.
 The installation location must be of sufficient size.

See also: Physical Dimensions on page 19

Do not install the device in inappropriate locations.
The following installation locations are not suited for mounting the
JCM-350-E03:

Unsuitable installation
location

Reason

Unventilated installation
location

The device could overheat as heat builds up.

Stainless steel surfaces Galvanic corrosion may occur between device and
mounting surface

Installation location close to
heat-sensitive materials

The materials could become warped or misshapen as
a result of heat produced by the device.

Installation surfaces are
uneven

The installation surface could become misshapen
when fitting the device.
Installation is unstable and precarious.

Selecting a Place for
Installation

Avoiding Unsuitable
Installation Locations

Jetter AG 55

JCM-350-E03 Mounting and Installation

The diagram shows the positions permitted for installation.

Number Permissible Installation Positions

1 horizontally, lying

2 horizontally, hanging

3 vertically, connector left

4 vertically, connector downwards

The diagram shows the positions prohibited for installation.

Number Prohibited Installation Positions

1 vertically, connector upwards

2 vertically, pressure equalizing membrane upwards

Why are these installation positions prohibited?

Permissible Installation
Positions

Prohibited Installation
Positions

56 Jetter AG

4 Mounting and Installation

 Vertically, connector upwards: The accumulation of moisture and water
droplets in the connector can lead to current leakages and corrosion.

 Vertically, pressure equalizing membrane upwards: The accumulation of
moisture and water droplets can block the hole which may impede
pressure compensation.

Use the following installation material:

Part Design

Screws/bolts Size: M 5 x 15
Surface: galvanized
Strenght class: 8.8

Washers Size: 5.3 x 10
Surface: galvanized

Screw nuts Size: M 5
Surface: galvanized
Strenght class: 8.8

Avoid installation material made from stainless steel. In connection with the
housing material of the JCM-350-E03 galvanic corrosion may occur.

Mark off the positions of the 4 mounting holes.
Center-punch the 4 holes.

If Then ...

the thickness of the mounting surface is
> 6 mm (steel) or > 8 mm (aluminum)

drill the following holes:

 Pre-drill Ø 4.2 mm.
 Tap a thread M 5.

Selecting Installation
Material

Avoid Improper
Installation Material

Preparing for Installation

Jetter AG 57

JCM-350-E03 Mounting and Installation

If Then ...

the thickness of the mounting surface is
< 6 mm (steel) or < 8 mm (aluminum)

drill the following holes:

 Drill the holes Ø 6 mm.
 Deburr the holes.

Direct contact between housing and mounting surface improves heat
dissipation. Therefore:

 Install the device directly on the mounting surface.
 Do not use insulating material.
 Do not use spacers.

Screw the device down to the mounting surface.

2

1

3

Number Description

1 Screw

2 Washer

3 Tapped hole

Notes on Installation

Installing the
JCM-350-E03
(Tapped Holes)

58 Jetter AG

4 Mounting and Installation

Screw the device down to the mounting surface.

2

5

1

4

3

Number Description

1 Screw

2 Washer

3 Through hole

4 Washer

5 Screw nut

Install a strain reliever for the connection cable.
Take care to leave enough space for the connector.
The connectors should not be obstructed, so that it can be removed in the
event of a service requirement.

Installing the
JCM-350-E03
(Through Holes)

Installing the Strain
Relief

Jetter AG 59

JCM-350-E03 Initial Commissioning

5 Initial Commissioning

This chapter covers the initial commissioning of the JCM-350-E03 with the aid
of the following steps:

 Connecting the power supply and interfaces
 Installing and connecting a USB CAN adaptor
 Initial Commissioning Using the Programming Tool JetSym

The JCM-350-E03 consists of the controller JCM-350 and the I/O module
JXM-IO-E02 which are internally connected via CAN bus. The CAN bus is
brought out to allow communication with other CANopen® nodes. The default
node ID of the JXM-IO-E02 is 16, the default node ID of the JCM-350 is 127.
This way, both components within the JCM-350-E03 can be addresses
separately.

Topic Page
Preparatory Work for Initial Commissioning ... 60
Initial Commissioning in JetSym ... 62
Information on Communication with a JXM-IO-E02 67

Introduction

JCM-350-E03 -
Configuration

Contents

60 Jetter AG

5 Initial Commissioning

Preparatory Work for Initial Commissioning

To be able to commission and program the JCM-350-E03 the following
preparations are necessary:

 Wire the power supply, ignition and CAN interfaces
 Connect a USB CAN adaptor between controller and PC. Install the driver

software for the given adaptor.

The default values of the JXM-IO-E02 module are listed below:

 Baud rate: 250 kBaud
 CAN terminating resistor: 0x01 (resistor at the end of the CAN bus is

enabled)
 Node ID: 0x10

For more information please refer to Wiring on page 36. To wire the controller
JCM-350-E03, proceed as follows:

Step Action

1 Connect the following terminals with the power supply DC 8 - 32 V:

 SAFETY FEED: Pin 1 (terminal 30 in the vehicle)
 Ignition Pin 2 (terminal 15 in the vehicle)
 STANDARD FEED: Pin 24 (terminal 30 in the vehicle)
 Ground: Pin 25 (terminal 31 in the vehicle)

2 Connect a Sub-D connector (female) to IN_CAN (pin 64 and pin 65)
allowing to connect the USB CAN adaptor.

3 Make sure that there is a terminating resistor of 120 Ω at both ends of the
CAN bus.

4 Energize the power supply.
Make sure that the ignition is on. Otherwise the controller will not work.

Result: Now the controller is operational. To allow programming it can be
connected with the USB CAN adaptor.

The following USB CAN adaptors are supported by the programming tool
JetSym:

 IXXAT Automation GmbH (http://www.ixxat.de http://www.ixxat.de):
The list of currently supported hardware can be found on the website of
IXXAT Automation GmbH.
We support the following driver versions: VCI version 3.3 and VCI version
2.18

 PEAK-System Technik GmbH (http://www.peak-system.com
http://www.peak-system.com): The list of currently supported hardware
can be found on the website of PEAK-System Technik GmbH.
We support the following driver versions: Version 3.5.4.9547 or higher

Introduction

Default Values for
JXM-IO-E02

Wiring the Controller

Supported USB CAN
Adaptors

http://www.ixxat.de/
http://www.peak-system.com/

Jetter AG 61

JCM-350-E03 Initial Commissioning

Prerequisites:
Before installing the USB CAN adaptor, JetSym 4.3 or higher must be
installed on the PC to be used.
To install the adaptor proceed as follows:

Step Action

1 Insert the USB CAN adaptor into a USB port of your PC.

2 If the Hardware Wizard opens, close it.

3 Install the driver for the USB CAN adaptor.

4 Install the corresponding JetSym driver depending on the USB CAN
adaptor used.

If Then ...

you use an adaptor by
PEAK-Systems

proceed with step 5.

you do not use an adaptor by
PEAK-Systems

proceed with step 7.

5 Navigate in Windows Explorer to the directory PcanDrv located in the
JetSym installation. Default location:
C:\Programme\Jetter\JetSym\Tools\PcanDrv

6 Execute the file PcanDrv.exe and follow the instructions.

7 Plug the Sub-D connector of the adaptor into the IN_CAN port of the
JCM-350-E03 (female Sub-D connector).

Result: In the case of an error-free installation the CANopen® connection
between PC and controller is completed.

 Initial Commissioning in JetSym on page 62

Installing the USB CAN
Adaptor

Related Topics:

62 Jetter AG

5 Initial Commissioning

Initial Commissioning in JetSym

JetSym is used to configure and program the controller JCM-350-E03. The
following is detailed in this topic:

 Creating a project in JetSym
 Configuring the hardware/controller
 Initializing the JCM-350-E03

The following requirements must be satisfied:

 JetSym is installed on the PC used.
 JetSym has been licensed (see online help in JetSym).
 Preparatory work for initial commissioning is completed and an active

CANopen® connection between controller and PC has been established.

A new project for the programming is created in JetSym as follows:

Step Action

1 Start JetSym.

2 Open menu item File and select entry New.
Result:
The dialog box New opens

3 Select JetSym STX project as the project type.

4 Enter the project name.

5 Confirm your settings by clicking OK.

Result: A project has now been created.

Introduction

Prerequisites

Creating a Project

Jetter AG 63

JCM-350-E03 Initial Commissioning

To establish a connection between JetSym and the controller, you need to
configure the hardware as follows:

Step Action

1 Switch to the Hardware view by clicking on the tab with the same name.

2 Fully expand the Hardware tree.

3 Double-click on CPU.
Result:
The dialog box Configuration opens.

4 Under Controller/Type select JCM-350.

5 Under Interface/Type select JetCAN.

6 Test the connection by clicking on the Test button. If the test fails, check
the mechanical CAN connection between PC and JCM-350-E03 (also
refer to the next topic "Possible Error Messages").

7 Save your settings using the shortcut Ctrl + S.

Result: The hardware settings are now configured in JetSym.

Error message # 1:

Configuring the
Hardware

Possible Error Messages

64 Jetter AG

5 Initial Commissioning

Possible
Cause

Fix for this Problem

Selection of
wrong controller
type

Check whether your selection matches the controller type. If it
does not match the type, open the configuration dialog and
re-select the controller.

Wrong Baud rate Check whether a Baud rate of 250 kBaud is set. If not, set it to
250 kBaud.

Wrong node ID If you don't know the node ID of your controller, scan the CAN bus
for nodes:

Select the hardware that has been found as a result of the scan:

Then, select the controller that has been found as a result of the
scan:

Result: The node ID of the controller is automatically entered into
the corresponding box of the configuration mask.

Jetter AG 65

JCM-350-E03 Initial Commissioning

Error message # 2:

Possible
Cause

Fix for this Problem

Wrong Baud rate Check whether a Baud rate of 250 kBaud is set. Where
necessary, restart JetSym. Enter the correct Baud rate and check
the connection.

ATTENTION: If this error message is displayed after the restart of
JetSym, re-boot your PC.

66 Jetter AG

5 Initial Commissioning

Proceed as follows to create a simple and executable program for initializing
the JCM-350-E03:

Step Action

1 Switch to Files view.

2 Double-click on the program file (in our example JCM350_BA.stxp). The
program file has the same name as the project, plus the extension stxp.
Result:
The program file opens in the JetSym editor.

3 Enter the following program code:
Var
 Result: Int at %VL 1000000;
End_Var;

Task Main Autorun
 Result := CanOpenInit(0, 127, 'Version: 01.00.0.00');
End_Task;

4 Press the F7 key to trigger a project build.
Result:
A program which will run on the controller.

5 Press the shortcut CTRL+F5.
Result:
The program will be uploaded to the controller.

Result:
The program can now be enhanced. In IntelliSense (Ctrl + Space Bar), the
CANopen® functions are now available.

Initializing the
JCM-350-E03

Jetter AG 67

JCM-350-E03 Initial Commissioning

Information on Communication with a JXM-IO-E02

The illustration below shows an wiring example of the following CANopen®
devices by Jetter AG:

 Controller JCM-350-E03
 Peripheral module JXM-IO-E02

Number Description Node ID

1 CAN bus

2 Controller JCM-350-E03 by Jetter

2a Controller JCM-350 0x7F (127 decimal)

2b I/O module JXM-IO-E02 0x10 (16 decimal)

3 Separate I/O module JXM-IO-E02 0x11 (17 decimal)
with user-configured
tri-state inputs

During initial commissioning the following restrictions/limitations of the
CANopen® interface on the JXM-IO-E02 must be taken into account:

 PDOs are not user configurable.
 PDOs are transmitted only asynchronous on request.

The following information supports you in commissioning peripheral modules,
such as JXM-IO-E02:

 Initialize the controller as described in the manual of JCM-350-E03.
 Send an RTR frame to the peripheral module. This parameter is needed

once in order to prompt the peripheral module to send the required data to
the controller.

Example - Wiring
Diagram

CANopen® Interface -
Restrictions

Communication with
Peripheral Modules

68 Jetter AG

5 Initial Commissioning

The following program fragment shows how the states of the digital inputs on
the JXM-IO-E02 can be read by a Jetter controller, such as JCM-350.

Const

 CAN_CONTROLLER_0 = 0;

 //Node ID of the controller
 NodeID_Node_0 = 0x7F;

 //Node ID of the I/O module
 NodeID_Node_1 = 0x10;

 Event_Time = 100;

 Inhibit_Time = 20;

End_Const;

Var

//State of the digital inputs
 Data_Inputs: Word;

 SW_Version: String;

End_Var;

Task Main Autorun

// Software version of the controller
SW_Version := 'v4.3.0';

// Initializing CAN 0

CanOpenInit(CAN_CONTROLLER_0, NodeID_Node_0, SW_Version);

// Entering process data to be sent
CanOpenAddPDORx(CAN_CONTROLLER_0,
CANOPEN_PDO1_RX(NodeID_Node_1), 2, CANOPEN_WORD,
sizeof(Data_Inputs), Data_Inputs, Event_Time, Inhibit_Time,
CANOPEN_ASYNCPDORTRONLY);

// All devices on the CAN bus have the status of PREOPERATIONAL
// Setting all devices on the CAN bus to OPERATIONAL status
CanOpenSetCommand(CAN_CONTROLLER_0,
CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES, CAN_CMD_NMT),
CAN_NMT_START);

End_Task;

 CANopen® Objects on page 95

JetSym STX Sample
Program

Related Topics:

Jetter AG 69

JCM-350-E03 CANopen® STX API

6 CANopen® STX API

This chapter describes the STX functions of the CANopen® STX API.

CANopen® is an open standard for networking and communication in the
automobile sector, for example.
The CANopen® protocol has been further developed by the CiA e.V. (CAN in
Automation) and works on the physical layer with CAN Highspeed in
accordance with ISO 11898.

These STX functions are used in communication between the controller
JCM-350-E03 and e.g. the peripheral modules JXM-IO-E02, JXM-IO-E09,
JXM-IO-E10, JXM-IO-E11 and JXM-MUX.

The CANopen® specifications can be obtained from the CiA e.V.
http://www.can-cia.org homepage. The key specification documents are:

 CiA DS 301 - This document is also known as the communication profile
and describes the fundamental services and protocols used under
CANopen®.

 CiA DS 302 - Framework for programmable devices (CANopen® Manager,
SDO Manager)

 CiA DR 303 - Information on cables and connectors
 CiA DS 4xx - These documents describe the behavior of a number of

device classes in, what are known as, device profiles.

Topic Page
STX Function CanOpenInit ... 70
STX Function CanOpenSetCommand ... 72
STX Function CanOpenUploadSDO .. 74
STX Function CanOpenDownloadSDO ... 78
STX Function CanOpenAddPDORx ... 83
STX Function CanOpenAddPDOTx ... 89

Introduction

The CANopen® Standard

Application

Documentation

Contents

http://www.can-cia.org/

70 Jetter AG

6 CANopen® STX API

STX Function CanOpenInit

Calling up the CanOpenInit () function initializes one of the CAN busses. The
JCM-350-E03 then automatically sends the heartbeat message every second
with the following communication object identifier (COB-ID): Node ID + 0x700

Function CanOpenInit (

 CANNo:Int,

 NodeID:Int,

 const ref SWVersion:String,

) :Int;

The CanOpenInit () function has the following parameters.

Parameter Description Value

CANNo CAN channel number 0 ... CANMAX

NodeID Own Node ID 1 ... 127

SWVersion Reference to own software
version
This software version is entered
into the index 0x100A in the
object directory.

String up to 255
characters

The function transfers the following return values to the higher-level program.

Return Value

0 ok

-1 Error when checking parameters

-3 Initialization has not worked

The value of the CANMAX parameter depends on the device. The following
table provides information on this point.

Device CANMAX

JVM-407 2

BTM 07 2

BTM 012 1 - 2

BTM 011 0

JCM-350 4

JCM-620 2

Introduction

Function Declaration

Function Parameters

Return Value

Parameter CANNo

Jetter AG 71

JCM-350-E03 CANopen® STX API

Initializing the CAN bus 0. The JCM-350-E03 has node ID 20 (0x14).

Result := CanOpenInit(0, 20, 'Version: 01.00.0.00');

During initialization, the JCM-350-E03 processes the following process steps:

Step Description

1 First, the bootup message is sent as a heartbeat message.

2 As soon as the JCM-350-E03 goes into Pre-operational status, it sends
the Pre-operational heartbeat message.

The Object Directory can only be accessed via SDO, if the JCM-350-E03 is in
"Pre-operational" status.

After initialization, NMT messages can be sent and received. The own
heartbeat status can be changed with the "CanOpenSetCommand" function.

 STX Function CanOpenSetCommand on page 72

Using this Function

How it Works

Access to the Object
Directory

NMT Messages

Related Topics:

72 Jetter AG

6 CANopen® STX API

STX Function CanOpenSetCommand

By calling up the CanOpenSetCommand () function, the own heartbeat status
and the heartbeat status for all other devices (NMT slaves) can be changed on
the CAN bus.

Function CanOpenSetCommand (

 CANNo:Int,

 iType:Int,

 Value:Int,

) :Int;

The CanOpenSetCommand () function has the following parameters.

Parameter Description Value

CANNo CAN channel number 0 ... CANMAX

iType Command selection CAN_CMD_HEARTBEAT:
Only the own heartbeat
status is changed.
CAN_CMD_NMT:
The heartbeat status is
changed for all other devices
or for a specific device on
the CAN bus.

Value Selection of the heartbeat status for command
CAN_CMD_HEARTBEAT:
CAN_HEARTBEAT_STOPPED (0x04)
CAN_HEARTBEAT_OPERATIONAL (0x05)
CAN_HEARTBEAT_PREOPERATIONAL (0x7F)

Selection of the heartbeat status for command
CAN_CMD_NMT (NMT master):
CAN_NMT_OPERATIONAL (0x01) or CAN_NMT_START
(0x01)
CAN_NMT_STOP (0x02)
CAN_NMT_PREOPERATIONAL (0x80)
CAN_NMT_RESET (0x81)
CAN_NMT_RESETCOMMUNICATION (0x82)

The command CAN_CMD_NMT is selected via the macro function
CAN_CMD_NMT_Value (NodeID, CAN_CMD_NMT).
Values from 0 to 127 are permitted for the node ID parameter. 1 to 127 is the
node ID for a specific device. If the command should be sent to all devices on
the CAN bus, the parameter CAN_CMD_NMT_ALLNODES (0) is used.

Introduction

Function Declaration

Function Parameters

Note

Jetter AG 73

JCM-350-E03 CANopen® STX API

The value of the CANMAX parameter depends on the device. The following
table provides information on this point.

Device CANMAX

JVM-407 2

BTM 07 2

BTM 012 1 - 2

BTM 011 0

JCM-350 4

JCM-620 2

The function transfers the following return values to the higher-level program.

Return Value

0 ok

-1 Error when checking parameters
Command not known

The own heartbeat status should be set to Operational.

Result := CanOpenSetCommand(0, CAN_CMD_HEARTBEAT,
CAN_HEARTBEAT_OPERATIONAL);

The own heartbeat status and the status of all other devices on the CAN bus
should be set to Operational.

Result := CanOpenSetCommand(0,
CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES, CAN_CMD_NMT),
CAN_NMT_OPERATIONAL);

The heartbeat status of the device with the node ID 60 (0x3C) should be set to
Operational.

Result := CanOpenSetCommand(0, CAN_CMD_NMT_Value(60, CAN_CMD_NMT),
CAN_NMT_OPERATIONAL);

Parameter CANNo

Return Value

Using the Function
(Example 1)

Using the Function
(Example 2)

Using the Function
(Example 3)

74 Jetter AG

6 CANopen® STX API

STX Function CanOpenUploadSDO

Calling up the CanOpenUploadSDO () function is aimed at accessing a
particular object in the Object Directory of the message recipient and the value
of the object is read. Data is exchanged in accordance with the SDO upload
protocol. Supported transfer types are "segmented" (more than 4 data bytes)
and "expedited" (up to 4 data bytes).

Function CanOpenUploadSDO (

 CANNo:Int,

 NodeID:Int,

 wIndex:Word,

 SubIndex:Byte,

 DataType:Int,

 DataLength:Int,

 const ref DataAddr,

 ref Busy: Int,

) :Int;

The CanOpenUploadSDO () function has the following parameters.

Parameter Description Value

CANNo CAN channel number 0 ... CANMAX

NodeID Node ID of the message
recipient

1 ... 127

wIndex Index number of the object 0 ... 0xFFFF

SubIndex Sub-index number of the object 0 ... 255

DataType Type of object to be received 2 ... 27

DataLength Volume of data for the global
variable DataAddr

DataAddr Global variable into which the
received value is to be entered

Busy Status of the SDO transmission

The function transfers the following return values to the higher-level program.

Return Value

0 ok

-1 Error when checking parameters

-2 Controller in Stop status

-3 DataType is greater than DataLength

-4 insufficient memory

Introduction

Function Declaration

Function Parameters

Return Value

Jetter AG 75

JCM-350-E03 CANopen® STX API

The value of the CANMAX parameter depends on the device. The following
table provides information on this point.

Device CANMAX

JVM-407 2

BTM 07 2

BTM 012 1 - 2

BTM 011 0

JCM-350 4

JCM-620 2

The following data types can be received.

Byte types CANopen® format Jetter format

1 CANOPEN_INTEGER8
CANOPEN_UNSIGNED8

Byte

2 CANOPEN_INTEGER16
CANOPEN_UNSIGNED16

Word

3 CANOPEN_INTEGER24
CANOPEN_UNSIGNED24

-

4 CANOPEN_INTEGER32
CANOPEN_UNSIGNED32
CANOPEN_REAL

Int

5 CANOPEN_INTEGER40
CANOPEN_UNSIGNED40

-

6 CANOPEN_INTEGER48
CANOPEN_UNSIGNED48
CANOPEN_TIME_OF_DAY
CANOPEN_TIME_DIFFERENCE

-

7 CANOPEN_INTEGER56
CANOPEN_UNSIGNED46

-

8 CANOPEN_INTEGER64
CANOPEN_UNSIGNED64
CANOPEN_REAL64

-

n CANOPEN_VISIBLE_STRING
CANOPEN_OCTET_STRING
CANOPEN_UNICODE_STRING
CANOPEN_DOMAIN

String

After calling up the function, the Busy parameter is set to
SDOACCESS_INUSE. With an error in transmission, Busy is set to
SDOACCESS_ERROR. With a successful transmission, the number of bytes
transmitted is returned.

Parameter CANNo

Parameter DataType

Busy

76 Jetter AG

6 CANopen® STX API

With an error in transmission, Busy returns an error code. The following error
codes are available:

SDOACCESS_STILLUSED
Another task is communicating with the same node ID.

SDOACCESS_TIMEOUT
The task has been timed out because the device with the given node ID is not
responding.
If the specified device does not respond within 1 second, the timeout code is
set

SDOACCESS_ILLCMD
The response to the request is invalid.

SDOACCESS_ABORT
The device with the node ID was aborted.

SDOACCESS_SYSERROR
General internal error

The following macros have been defined in connection with this function:

SDOACCESS_FINISHED (busy)
This macro checks whether communication has finished.

SDOACCESS_ERROR (busy)
This macro checks whether an error has occurred.

Result := CanOpenUploadSDO (

 0,

 66,

 0x100A,

 0,

 CANOPEN_STRING,

 sizeof(var_Versionstring),

 var_Versionstring,

 busy);

"Busy" Error Codes

Macro Definitions

Using this Function

Jetter AG 77

JCM-350-E03 CANopen® STX API

In the following example, the manufacturer's software version is read from the
CANopen® Object Directory of the device with the addressed node ID.

#Include "CanOpen.stxp"

Const

 // CAN no.
 CAN_CONTROLLER_0 = 0;

 // Node ID Node_1
 NodeID_Node_0 = 10;

 // Node ID node 2
 NodeID_Node_1 = 66;

End_Const;

Var

 busy: Int;

 Versionstring: String;

 Objectindex: Word;

 Subindex: Byte;

End_Var;

Task main autorun

Var

 SW_Version: String;

End_Var;

SW_Version := 'v4.3.0.2004';

// Initialization CAN 0
CanOpenInit(CAN_CONTROLLER_0, NodeID_Node_0, SW_Version);

// All devices on the CAN bus have the status of PREOPERATIONAL

// Request manufacturer's software version per SDO
Objectindex := 0x100A;

Subindex := 0;

CanOpenUploadSDO(CAN_CONTROLLER_0, NodeID_Node_1, Objectindex,
Subindex, CANOPEN_STRING, sizeof(Versionstring), Versionstring,
busy);

When SDOACCESS_FINISHED(busy) Continue;

If (SDOACCESS_ERROR(busy)) Then

// Troubleshooting

End_If;

// ...
// ...
End_Task;

JetSym STX Program

78 Jetter AG

6 CANopen® STX API

STX Function CanOpenDownloadSDO

Calling up the CanOpenDownloadSDO () function is aimed at accessing a
particular object in the Object Directory of the message recipient and the value
of the object is specified. Data is exchanged in accordance with the SDO
download protocol. Supported transfer types are "segmented" or "block" (more
than 4 data bytes) and "expedited" (up to 4 data bytes).

Function CanOpenDownloadSDO (

 CANNo:Int,

 NodeID:Int,

 wIndex:Word,

 SubIndex:Byte,

 DataType:Int,

 DataLength:Int,

 const ref DataAddr,

 ref Busy: Int,

) :Int;

The CanOpenDownloadSDO () function has the following parameters.

Parameter Description Value

CANNo CAN channel number 0 ... CANMAX

NodeID Node ID of the message
recipient

1 ... 127

wIndex Index number of the object 0 ... 0xFFFF

SubIndex Sub-index number of the object 0 ... 255

DataType Type of object to be sent 2 ... 27

DataLength Volume of data for the global
variable DataAddr

DataAddr Global variable into which the
sent value is to be entered

Busy Status of the SDO transmission

The function transfers the following return values to the higher-level program.

Return Value

0 ok

-1 Error when checking parameters

-2 HMI in Stop status (own heartbeat status)

-3 DataType is greater than DataLength

-4 insufficient memory

Introduction

Function Declaration

Function Parameters

Return Value

Jetter AG 79

JCM-350-E03 CANopen® STX API

The value of the CANMAX parameter depends on the device. The following
table provides information on this point.

Device CANMAX

JVM-407 2

BTM 07 2

BTM 012 1 - 2

BTM 011 0

JCM-350 4

JCM-620 2

The following data types can be received.

Byte types CANopen® format Jetter format

1 CANOPEN_INTEGER8
CANOPEN_UNSIGNED8

Byte

2 CANOPEN_INTEGER16
CANOPEN_UNSIGNED16

Word

3 CANOPEN_INTEGER24
CANOPEN_UNSIGNED24

-

4 CANOPEN_INTEGER32
CANOPEN_UNSIGNED32
CANOPEN_REAL

Int

5 CANOPEN_INTEGER40
CANOPEN_UNSIGNED40

-

6 CANOPEN_INTEGER48
CANOPEN_UNSIGNED48
CANOPEN_TIME_OF_DAY
CANOPEN_TIME_DIFFERENCE

-

7 CANOPEN_INTEGER56
CANOPEN_UNSIGNED46

-

8 CANOPEN_INTEGER64
CANOPEN_UNSIGNED64
CANOPEN_REAL64

-

n CANOPEN_VISIBLE_STRING
CANOPEN_OCTET_STRING
CANOPEN_UNICODE_STRING
CANOPEN_DOMAIN

String

After calling up the function, the Busy parameter is set to
SDOACCESS_INUSE. With an error in transmission, Busy is set to
SDOACCESS_ERROR. With a successful transmission, the number of bytes
transmitted is returned.

Parameter CANNo

Parameter DataType

Busy

80 Jetter AG

6 CANopen® STX API

With an error in transmission, Busy returns an error code. The following error
codes are available:

SDOACCESS_STILLUSED
Another task is communicating with the same node ID.

SDOACCESS_TIMEOUT
The task has been timed out because the device with the node ID is not
responding.
If the specified node ID does not respond within 1 second, the timeout code is
set

SDOACCESS_ILLCMD
The response to the request is invalid.

SDOACCESS_ABORT
The device with the node ID was aborted.

SDOACCESS_BLKSIZEINV
Communication error with Block Download

SDOACCESS_SYSERROR
General internal error

The following macros have been defined in connection with this function:

SDOACCESS_FINISHED (busy)
This macro checks whether communication has finished.

SDOACCESS_ERROR (busy)
This macro checks whether an error has occurred.

Result := CanOpenDownloadSDO (

 0,

 68,

 0x1017,

 0,

 CANOPEN_WORD,

 sizeof(var_Heartbeat_time),

 var_Heartbeat_time,

 busy);

"Busy" Error Codes

Macro Definitions

Using this Function

Jetter AG 81

JCM-350-E03 CANopen® STX API

In the following example, the heartbeat time is entered in the CANopen®
Object Directory of the device with the addressed node ID.

#Include "CanOpen.stxp"

Const

 // CAN no.
 CAN_CONTROLLER_0 = 0;

 // Node ID Node_1
 NodeID_Node_0 = 10;

 // Node ID Node 2
 NodeID_Node_1 = 68;

End_Const;

Var

 busy: Int;

 Heartbeat_time: Int;

 Objectindex: Word;

 Subindex: Byte;

End_Var;

Task main autorun

Var

 SW_Version: String;

End_Var;

SW_Version := 'v4.3.0.2004';

// Initialization CAN 0
CanOpenInit(CAN_CONTROLLER_0, NodeID_Node_0, SW_Version);

// Set device with the node ID NodeID_Node_1 on the CAN bus to
PREOPERATIONAL status
CanOpenSetCommand(0, CAN_CMD_NMT_Value(NodeID_Node_1,
CAN_CMD_NMT), CAN_NMT_PREOPERATIONAL);

// Change heartbeat time of the addressed device per SDO
Objectindex := 0x1017;

Subindex := 0;

CanOpenDownloadSDO(CAN_CONTROLLER_0, NodeID_Node_1, Objectindex,
Subindex, CANOPEN_WORD, sizeof(Heartbeat_time), Heartbeat_time,
busy);

When SDOACCESS_FINISHED(busy) Continue;

If (SDOACCESS_ERROR(busy)) Then

// Troubleshooting

End_If;

JetSym STX Program

82 Jetter AG

6 CANopen® STX API

// Reset all devices on the CAN bus to OPERATIONAL status
CanOpenSetCommand(CAN_CONTROLLER_0,
CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES, CAN_CMD_NMT),
CAN_NMT_OPERATIONAL);

// ...
// ...
// ...

End_Task;

Jetter AG 83

JCM-350-E03 CANopen® STX API

STX Function CanOpenAddPDORx

By calling up the CanOpenAddPDORx () function, process data, sent by other
CANopen® devices, can be entered on receipt.
Process data are only received if sent by a CANopen® device.

 The PDO telegram is, however, only then transmitted if the CANopen®
devices on the bus have a status of "Operational".

 The smallest time unit for the Event Time is 1 ms.
 The smallest time unit for the Inhibit Time is 1 ms.

Function CanOpenAddPDORx (

 CANNo:Int,

 CANID:Int,

 BytePos:Int,

 DataType:Int,

 DataLength:Int,

 const ref VarAddr,

 EventTime: Int,

 InhibitTime: Int,

 Paramset: Int,

) :Int;

The CanOpenAddPDORx () function has the following parameters.

Parameter Description Value

CANNo CAN channel number 0 ... CANMAX

CANID CAN identifier 11-bit
CAN identifier 29-bit

0 ... 0x7FF
0 ... 0x1FFFFFFF

BytePos Starting position of data to be
received

0 ... 7

DataType Data type of data to be received 2 ... 13, 15 ... 27

DataLength Volume of data for the global
variable VarAddr

VarAddr Global variable into which the
received value is entered

EventTime Time lag between two telegrams
(> Inhibit Time)

InhibitTime Minimum time lag between two
telegrams received (<
EventTime)

Paramset Parameter bit-coded

Introduction

Notes

Function Declaration

Function Parameters

84 Jetter AG

6 CANopen® STX API

The function transfers the following return values to the higher-level program.

Return Value

0 ok

-1 Error when checking parameters

-3 DataType is greater than DataLength

-4 insufficient memory

The value of the CANMAX parameter depends on the device. The following
table provides information on this point.

Device CANMAX

JVM-407 2

BTM 07 2

BTM 012 1 - 2

BTM 011 0

JCM-350 4

JCM-620 2

The CANID parameter is used to transfer the CAN identifier. The CAN
identifier is generated with a macro. The CAN identifier depends on the node
ID of the other communicating user and on whether it is a PDO1, PDO2,
PDO3 or PDO4 message.

Macro definitions:
#Define CANOPEN_PDO1_RX (NodeID) ((NodeID) + 0x180)
#Define CANOPEN_PDO2_RX (NodeID) ((NodeID) + 0x280)
#Define CANOPEN_PDO3_RX (NodeID) ((NodeID) + 0x380)
#Define CANOPEN_PDO4_RX (NodeID) ((NodeID) + 0x480)

#Define CANOPEN_PDO1_TX (NodeID) ((NodeID) + 0x200)
#Define CANOPEN_PDO2_TX (NodeID) ((NodeID) + 0x300)
#Define CANOPEN_PDO3_TX (NodeID) ((NodeID) + 0x400)
#Define CANOPEN_PDO4_TX (NodeID) ((NodeID) + 0x500)

Example for calling up the macro:
CANOPEN_PDO2_RX (64)
 The resulting CAN identifier is: 2C0h = 40h + 280h

For CANopen® the following CAN identifier distribution is predefined. In this
case, the node number is embedded in the identifier.

Return Value

Parameter CANNo

Parameter CANID

Default CAN Identifier
Distribution

Jetter AG 85

JCM-350-E03 CANopen® STX API

11-bit identifier
(binary)

Identifier
(decimal)

Identifier
(hexadecimal

Function

000000000000 0 0 Network Management

000100000000 128 80h Synchronization

0001xxxxxxxx 129 - 255 81h - FFh Emergency

0011xxxxxxxx 385 - 511 181h - 1FFh PDO1 (tx)

0100xxxxxxxx 513 - 639 201h - 27Fh PDO1 (rx)

0101xxxxxxxx 641 - 767 281h - 2FFh PDO2 (tx)

0110xxxxxxxx 769 - 895 301h - 37Fh PDO2 (rx)

0111xxxxxxxx 897 - 1023 381h - 3FFh PDO3 (tx)

1000xxxxxxxx 1025 - 1151 401h -47Fh PDO3 (rx)

1001xxxxxxxx 1153 - 1279 481h - 4FFh PDO4 (tx)

1010xxxxxxxx 1281 - 1407 501h - 57Fh PDO4 (rx)

1011xxxxxxxx 1409 - 1535 581h - 5FFh Send SDO

1100xxxxxxxx 1537 - 1663 601h - 67Fh Receive SDO

1110xxxxxxxx 1793 - 1919 701h - 77Fh NMT Error Control

xxxxxxxx = Node number 1 - 127

The following data types can be received.

Byte types CANopen® format Jetter format

1 CANOPEN_INTEGER8
CANOPEN_UNSIGNED8

Byte

2 CANOPEN_INTEGER16
CANOPEN_UNSIGNED16

Word

3 CANOPEN_INTEGER24
CANOPEN_UNSIGNED24

-

4 CANOPEN_INTEGER32
CANOPEN_UNSIGNED32
CANOPEN_REAL

Int

5 CANOPEN_INTEGER40
CANOPEN_UNSIGNED40

-

6 CANOPEN_INTEGER48
CANOPEN_UNSIGNED48
CANOPEN_TIME_OF_DAY
CANOPEN_TIME_DIFFERENCE

-

7 CANOPEN_INTEGER56
CANOPEN_UNSIGNED46

-

Parameter DataType

86 Jetter AG

6 CANopen® STX API

Byte types CANopen® format Jetter format

1 CANOPEN_INTEGER8
CANOPEN_UNSIGNED8

Byte

8 CANOPEN_INTEGER64
CANOPEN_UNSIGNED64
CANOPEN_REAL64

-

n CANOPEN_VISIBLE_STRING
CANOPEN_OCTET_STRING
CANOPEN_UNICODE_STRING
CANOPEN_DOMAIN

String

The following parameters can be transferred to the function. Several
parameters can be linked together using the Or function.

CANOPEN_ASYNCPDORTRONLY
Receive asynchronous PDOs by sending an RTR frame (after expired
EventTime) to the sender.

CANOPEN_ASYNCPDO
Receive asynchronous PDOs.

CANOPEN_PDOINVALID
PDO not received. Disk space is reserved.

CANOPEN_NORTR
PDO cannot be requested by RTR (Remote Request).

CANOPEN_29BIT
Use 29-bit identifier
Default: 11-bit identifier

Result := CanOpenAddPDORx (

 0,

 662,

 0,

 CANOPEN_DWORD,

 sizeof(var_Data_1_of_Node_1),

 var_Data_1_of_Node_1,

 1000,

 10,

 CANOPEN_ASYNCPDO | CANOPEN_NORTR);

Parameter Paramset

Using this Function

Jetter AG 87

JCM-350-E03 CANopen® STX API

JCM-350-E03 with node ID 10 wants to receive a PDO from two CANopen®
devices with node ID 64 and 102. The function CanOpenAddPDORx () is
called up for this purpose. After running the program, the JCM-350-E03
receives the cyclic PDO telegrams.

120 Ohm 120 Ohm

JVM-407

NodeID_Node_0 NodeID_Node_1NodeID_Node_2

JXM-IO-E02

CAN-Bus

CAN 0

JXM-IO-E09

#Include "CanOpen.stxp"

Const

 // CAN no.
 CAN_CONTROLLER_0 = 0;

 // Node ID Node_1
 NodeID_Node_0 = 10;

 // Node ID Node 2
 NodeID_Node_1 = 64;

 // Node ID Node 3
 NodeID_Node_2 = 102;

 // Event_Time in ms
 Event_Time = 1000;

 // Inhibit time in ms
 Inhibit_Time = 10;

End_Const;

Var

 Data_1_of_Node_1: Int;

 Data_2_of_Node_1: Int;

 Data_1_of_Node_2: Int;

End_Var;

Task main autorun

Var

 SW_Version: String;

End_Var;

JetSym STX Program

88 Jetter AG

6 CANopen® STX API

SW_Version := 'v4.3.0.2004';

// Initialization CAN 0
CanOpenInit(CAN_CONTROLLER_0, NodeID_Node_0, SW_Version);

// Enter process data on receipt
CanOpenAddPDORx(CAN_CONTROLLER_0,
CANOPEN_PDO2_RX(NodeID_Node_1), 0, CANOPEN_DWORD,
sizeof(Data_1_of_Node_1), Data_1_of_Node_1, Event_Time,
Inhibit_Time, CANOPEN_ASYNCPDORTRONLY | CANOPEN_NORTR);

CanOpenAddPDORx(CAN_CONTROLLER_0,
CANOPEN_PDO2_RX(NodeID_Node_1), 4, CANOPEN_DWORD,
sizeof(Data_2_of_Node_1), Data_2_of_Node_1, Event_Time,
Inhibit_Time, CANOPEN_ASYNCPDORTRONLY | CANOPEN_NORTR);

CanOpenAddPDORx(CAN_CONTROLLER_0,
CANOPEN_PDO3_RX(NodeID_Node_2), 0, CANOPEN_BYTE,
sizeof(Data_1_of_Node_2), Data_1_of_Node_2, Event_Time,
Inhibit_Time, CANOPEN_ASYNCPDO | CANOPEN_NORTR);

// All devices on the CAN bus have the status of PREOPERATIONAL
// Setting all devices on the CAN bus to OPERATIONAL status
CanOpenSetCommand(CAN_CONTROLLER_0,
CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES, CAN_CMD_NMT),
CAN_NMT_START);

//As from now, PDO telegrams will be transmitted.
// ...
// ...
// ...

End_Task;

Jetter AG 89

JCM-350-E03 CANopen® STX API

STX Function CanOpenAddPDOTx

By calling up the CanOpenAddPDOTx () function, process data can be
deposited on the bus.
However, that should not mean that other CANopen® devices on the bus can
also read this process data.

 The PDO telegram is, however, only then transmitted if the CANopen®
devices on the bus have a status of "Operational".

 As soon as there are any changes to the process data, another PDO
telegram is transmitted immediately.

 The smallest time unit for the Event Time is 1 ms.
 The smallest time unit for the Inhibit Time is 1 ms.
 Any unused bytes of a telegram are sent as null.

Function CanOpenAddPDOTx (

 CANNo:Int,

 CANID:Int,

 BytePos:Int,

 DataType:Int,

 DataLength:Int,

 const ref VarAddr,

 EventTime: Int,

 InhibitTime: Int,

 Paramset: Int,

) :Int;

The CanOpenAddPDOTx () function has the following parameters.

Parameter Description Value

CANNo CAN channel number 0 ... CANMAX

CANID CAN identifier 11-bit
CAN identifier 29-bit

0 ... 0x7FF
0 ... 0x1FFFFFFF

BytePos Starting position of data to be
sent

0 ... 7

DataType Data type of data to be sent 2 ... 13, 15 ... 27

DataLength Volume of data for the global
variable VarAddr

VarAddr Global variable into which the
value to be sent is entered

EventTime Time lag between two telegrams
(> Inhibit Time)

InhibitTime Minimum time lag between two
telegrams sent (< EventTime)

Paramset Parameter bit-coded

Introduction

Notes

Function Declaration

Function Parameters

90 Jetter AG

6 CANopen® STX API

The function transfers the following return values to the higher-level program.

Return Value

0 ok

-1 Error when checking parameters

-3 DataType is greater than DataLength

-4 insufficient memory

The value of the CANMAX parameter depends on the device. The following
table provides information on this point.

Device CANMAX

JVM-407 2

BTM 07 2

BTM 012 1 - 2

BTM 011 0

JCM-350 4

JCM-620 2

The CANID parameter is used to transfer the CAN identifier. The CAN
identifier is generated with a macro. The CAN identifier depends on the node
ID of the other communicating user and on whether it is a PDO1, PDO2,
PDO3 or PDO4 message.

Macro definitions:
#Define CANOPEN_PDO1_RX (NodeID) ((NodeID) + 0x180)
#Define CANOPEN_PDO2_RX (NodeID) ((NodeID) + 0x280)
#Define CANOPEN_PDO3_RX (NodeID) ((NodeID) + 0x380)
#Define CANOPEN_PDO4_RX (NodeID) ((NodeID) + 0x480)

#Define CANOPEN_PDO1_TX (NodeID) ((NodeID) + 0x200)
#Define CANOPEN_PDO2_TX (NodeID) ((NodeID) + 0x300)
#Define CANOPEN_PDO3_TX (NodeID) ((NodeID) + 0x400)
#Define CANOPEN_PDO4_TX (NodeID) ((NodeID) + 0x500)

Example for calling up the macro:
CANOPEN_PDO2_RX (64)
 The resulting CAN identifier is: 2C0h = 40h + 280h

Return Value

Parameter CANNo

Parameter CANID

Jetter AG 91

JCM-350-E03 CANopen® STX API

For CANopen® the following CAN identifier distribution is predefined. In this
case, the node number is embedded in the identifier.

11-bit identifier
(binary)

Identifier
(decimal)

Identifier
(hexadecimal

Function

000000000000 0 0 Network Management

000100000000 128 80h Synchronization

0001xxxxxxxx 129 - 255 81h - FFh Emergency

0011xxxxxxxx 385 - 511 181h - 1FFh PDO1 (tx)

0100xxxxxxxx 513 - 639 201h - 27Fh PDO1 (rx)

0101xxxxxxxx 641 - 767 281h - 2FFh PDO2 (tx)

0110xxxxxxxx 769 - 895 301h - 37Fh PDO2 (rx)

0111xxxxxxxx 897 - 1023 381h - 3FFh PDO3 (tx)

1000xxxxxxxx 1025 - 1151 401h -47Fh PDO3 (rx)

1001xxxxxxxx 1153 - 1279 481h - 4FFh PDO4 (tx)

1010xxxxxxxx 1281 - 1407 501h - 57Fh PDO4 (rx)

1011xxxxxxxx 1409 - 1535 581h - 5FFh Send SDO

1100xxxxxxxx 1537 - 1663 601h - 67Fh Receive SDO

1110xxxxxxxx 1793 - 1919 701h - 77Fh NMT Error Control

xxxxxxxx = Node number 1 - 127

The following data types can be received.

Byte types CANopen® format Jetter format

1 CANOPEN_INTEGER8
CANOPEN_UNSIGNED8

Byte

2 CANOPEN_INTEGER16
CANOPEN_UNSIGNED16

Word

3 CANOPEN_INTEGER24
CANOPEN_UNSIGNED24

-

4 CANOPEN_INTEGER32
CANOPEN_UNSIGNED32
CANOPEN_REAL

Int

5 CANOPEN_INTEGER40
CANOPEN_UNSIGNED40

-

6 CANOPEN_INTEGER48
CANOPEN_UNSIGNED48
CANOPEN_TIME_OF_DAY
CANOPEN_TIME_DIFFERENCE

-

Default CAN Identifier
Distribution

Parameter DataType

92 Jetter AG

6 CANopen® STX API

Byte types CANopen® format Jetter format

1 CANOPEN_INTEGER8
CANOPEN_UNSIGNED8

Byte

7 CANOPEN_INTEGER56
CANOPEN_UNSIGNED46

-

8 CANOPEN_INTEGER64
CANOPEN_UNSIGNED64
CANOPEN_REAL64

-

n CANOPEN_VISIBLE_STRING
CANOPEN_OCTET_STRING
CANOPEN_UNICODE_STRING
CANOPEN_DOMAIN

String

The following parameters can be transferred to the function. Several
parameters can be linked together using the Or function.

CANOPEN_ASYNCPDORTRONLY
Send asynchronous PDOs by receiving an RTR frame.

CANOPEN_ASYNCPDO
Send asynchronous PDO.

CANOPEN_PDOINVALID
PDO not sent.

CANOPEN_NORTR
PDO cannot be requested by RTR (Remote Request).

CANOPEN_29BIT
Use 29-bit identifier
Default: 11-bit identifier

Result := CanOpenAddPDOTx (

 0,

 842,

 0,

 CANOPEN_DWORD,

 sizeof(var_Data_1_of_Node_3),

 var_Data_1_of_Node_3,

 1000,

 100,

 CANOPEN_ASYNCPDO | CANOPEN_NORTR);

JCM-350-E03 sends process data to two CANopen® devices with the node ID
74 and 112. After running the program and for changes, the JCM-350-E03

Parameter Paramset

Using this Function

JetSym STX Program

Jetter AG 93

JCM-350-E03 CANopen® STX API

sends cyclic PDO telegrams every 3,000 ms (Event Time). As a maximum, the
PDO telegram is sent every 10 ms (Inhibit Time).

120 Ohm 120 Ohm

JVM-407

NodeID_Node_0 NodeID_Node_1NodeID_Node_2

JXM-IO-E02

CAN-Bus

CAN 0

JXM-IO-E09

#Include "CanOpen.stxp"

Const

 // CAN no.
 CAN_CONTROLLER_0 = 0;

 // Node ID Node_1
 NodeID_Node_0 = 10;

 // Node ID Node 4
 NodeID_Node_1 = 74;

 // Node ID Node 5
 NodeID_Node_2 = 112;

 // Event_Time in ms
 Event_Time = 3000;

 // Inhibit time in ms
 Inhibit_Time = 100;

End_Const;

Var

 Data_1_of_Node_1: Int;

 Data_2_of_Node_1: Int;

 Data_1_of_Node_2: Byte;

End_Var;

Task main autorun

Var

 SW_Version: String;

End_Var;

SW_Version := 'v4.3.0.2004';

94 Jetter AG

6 CANopen® STX API

// Initialization CAN 0
CanOpenInit(CAN_CONTROLLER_0, NodeID_Node_0, SW_Version);

// Send data per PDO
CanOpenAddPDOTx(CAN_CONTROLLER_0,
CANOPEN_PDO2_TX(NodeID_Node_1), 0, CANOPEN_DWORD,
sizeof(Data_1_of_Node_1), Data_1_of_Node_1 Event_Time,
Inhibit_Time, CANOPEN_ASYNCPDORTRONLY | CANOPEN_NORTR);

CanOpenAddPDOTx(CAN_CONTROLLER_0,
CANOPEN_PDO2_TX(NodeID_Node_1), 4, CANOPEN_DWORD,
sizeof(Data_2_of_Node_1), Data_2_of_Node_1, Event_Time,
Inhibit_Time, CANOPEN_ASYNCPDORTRONLY | CANOPEN_NORTR);

CanOpenAddPDOTx(CAN_CONTROLLER_0,
CANOPEN_PDO3_TX(NodeID_Node_2), 0, CANOPEN_BYTE,
sizeof(Data_1_of_Node_2), Data_1_of_Node_2, Event_Time,
Inhibit_Time, CANOPEN_ASYNCPDO | CANOPEN_NORTR);

// All devices on the CAN bus have the status of PREOPERATIONAL
// Set all devices on the CAN bus to OPERATIONAL status
CanOpenSetCommand(CAN_CONTROLLER_0,
CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES, CAN_CMD_NMT),
CAN_NMT_START);

//As from now, PDO telegrams will be transmitted.
// ...
// ...
// ...

End_Task;

Jetter AG 95

JCM-350-E03 CANopen® Objects

7 CANopen® Objects

This chapter covers the CANopen® objects implemented on the JCM-350-E03
and their functions, as well as the permanently mapped process data objects
(PDO).

The JCM-350-E03 consists of the controller JCM-350 and the I/O module
JXM-IO-E02 which are internally connected via CAN bus. The CAN bus is
brought out to allow communication with other CANopen® nodes. The default
node ID of the JXM-IO-E02 is 16, the default node ID of the JCM-350 is 127.
This way, both components within the JCM-350-E03 can be addresses
separately.

Due to design constraints the following restrictions/limitations apply to the
CANopen® interface of the JXM-IO-E02.

 SDO expedited transfer only supports 4 byte transfers. Any smaller data
element must be extended to 32 bit before the SDO transfer.

 SDO segmented transfer is only supported on certain objects. Most notably
the OS update feature makes use of segmented transfer, but also some
other objects that need to transfer strings implement SDO segmented
transfer for this purpose. Unless an object is documented to support
segmented transfers, assume that it does not.

 SDO block transfer is NOT implemented.
 PDOs are not user configurable.
 PDOs are transmitted only asynchronous on request unless otherwise

specified.
 Although emergency messages are transmitted to notify of detected faults,

the CANopen® emergency handling system is not fully implemented.
 The Error Register does not save its state in non volatile memory. After

each reset or power cycle, the error list is cleared.

Topic Page
CANopen® Object Dictionary for JCM-350-E03 .. 96
CANopen® Object Dictionary for JXM-IO-E02 ... 99
CANopen® PDO Specification ... 136

Introduction

JCM-350-E03 -
Configuration

Restrictions

Contents

96 Jetter AG

7 CANopen® Objects

7.1 CANopen® Object Dictionary for JCM-350-E03

This chapter describes the CANopen® objects implemented on the JCM-350
and their function.

The following objects are supported by the operating system for JCM-350:

Index
(hex)

Object Name Object
(Code)

Type see

1000 Device Type VAR Unsigned32 Page 97

1001 Error Register VAR Unsigned8 Page 97

1002 Manufacturer Status VAR Unsigned32 -

1003 Pre-defined Error Field ARRAY Unsigned32 Page 97

1008 Manufacturer Device Name VAR String Page 97

1009 Manufacturer Hardware Version VAR String Page 97

100A Manufacturer Software Version VAR String Page 97

100B Node ID VAR Unsigned32 Page 97

1017 Producer Heartbeat Time VAR Unsigned16 Page 97

1018 Identity RECORD Identity
(23h)

-

1200 Server 1 - SDO Parameter RECORD SDO
Parameter
(22h)

-

1201 Server 2 - SDO Parameter RECORD SDO
Parameter
(22h)

-

1203 Server 3 - SDO Parameter RECORD SDO
Parameter
(22h)

-

1203 Server 4 - SDO Parameter RECORD SDO
Parameter
(22h)

-

Topic Page
Supported CANopen® SDO Objects .. 97

Purpose of this Chapter

Supported Objects

Contents

Jetter AG 97

JCM-350-E03 CANopen® Objects

Supported CANopen® SDO Objects

The structure of the object "Device Type" is shown in the following table.

Index Sub-Index Default Description Attributes

0x1000 0 0x0000012D Device type ro (read only)

The structure of the object "Error Register" is shown in the following table.

Index Sub-Index Default Description Attributes

0x1001 0 0 Error Register ro (read only)

This object implements the CANopen® Error Register functionality.

Bit 0 = Generic error

None of the other bits are currently in use.

The structure of the object "Pre-Defined Error Field" is shown in the following
table.

Index Sub-Index Default Description Attributes

0x1003 0 0 Number of errors
entered in the Array's
Standard Error Field

rw (read &
write)

 1 0 Most recent error
0 indicates no error

ro (read only)

 2 ... 254 - Earlier Errors ro (read only)

This object shows a history list of errors that have been detected by the
JCM-350. The maximum length of the list is 254 errors. The list content is
deleted on restart.

Composition of the Standard Error Field
2-byte LSB: Error Code
2-byte MSB: Additional information

Device Type
(index 0x1000)

Error Register
(index 0x1001)

Pre-Defined Error Field
(index 0x1003)

98 Jetter AG

7 CANopen® Objects

The structure of the "Manufacturer Device Name Object" is shown in the
following table.

Index Sub-Index Default Description Attributes

0x1008 0 JCM-350-E03 Hardware name const

The structure of the "Manufacturer Hardware Version Object" is shown in the
following table.

Index Sub-Index Default Description Attributes

0x1009 0 OS version of the
device

const

The structure of the object "Manufacturer Software Version" is shown in the
following table.

Index Sub-Index Default Description Attributes

0x100A 0 Software version of the
application program
that runs on the
JCM-350-E03

const

The entry in this index is made via the parameter "SWVersion" of the STX
function CanOpenInit ().

The structure of the "Node ID Object" is shown in the following table.

Index Sub-Index Default Description Attributes

0x100B 0 Own Node ID ro (read only)

The structure of the "Producer Heartbeat Time Object" is shown in the
following table.

Index Sub-Index Default Description Attributes

0x1017 0 1,000 [ms] Heartbeat time rw (read &
write)

Manufacturer Device
Name (index 0x1008)

Manufacturer Hardware
Version Object
(Index 0x1009)

Manufacturer Software
Version Object
(Index 0x100A)

Node ID Object
(Index 0x100B)

Producer Heartbeat Time
Object (Index 0x1017)

Jetter AG 99

JCM-350-E03 CANopen® Objects

7.2 CANopen® Object Dictionary for JXM-IO-E02

This chapter describes the CANopen® objects implemented on the
JXM-IO-E02 and their function.

A summary of the objects covered in this document are given in the table
below. There are also a few more objects which are mandatory according to
the CANopen® specification which are not covered in this document:

Index
(hex)

Object Name Object
(Code)

Type see

1000 Device Type VAR Unsigned32 Page 101

1001 Error Register VAR Unsigned8 Page 101

1003 Pre-defined Error Field ARRAY Unsigned32 Page 101

100A Manufacturer Software Version VAR String Page 101

1017 Producer Heartbeat Time VAR Unsigned16 Page 101

1018 Identity RECORD Identity
(23h)

-

2000 Features ARRAY Unsigned32 Page 101

2100 Digital Inputs ARRAY Unsigned32 Page 103

2101 Universal I/O ARRAY Unsigned32 Page 105

2102 Tri-state Inputs ARRAY Unsigned32 Page 107

2103 Switch Feed Outputs ARRAY Unsigned32 Page 109

2200 -
2203

Analog Input ARRAY Unsigned32 Page 110

2210 Voltage Sense Analog Input ARRAY Unsigned32 Page 112

2211 Feed Currents ARRAY Unsigned32 Page 113

2300 Analog Output ARRAY Unsigned32 Page 114

2400 -
2402

PWM Output ARRAY Unsigned32 Page 116

2500 H-Bridge ARRAY Unsigned32 Page 120

2600,
2601

Frequency Input ARRAY Unsigned32 Page 122

4554 OS Update ARRAY Unsigned32 Page 124

4555 Electronic Datasheet ARRAY Unsigned32 Page 124

4556 System Parameters ARRAY Unsigned32 Page 125

4559 Detailed Software Version ARRAY Unsigned32 Page 133

5000 User EEPROM Access ARRAY Unsigned32 Page 134

Purpose of this Chapter

Supported Objects

100 Jetter AG

7 CANopen® Objects

Topic Page
Objects Ranging from Index 0x1000 through 0x2000 101
Digital Inputs Object (Index 0x2100) ... 103
Universal I/O Object (Index 0x2101) ... 105
Tri-State Inputs Object (Index 0x2102) ... 107
Switch Feed Output Object (Index 0x2103) .. 109
Analog Input Objects (Index 0x2200 through 0x2203) 110
Voltage Sense Analog Input Object (Index 0x2210) 112
Feed Currents Object (Index 0x2211) ... 113
Analog Output Object (Index 0x2300) .. 114
Objects "PWM Output" (Index 0x2400 through 0x2402) 116
H-Bridge Object (Index 0x2500) ... 120
Frequency Input Objects (Index 0x2600 through 0x2601) 122
OS Update (Index 0x4554) and EDS Objects (Index 0x4555) 124
Object "System Parameters" (Index 0x4556) ... 125
Detailed Software Version Object (Index 0x4559) 133
User EEPROM Access Object (Index 0x5000) ... 134

Contents

Jetter AG 101

JCM-350-E03 CANopen® Objects

Objects Ranging from Index 0x1000 through 0x2000

The structure of the object "Device Type" is shown in the following table.

Index Sub-Index Default Description Attributes

0x1000 0 0x00030191 Type of device ro (read only)

The structure of the object "Error Register" is shown in the following table.

Index Sub-Index Default Description Attributes

0x1001 0 0 Error Register ro (read only)

This object implements the CANopen® Error Register functionality.

Bit 0 = Generic error
Bit 1 = Current Errors
Bit 2 = Voltage Errors
Bit 3 = Temperature Errors
Bit 4 = Communication error
Bit 5 = Parameter mismatch
Bit 7 = Manufacturer-specific error, for example, hardware error

None of the other bits are currently in use.

The structure of the object "Pre-defined Error Field" is shown in the following
table.

Index Sub-Index Default Description Attributes

0x1003 0 0 Number of errors
entered in the Array's
Standard Error Field

rw (read &
write)

 1 0 Most recent error
0 indicates no error

ro (read only)

 2 ... 64 - Earlier Errors ro

This object shows a history list of errors that have been detected by the
JXM-IO-E02. The maximum length of the list is 64 errors. The list content is
deleted on restart.
By writing the value 0 to sub-index 0, the list can be cleared, as per the
CANopen® specification.

Composition of the Standard Error Field
2-byte LSB: Error Code
2-byte MSB: Additional information

Device Type
(Index 0x1000)

Error Register
(Index 0x1001)

Pre-defined Error Field
(Index 0x1003)

102 Jetter AG

7 CANopen® Objects

The structure of the object "Manufacturer Software Version" is shown in the
following table.

Index Sub-Index Default Description Attributes

0x100A 0 Software version const

Use only the STX function CanOpenUploadSDO () to determine the version of
the software running in the JXM-IO-E02.
The version string is at least 9 characters long and is of the format "2.00.0.00".
The first digit is the major revision followed by the minor revision and the
branch and beta indicators (which will usually be zero). This value is read-only
(ro).

The structure of the "Producer Heartbeat Time Object" is shown in the
following table.

Index Sub-Index Default Description Attributes

0x1017 0 1,000 [ms] Heartbeat time rw (read &
write)

The legal range for values is 250 ... 65,535.

The structure of the object "Features" is shown in the following table.

Index Sub-Index Default Description Attributes

0x2000 0 Features Object ro (read only)

The "Features" object is provided for compatibility reasons.

Manufacturer Software
Version (Index 0x100A)

Producer Heartbeat Time
(Index 0x1017)

Features Object
(Index 0x2000)

Jetter AG 103

JCM-350-E03 CANopen® Objects

Digital Inputs Object (Index 0x2100)

The structure of the object "Digital Inputs" is shown in the following table. This
object is for configuring the digital inputs IN 1 through IN 5 and for obtaining
their states.

Index Sub-Index Default Description Attributes

0x2100 0 6 Number of entries ro (read only)

 1 0 Not used

 2 0 Active-high / Active-low
Selection

rw (read &
write)

 3 1 Not used

 4 0 Process value 0: Input
States (2 bits/channel)

ro

 5 0 Process value 1: Input
States (1 bit/channel)

ro

 6 5 Parameter 0: Number
of Inputs

ro

The function of sub-index 2 is described below:

 Sub-Index 2 is used to set inputs IN 1 through IN 5 to either active-high
(internal pull down resistor) or active-low (internal pull up resistor) mode.

 A bit value of "0" selects active-low (input state "OFF") and a bit value of
"1" selects active-high (input state "ON"). The value can also be read back
to confirm.

 Sub-index 2 uses the one bit per channel data structure described below:
 Bit 0: Digital input IN 1
 Bit 1: Digital input IN 2
 Bit 2: Digital input IN 3
 Bit 3: Digital input IN 4
 Bit 4: Digital input IN 5

The function of sub-index 4 is described below:

 Sub-index 4 can be read to obtain the latest measured states of IN 1
through IN 5.

 Sub-index 4 returns the data in a two bit per channel format (provided for
backwards compatibility).

 Sub-index 4 uses the two bit per channel data structure described below:
 Bit 1, 0: Digital input IN 1
 Bit 3, 2: Digital input IN 2
 Bit 5, 4: Digital input IN 3
 Bit 7, 6: Digital input IN 4
 Bit 9, 8: Digital input IN 5

Digital Inputs
(Index 0x2100)

Sub-Index 2

Sub-Index 4

104 Jetter AG

7 CANopen® Objects

 In the two bit per channel configuration, the following data values are
possible:
 0b00: Not used
 0b01: Input state OFF
 0b10: Input state ON
 0b11: Not used

The function of sub-index 5 is described below:

 Sub-index 5 can be read to obtain the latest measured states of IN 1
through IN 5.

 Sub-index 5 returns the data in the one bit per channel data structure
described below:

 Sub-index 5 uses the one bit per channel data structure described below:
 Bit 0: Digital input IN 1
 Bit 1: Digital input IN 2
 Bit 2: Digital input IN 3
 Bit 3: Digital input IN 4
 Bit 4: Digital input IN 5

 In the one bit per channel configuration, the following data values are
possible:
 0: Input state OFF
 1: Input state ON

Sub-index 6 can be read to obtain the number of available inputs. In this case,
five inputs are available.

Sub-Index 5

Sub-Index 6

Jetter AG 105

JCM-350-E03 CANopen® Objects

Universal I/O Object (Index 0x2101)

A universal I/O can be used as digital input or digital output. Therefore,
universal I/Os must be configured correspondingly.

 Any universal I/O can be used as digital input or output.
 If a universal I/O is used as digital input, the related digital output must be

disabled (OFF).

The structure of the object "Universal I/O" is shown in the following table. This
object is for configuring universal I/Os. It allows either to read out the state of
the digital inputs IN 6 through IN 21, or to set the digital outputs OUT 1
through OUT 16.

Index Sub-Index Default Description Attributes

0x2101 0 6 Number of entries ro (read only)

 1 0 Enabling channel rw (read &
write)

 2 0 Disabling channel rw

 3 4 Not used

 4 0 Process value 0:
Reading back output
states / reading out
input states

rw

 5 0 Process value 1:
Output States

rw

 6 16 Parameter 0: Number
of inputs/outputs

ro

The function of sub-index 1 is described below:

 Sub-index 1 can be used to enable individual channels.
 To enable a channel enter its number (1 through 16) into sub-index 1.
 Reading out sub-index 1 will always return the value "0".

The function of sub-index 2 is described below:

 Sub-index 2 can be used to disable individual channels.
 To disable a channel enter its number (1 through 16) into sub-index 2.
 Reading out sub-index 2 will always return the value "0".

The function of sub-index 4 is described below:

 Sub-index 4 can be read to obtain the latest measured states of IN 6
through IN 21.

 Or it can be read to obtain the states of outputs OUT 1 through OUT 15.
 In sub-index 4 each bit is assigned to a channel:
 Bit 0: Channel 1 (IN 6 or OUT 1)

Universal I/O

Universal I/O
(Index 0x2101)

Sub-Index 1

Sub-Index 2

Sub-Index 4

106 Jetter AG

7 CANopen® Objects

 Bit 1: Channel 2 (IN 7 or OUT 2)
 ...
 Bit 14: Channel 15 (IN 20 or OUT 15)
 Bit 15: Channel 16 (IN 21 or OUT 16)

 If a universal I/O is used as digital input, the related digital output must be
disabled (OFF).

The function of sub-index 5 is described below:

 Sub-index 5 can be used to set or reset the digital outputs OUT 1 through
OUT 16.

 In sub-index 5 each bit is assigned to a channel:
 Bit 0: Channel 1 (OUT 1)
 Bit 1: Channel 2 (OUT 2)
 ...
 Bit 14: Channel 15 (OUT 15)
 Bit 15: Channel 16 (OUT 16)

 Depending on the bit value, the output state is as follows:
 0: Output state is OFF
 1: Output state is ON

Sub-index 6 can be read to obtain the number of available inputs/outputs. In
this case, 16 inputs/outputs are available.

Sub-Index 5

Sub-Index 6

Jetter AG 107

JCM-350-E03 CANopen® Objects

Tri-State Inputs Object (Index 0x2102)

Tri-state inputs are generally used for obtaining the node ID or changing the
default node ID (device coding). However, in applications where device coding
is not required, these inputs can be freely used as general purpose digital
inputs. This may be the case if only one JCM-350-E03 or JXM-IO-E02 is
connected to the CAN bus. The System Parameters object (index 0x4556,
sub-index 38) allows disabling the "Tristate Coding Enable" flag by writing "0"
to it.

The structure of the object "Tri-State Inputs" is shown in the following table.
Read this object to obtain the states of the tri-state inputs. The object
"Tri-State Inputs" is read-only.

Index Sub-Index Default Description Attributes

0x2102 0 6 Number of entries ro (read only)

 1 0 Not used

 2 0 Not used

 3 1 Not used

 4 0 Process value 0: Input
states

ro

 5 0 Process value 1:
Unused

 6 5 Parameter 0: Number
of Inputs

ro

The function of sub-index 4 is described below:

 Sub-index 4 can be read to obtain the latest measured states of the two
tri-state inputs.

 Because each input can be in one of three different input states,
sub-index 4 uses the two bit per channel data structure described below:
 Bit 1, 0: Tri-state input 1 (pin 67)
 Bit 3, 2: Tri-state input 2 (pin 68)

 For each input, the following values can be returned:
 0b00: Tri-state (not connected)
 0b01: Input state OFF
 0b10: Input state ON
 0b11: Not used

Sub-index 6 can be read to obtain the number of available inputs. In this case,
two inputs are available.

Purpose of Tri-State
Inputs

Tri-State Inputs
(Index 0x2102)

Sub-Index 4

Sub-Index 6

108 Jetter AG

7 CANopen® Objects

The following table shows the effective node ID given that the default base ID
of 0x10 is used:

State of pin 67 State of pin 68 CANopen® Node ID

Not Connected Not Connected 0x10

Not Connected OFF 0x11

Not Connected ON 0x12

OFF Not Connected 0x13

OFF OFF 0x14

OFF ON 0x15

ON Not Connected 0x16

ON OFF 0x17

ON ON 0x18

The node ID is stored in the internal EEPROM and is read during the boot
process. For special applications it is possible to change the value stored in
the EEPROM by using the object "System Parameters" (index 0x4556,
sub-index 4).

Calculating the Node ID
Based on Tri-State Input
State

Changing the Default
Node ID 0x10

Jetter AG 109

JCM-350-E03 CANopen® Objects

Switch Feed Output Object (Index 0x2103)

The structure of the object "Switch Feed Output" is shown in the following
table. This object is for enabling or disabling the two switch feed outputs.

Index Sub-Index Default Description Attributes

0x2103 0 6 Number of entries ro (read only)

 1 0 Not used

 2 0 Not used

 3 4 Not used

 4 0 Process value 0:
Unused

 5 0 Process value 1:
Output state

rw (read &
write)

 6 2 Parameter 0: Number
of Outputs

ro

The function of sub-index 5 is described below:

 Write to Sub-Index 5 to set the output state (enable/disable) of each
channel.

 Sub-index 5 uses the one bit per channel data structure described below:
 Bit 0: Switch feed output 1
 Bit 1: Switch feed output 2

 For each channel the following values can be entered:
 0: Disable the switch feed output
 1: Enable the active high switch feed output

Sub-index 6 can be read to obtain the number of available switch feed
outputs.

Switch Feed Outputs
(Index 0x2103)

Sub-Index 5

Sub-Index 6

110 Jetter AG

7 CANopen® Objects

Analog Input Objects (Index 0x2200 through 0x2203)

The structure of the objects "Analog Input" is shown in the following table. This
object is for configuring the analog inputs 1 through 4. The analog input signal
can be read out as process value.

Index Sub-Index Default Description Attributes

0x2200 -
0x2203

0 7 Number of entries ro (read only)

 1 0 Not used

 2 0 Functional mode rw (read &
write)

 3 0x30 Not used

 4 0 Process value 0:
Analog input signal

ro

 5 0 Process value 1:
Analog input signal
[mV]

ro

 6 8.191 Parameter 0: Max.
output value

ro

 7 40.000 Parameter 1: Max.
output value

ro

The function of sub-index 2 is described below:

 Sub-index 2 can be used to select between two modes of operation. One
of these modes supports Automatic Gain Control (AGC). The other mode
of operation supports either voltage measurement or current measurement.

 To select the functional mode, set or reset bit 0 and bit 4:
 Bit 0 = 0: AGC disabled
 Bit 0 = 1: AGC enabled
 Bit 4 = 0: Voltage measurement
 Bit 4 = 1: Current measurement

 With AGC enabled, the analog input will be able to measure input signals in
the range of 0 ... 40 V.
With AGC disabled, the analog input will be able to measure input signals
in the range of 0 ... 5 V.

 With current measurement enabled, the analog input can be used for 0 or 4
... 20 mA current signals.
Effectively this mode changes the analog input’s impedance to 240 Ω. 20
mA generates a 4.8 V signal, 4 mA generates a 960 mV signal, and 0 mA
results in a 0 V input.

 To allow for backwards compatibility, writing a value of 0x81 to Sub-Index 2
will disable the AGC mode. The value of 0x90 will disable the current input
mode to enable voltage measurement.

Analog Input (Index
0x2200 through 0x2203)

Sub-Index 2

Jetter AG 111

JCM-350-E03 CANopen® Objects

The function of sub-index 4 is described below:

 Sub-index 4 can be read to obtain the value of the latest measured analog
input signal.

 With AGC enabled, the measured value will range between 0 ... 8,191.
 With AGC disabled, the measured value will range between 0 ... 1,023.

The function of sub-index 5 is described below:

 Sub-index 5 can be read to obtain the value of the latest measured analog
input signal, too.

 Sub-index 5 also reports the measured analog signal, but the reported
value is in millivolt (mV) units.

 With AGC enabled, the measured value will range between 0 ... 40,000.
 With AGC disabled, the measured value will range between 0 ... 5,000.

The function of sub-index 6 is described below:

 Sub-index 6 can be read to obtain the maximum value that can be output
via Sub-Index 4.

The function of sub-index 7 is described below:

 Sub-index 7 can be read to obtain the maximum value that can be output
via Sub-Index 5.

Sub-Index 4

Sub-Index 5

Sub-Index 6

Sub-Index 7

112 Jetter AG

7 CANopen® Objects

Voltage Sense Analog Input Object (Index 0x2210)

The structure of the object "Voltage Sense Analog Input" is shown in the
following table. This read-only object returns as process value the measured
state of the three power feeds.

Index Sub-Index Default Description Attributes

0x2210 0 6 Number of entries ro (read only)

 1 0 Not used

 2 0 Not used

 3 0 Not used

 4 0 Process value 0:
Standard Feed Voltage
[mV]

ro

 5 0 Process value 1:
Ignition Feed Voltage
[mV]

ro

 6 0 Process value 2:
Safety Feed ON/OFF

ro

The function of sub-index 4 is described below:

 Sub-index 4 reports the measured voltage of STANDARD FEED in
millivolts.

The function of sub-index 5 is described below:

 Sub-index 5 reports the measured voltage of IGNITION FEED in millivolts.

The function of sub-index 6 is described below:

 Sub-Index 6 will simply report whether the SAFETY FEED (after the safety
switch/relay) is enabled or disabled:
 0: SAFETY FEED disabled
 1: SAFETY FEED enabled

 This object does not have an analog measurement.

Voltage Sense Analog
Input (Index 0x2210)

Sub-Index 4

Sub-Index 5

Sub-Index 6

Jetter AG 113

JCM-350-E03 CANopen® Objects

Feed Currents Object (Index 0x2211)

The structure of the object "Feed Currents" is shown in the following table.
This read-only object provides the latest measurements of the Standard Feed
and Safety Feed currents.

Index Sub-Index Default Description Attributes

0x2211 0 2 Number of entries ro (read only)

 1 0 STANDARD FEED
current measurement

ro

 2 0 SAFETY FEED current
measurement

ro

The function of sub-index 1 is described below:

 Sub-index 1 reports the measured current of STANDARD FEED in
milliamp.

The function of sub-index 2 is described below:

 Sub-index 2 reports the measured current of SAFETY FEED in milliamp.

Feed Currents
(Index 0x2211)

Sub-Index 1

Sub-Index 2

114 Jetter AG

7 CANopen® Objects

Analog Output Object (Index 0x2300)

The structure of the object "Analog Output" is shown in the following table.
This object is for configuring the analog output. Also, the analog output
voltage/current can be set as process value.

Index Sub-Index Default Description Attributes

0x2300 0 5 Number of entries ro (read only)

 1 0 Not used

 2 0 Functional Mode rw (read &
write)

 3 0x05 Not used

 4 0 Process value 0:
Output Voltage

rw

 5 0 Process value 1:
Output Current

rw

The function of sub-index 2 is described below:

 Sub-index 2 can be used to select between the following modes of
operation.
 0x00: Disabled: No output generated
 0x01: Constant output current
 0x02: Constant output current (ratiometric value specified)
 0x03: Constant output current (absolute value specified)

 To select one of the above modes, write the corresponding value to
sub-index 2.

 When reading sub-index 2, the currently set mode is returned.
The following information can be obtained:
 0x00: Disabled: No output generated
 0x01: Constant output current
 0x02: Constant output current (ratiometric value specified)
 0x03: Constant output current (absolute value specified)
 0x08: Short-circuit to ground fault has been detected

The function of sub-index 4 is described below:

 Sub-index 4 is used to enter the analog output voltage.
 With mode "Constant output voltage (ratiometric value specified)" enabled,

the value will range between 0 ... 1,023.
This value range relates to 0 ... 100 % of the input voltage.

 With mode "Constant output voltage (absolute value specified)" enabled,
the value specifies the output voltage in mV units.
If a value larger than this maximum is specified, the output will clip.

 The analog output’s maximum output voltage will always be slightly less
than STANDARD FEED voltage.

Analog Output
(Index 0x2300)

Sub-Index 2

Sub-Index 4

Jetter AG 115

JCM-350-E03 CANopen® Objects

 Sub-index 4 can be read to obtain the recently measured output voltage in
mV units.

The function of sub-index 5 is described below:

 Sub-index 5 is used to set the analog output current.
 With mode "Constant output current" enabled, the value specifies the

output current in 10 µA units.
 With mode "Constant output voltage (ratiometric/absolute value specified)"

enabled, the value specifies the desired maximum output current.
If the specified output voltage causes the output current to exceed this
value, the output is clipped to control the output current.

 The analog output’s maximum output voltage will always be slightly less
than STANDARD FEED voltage.

 Sub-index 5 can be read to obtain the recently measured output current in
10 µA units.

Sub-Index 5

116 Jetter AG

7 CANopen® Objects

Objects "PWM Output" (Index 0x2400 through 0x2402)

The structure of the objects "PWM Output" is shown in the following table.
These objects are for configuring the three PWM outputs. Also, the controlled
output current or a PWM duty cycle can be set as process value.

Index Sub-Index Default Description Attributes

0x2300 0 11 Number of entries ro (read only)

 1 0 Not used

 2 0 Functional mode rw (read &
write)

 3 0 Not used

 4 0 Process value 0:
Output current

rw

 5 0 Process value 1: Duty
cycle

rw

 6 2.500 Parameter 0: Max.
value

ro

 7 1.023 Parameter 1: Max.
value

ro

 8 0 Predictor parameter rw

 9 0 Proportional parameter rw

 10 0 Integrator parameter rw

 11 0 PWM predictor
auto-tune function

rw

The function of sub-index 2 is described below:

 Sub-index 2 can be used to select between the following modes of
operation.
 0x01: Current-controlled PWM output
 0x02: PWM output with static duty cycle

 To select one of the above modes, write the corresponding value to
sub-index 2.

 In static PWM duty-cycle output mode the output current will not be
controlled.
However, it will be monitored. If the measured current exceeds a user set
threshold, the PWM output will be disabled and a fault will be reported by
the JXM-IO-E02. The maximum value is to be entered into sub-index 6.

The function of sub-index 4 is described below:

 In current-controlled PWM output mode, write to sub-index 4 to set the
output current.

 The value is in the range of 0 ... 2499 mA.
 Sub-index 4 can be read to obtain the recently measured output current in

mA units.

PWM Output 1 - 3
(Index 0x2400 through
0x2402)

Sub-Index 2

Sub-Index 4

Jetter AG 117

JCM-350-E03 CANopen® Objects

The function of sub-index 5 is described below:

 Sub-index 5 is used to set the PWM duty cycle.
 The value is in the range of 0 ... 2499 mA. This value corresponds to a duty

cycle between 0 ... 100 %.
 Use the mode "PWM Output with Static Duty Cycle" in order to use the

PWM output as a digital output.
 Reading sub-index 5 returns the most recent PWM duty cycle as a value in

the range 0 ... 1,023.

The function of sub-index 6 is described below:

 Sub-index 6 can be read to obtain the maximum value that can be input via
Sub-Index 4.

The function of sub-index 7 is described below:

 Sub-index 7 can be read to obtain the maximum value that can be input via
Sub-Index 5.

The function of sub-index 8 is described below:

 In "Current-Controlled PWM Output" mode sub-index 8 is used to set the
Predictor parameters for the current control algorithm.

 This parameter is an unsigned 16-bit word where the least significant byte
is the divisor and the most significant byte is the multiplier.

 The least significant byte of this parameter is not allowed to be zero
because it is a divisor.

The function of sub-index 9 is described below:

 In "Current-Controlled PWM Output" mode sub-index 9 is used to set the
Proportional parameters for the current control algorithm.

 This parameter is an unsigned 16-bit word where the least significant byte
is the divisor and the most significant byte is the multiplier.

 The least significant byte of this parameter is not allowed to be zero
because it is a divisor.

The function of sub-index 10 is described below:

 In "Current-Controlled PWM Output" mode sub-index 10 is used to set the
Integrator parameters for the current control algorithm.

 This parameter is an unsigned 16-bit word where the least significant byte
is the divisor and the most significant byte is the multiplier.

 The least significant byte of this parameter is not allowed to be zero
because it is a divisor.

Sub-Index 5

Sub-Index 6

Sub-Index 7

Sub-Index 8

Sub-Index 9

Sub-Index 10

118 Jetter AG

7 CANopen® Objects

In "Current-Controlled PWM Output" mode the PWM duty cycle is controlled
using the above three parameters in the following formula:

Where:

 Premul and Prediv are the Predictor multiplication and division factors
(sub-index 8),

 Promul and Prodiv are the Proportional multiplication and division factors
(sub-index 9),

 Intmul and Intdiv are the Integrator multiplication and division factors
(sub-index 10),

 CurrentDemand is the user input in milliamp,
 Error is the difference between the measured and commanded output

current (also in milliamp).
 Integrated Error is the integral of the error signal.

When a new output current is requested, the "Error" and "Integrated Error"
terms are zero. The output duty cycle is therefore calculated based on the
user input and the Predictor parameters. To ensure that this first output level is
accurate, the predictor parameter must be set for the load that it will be
driving.

After the initial duty cycle calculation, the PWM algorithm uses the difference
between the measured output current and the current demand to adjust the
PWM duty cycle. The proportional and integrator parameters influence how
fast the algorithm responds to a difference between the measured and
demanded current. These two parameters also determine how much
overshoot there will be.

All three parameters are highly dependent on the load that is being driven.
Therefore it is the user’s responsibility to tune these parameters for their own
application.

If the PWM is already driving an output at a certain current level and a new
output current is requested, the algorithm will not use the predictor parameters
but instead it will use the current output current to calculate the new duty
cycle. This method reduces the sensitivity to incorrect predictor parameters,
but does not remove it – these parameters will still affect the normal operation.

The function of sub-index 11 is described below:

 Sub-index 11 offers an automatic tuning of the Predictor parameter.
 To activate this function, write a 16-bit current value to sub-index 11.
 The system will then attempt to drive this current on the PWM and

calculate what the predictor parameters must be in order to accurately
guess the PWM duty cycle when a new current is requested.

 While this function is still running, the Predictor Parameter in sub-index 8
will read as "0".

Current Control

Calculating the PWM
Pulse Control Factor

Sub-Index 11

Jetter AG 119

JCM-350-E03 CANopen® Objects

 As soon as the function completes (this may take up to 10 seconds, but is
usually faster), the calculated Predictor parameters are available for
reading from sub-index 8.
The PWM algorithm will also use these parameters immediately.

 However, the newly calculated parameters will not be written to non-volatile
memory. When the JXM-IO-E02 is reset or power cycled, these parameters
will fall back to the previous parameters stored in the non-volatile memory.
It is up to the user to first test the new parameters, read them from
sub-index 8, and then write it to the System Parameters for permanent
storage.

The function "No Load Detection" is described below:

 No load detection can be activated for each PWM channel individually.
 When "Current Control" mode is selected, no load will be detected if the

duty cycle reaches maximum and the load current remains below the
specified threshold.

 In the "Static PWM Duty Cycle Output" mode, no load is detected
whenever the duty cycle is non-zero and the load current is below the
threshold.

 The no-load threshold is set in object "System Parameter" (index 0x4556,
sub-index 40).

No Load Detection

120 Jetter AG

7 CANopen® Objects

H-Bridge Object (Index 0x2500)

The structure of the object "H-Bridge" is shown in the following table. This
object is for configuring the H-Bridge. Also, this object can be used to read the
output states. It returns the PWM duty cycle when the H-Bridge is in a
PWM-controlled mode.

Index Sub-Index Default Description Attributes

0x2500 0 7 Number of entries ro (read only)

 1 0 Not used

 2 0 Functional mode rw (read &
write)

 3 0 Not used

 4 0 Process value 0:
Current measured

ro

 5 0 Process value 1:
Output states / duty
cycle

rw

 6 1.023 Parameter 0: Max.
output value

ro

 7 7 Parameter 1: Bridge
configuration

ro

The function of sub-index 2 is described below:

 Sub-index 2 can be used to select between the following modes of
operation.
 0x01: The two output channels (pins 69 and 70) are used as

independent digital outputs.
 0x02: The output connected to pin 69 is a PWM-controlled high-side

output, whereas the output connected to pin 70 is always low.
 0x04: The output connected to pin 70 is a PWM-controlled high-side

output, whereas the output connected to pin 69 is always low.
 To select one of the above modes, write the corresponding value to

sub-index 2.

The function of sub-index 4 is described below:

 Sub-index 4 can be read to obtain the recently measured current in mA
units.

 Note that this measurement is not available when the H-Bridge outputs are
used as independent digital outputs.

H-Bridge (Index 0x2500)

Sub-Index 2

Sub-Index 4

Jetter AG 121

JCM-350-E03 CANopen® Objects

The function of sub-index 5 is described below:

 When the H-Bridge outputs are used as two independent digital outputs,
the least significant byte sets the output state:
 Bit 1, 0: Pin 69 is set as output
 Bit 5, 4: Pin 70 is set as output

 In the configuration as two independent digital outputs, the following data
values are possible:
 0b00: Tri-state output
 0b01: Output state is OFF
 0b10: Output state is ON

 In PWM-controlled mode, a value in the range of 0 ... 1023 sets the PWM
duty cycle.

 In PWM-controlled mode, sub-index 5 is used to set the PWM duty cycle.

The function of sub-index 6 is described below:

 Sub-index 6 can be read to obtain the maximum value for the duty cycle
that can be input via Sub-Index 5.

Sub-Index 5

Sub-Index 6

122 Jetter AG

7 CANopen® Objects

Frequency Input Objects (Index 0x2600 through 0x2601)

The structure of the objects "Frequency Input" is shown in the following table.
This object is for configuring input pins 54 and 55 as frequency inputs or as
simple digital inputs. In frequency input mode, the period length of the
incoming signal is measured.

Index Sub-Index Default Description Attributes

0x2600 -
0x2601

0 7 Number of entries ro (read only)

 1 0 Not used

 2 0 Functional mode rw (read &
write)

 3 1 Not used

 4 0 Process value 0:
Period length [ns]

ro

 5 0 Process value 1:
Digital input state

ro

 6 0xFFFFFFFF Parameter 0:
Frequency maximum
value

ro

 7 0 Pulse Count ro

The function of sub-index 2 is described below:

 The functional mode is selected in sub-index 2 by entering the following
values:
 0: Frequency input mode (no pull-up/pull-down resistor)
 1: Digital input (active-low)
 2: Digital input (active-high)
 3: Frequency input (with pull-up resistor)
 4: Frequency input (with pull-down resistor)

 Reading sub-index 2 returns the current functional mode.

The function of sub-index 4 is described below:

 In frequency input mode, sub-index 4 can be read to obtain the value of the
latest measured period length.

 The returned value is a 32-bit unsigned integer specifying the period length
of the signal in nanoseconds.

 This result is updated every 17 - 18 cycles of the external signal.

Frequency Inputs
(Index 0x2600 through
0x2601)

Sub-Index 2

Sub-Index 4

Jetter AG 123

JCM-350-E03 CANopen® Objects

The function of sub-index 5 is described below:

 In digital input mode, sub-index 5 can be read to obtain the current state of
input pin 54 or 55.

 The following values are possible:
 0: Input state OFF
 1: Input state ON

The function of sub-index 7 is described below:

 The two Frequency Input circuits will always count pulses on these inputs
regardless of their input mode. The pulse period must not be less than 1
millisecond and the pulse must be active for at least 1 millisecond each
period in order to be counted.

 The Pulse Count always starts at zero at power on/reset. The value is also
reset to zero every time that it is read via this SDO.

 The returned value is a 32-bit unsigned integer.

Sub-Index 5

Sub-Index 7

124 Jetter AG

7 CANopen® Objects

OS Update (Index 0x4554) and EDS Objects (Index 0x4555)

This object is used for OS updates. Do not access this object. Contact
Jetter AG if you intend to update the operation system.

The Electronic Data Sheet (EDS) is provided for production and support
purposes. It is user readable.

Index Sub-Index Default Description Attributes

0x4555 0 15 Number of entries ro (read only)

 1 0 Status ro

 2 0 Command ro

 3 Page 0: Version ro

 4 Page 0: Module code ro

 5 Page 0: Module name
(string)

ro

 6 Page 0: PCB revision ro

 7 Page 0: PCB options ro

 8 Page 1: Revision ro

 9 Page 1: Module serial
number (string)

ro

 10 Page 1: Production date:
Day

ro

 11 Page 1: Production date:
Month

ro

 12 Page 1: Production date:
Year

ro

 13 Page 1: Test device number ro

 14 Page 1: Test device revision ro

 15 Page 0: Minimum OS
version

ro

OS Update
(Index 0x4554)

Electronic Data Sheet
(Index 0x4555)

Jetter AG 125

JCM-350-E03 CANopen® Objects

Object "System Parameters" (Index 0x4556)

Use the object "System Parameters" to permanently change the parameters
mentioned below. Any changes made to these parameters are stored in
non-volatile memory and are therefore recovered when the JXM-IO-E02 is
next powered up.
Note that some of these settings can also be set using other SDO objects.
However, the System Parameters object is the only way to make these
changes permanently.

Index Sub-Index Default Description Attributes

0x4556 0 51 Number of entries ro (read only)

 1 1 Version (Read-only) ro

 2 1 CAN Termination rw (read &
write)

 3 1 CAN Baud rate
0 = 125 kBaud, 1 = 250
kBaud, 2 = 500 kBaud, 3 = 1
MBaud

rw

 4 0x10 CANopen® Node ID rw

 5 1.000 CANopen® Heartbeat time
period

rw

 6 0x0A16 PWM 1: Predictor parameter rw

 7 0x0302 PWM 1: Proportional
parameter

rw

 8 0x0101 PWM 1: Integrator
parameter

rw

 9 0x0A16 PWM 2: Predictor parameter rw

 10 0x0302 PWM 2: Proportional
parameter

rw

 11 0x0101 PWM 2: Integrator
parameter

rw

 12 0x0A16 PWM 3: Predictor parameter rw

 13 0x0302 PWM 3: Proportional
parameter

rw

 14 0x0101 PWM 3: Integrator
parameter

rw

 15 0 Analog input # 1: Mode
selection

rw

 16 0 Analog input # 2: Mode
selection

rw

 17 0 Analog input # 3: Mode
selection

rw

 18 0 Analog input # 4: Mode
selection

rw

System Parameters
(Index 0x4556)

126 Jetter AG

7 CANopen® Objects

Index Sub-Index Default Description Attributes

 19 25 Digital output # 1
(STANDARD): Current limit

rw

 20 25 Digital output # 2
(STANDARD): Current limit

rw

 21 25 Digital output # 3
(STANDARD): Current limit

rw

 22 25 Digital output # 4
(STANDARD): Current limit

rw

 23 25 Digital output # 5
(STANDARD): Current limit

rw

 24 25 Digital output # 6
(STANDARD): Current limit

rw

 25 25 Digital output # 7
(STANDARD): Current limit

rw

 26 25 Digital output # 8
(STANDARD): Current limit

rw

 27 25 Digital output # 9 (SAFETY):
Current limit

rw

 28 25 Digital output # 10
(SAFETY): Current limit

rw

 29 25 Digital output # 11
(SAFETY): Current limit

rw

 30 25 Digital output # 12
(SAFETY): Current limit

rw

 31 25 Digital output # 13
(SAFETY): Current limit

rw

 32 25 Digital output # 14
(SAFETY): Current limit

rw

 33 50 Digital output # 15
(SAFETY): Current limit

rw

 34 50 Digital output # 16
(SAFETY): Current limit

rw

 35 0x01 PWM output # 1: Functional
mode

rw

 36 0x01 PWM output # 2: Functional
mode

rw

 37 0x01 PWM output # 3: Functional
mode

rw

 38 1 Tri-state coding enable rw

 39 100 Digital output: No-load
threshold

rw

 40 100 PWM output: No-load
threshold

rw

 41 0 Frequency input # 1:
Functional mode

rw

Jetter AG 127

JCM-350-E03 CANopen® Objects

Index Sub-Index Default Description Attributes

 42 0 Frequency input # 2:
Functional mode

rw

 43 2.500 H-Bridge: Current limit rw

 44 100 H-Bridge: No-load threshold rw

 45 2.499 PWM output: Current limit rw

 46 0 Digital inputs IN 1 through IN
5: Active-high / Active-low
selection

rw

 47 0 Switch feed output: Initial
output state

rw

 48 0 Digital outputs: No-load
detection enable

rw

 49 0 PWM: No-load detection
enable

rw

 50 0 H-Bridge: No-load detection
enable

rw

 51 0 Event-triggered transmission
of a PDO message

rw

 When reading this parameter, the version number of the System
Parameters is returned.

 When writing to this sub-index, a “Reset to Factory Defaults” option is
enabled. To enable this function proceed as follows:
 1. Write 0x01042006.
 2. Write 0xC1EA5AFE.
 3. Wait a few seconds.
 4. Power cycle the JXM-IO-E02.

When writing to the System Parameters, make sure that a delay is
implemented after the SDO command. The JXM-IO-E02 will reply to the SDO
request to write to System Parameters and will then write the data to
non-volatile memory. This process can take as much as 50 ms. Therefore, it is
recommended that a delay of 100 ms be implemented before the next SDO or
PDO access to the same JXM-IO-E02.

Version / Reset

Delay

128 Jetter AG

7 CANopen® Objects

 This parameter selects whether the CAN termination resistors (120 Ω)
inside the JCM-350-E03 must be activated (one each at both ends of the
CAN bus).

 Valid options are:
 0x00: Neither resistor is enabled
 0x01: Resistor at the end of the CAN bus is enabled (default value)
 0x02: Resistor at the beginning of the CAN bus is enabled
 0x03: Both resistors enabled

 This parameter selects the CAN Baud rate to use.
 Valid options are:
 0: 125 kBaud
 1: 250 kBaud
 2: 500 kBaud
 3: 1 MBaud

 This parameter changes the node ID stored to the internal EEPROM.
 With coding via tri-state inputs 1 (pin 67) and 2 (68) enabled, this

parameter sets the node ID of the JXM-IO-E02 if neither of the tri-state
inputs is connected.

 If the device is configured NOT to use the tri-state inputs for selecting the
node ID, then the value stored in this parameter will be the final node ID.

 The value is in the range of 0x01 through 0x76.
 The default value is 0x10.

 This is the time period, specified in milliseconds (ms), at which the
JXM-IO-E02 will transmit a CANopen® heartbeat message. The own
heartbeat status is sent as content of this message.

 The legal range for values is between 250 and 65,535 ms.
 Time periods less than 250 ms are allowed by CANopen® but do not make

practical sense for the JXM-IO-E02 and are therefore not allowed.

Please refer to the section on PWM object with index 0x2400 and sub-index 8
through 10.

 This parameter sets the initial functional mode for the analog inputs at
power on.

 Please refer to the section on Analog Input object with index 0x2200 and
sub-index 2.

 The default value is "0" selecting "Voltage Measurement" operation ranging
from 0 to 5 V.

CAN Bus Termination

CAN Baud Rate

CANopen® Node ID

CANopen® Heartbeat
Time Period

PWM - Predictor,
Proportional and
Integrator Parameters

Analog Input Mode
Selection

Jetter AG 129

JCM-350-E03 CANopen® Objects

 This parameter stores an output current limit value.
 The data is in units of 100 mA (i.e. 1 = 100 mA; 25 = 2.5 A).
 The current limit is in the range 1 ... 30 (100 mA ... 3 A).
 The default value is 25 (2.5 A).

The current measurement of the JXM-IO-E02 is temperature dependent. At
low temperatures the output current will be slightly larger than the limit above
before being limited and at high temperatures the output current will be slightly
smaller.
The following formula gives the relation between the specified current and the
actual measured current:

Where K is taken from the following table:

Load current K at T = -40 °C K at T = 25 °C K at T = 125 °C

0.5 A 12.000 12.000 12.000

2.5 A 10.000 9.700 9.300

5.0 A 10.000 9.700 9.300

The temperature specified in the above table is not the ambient temperature,
but rather an internal device temperature.
This temperature will be at least 20°C higher than the ambient when the
JXM-IO-E02 has been working for a few minutes.

 This parameter stores an output current limit value.
 The data is in units of 100 mA (i.e. 1 = 100 mA; 25 = 2.5 A).
 The current limit is in the range 1 ... 55 (100 mA ... 5.5 A).
 The default value for the digital outputs 9 through 14 is 25 (2.5 A).
 The default value for the digital outputs 15 through 16 is 50 (5 A).

 This parameter sets the initial functional mode for the PWM outputs at
power on.

 Please refer to the section on PWM object with index 0x2400 and
sub-index 2.

 The default value is 0x01 selecting current-controlled PWM operation.

 When this parameter is set to 1, the JXM-IO-E02 will use the tri-state inputs
to calculate its node ID.

 Set this parameter to "0" in order to disable this function.
 The default value is 1.

 This parameter stores an output current limit value affecting all 16 digital
outputs.

 The threshold is specified in milliamps.
 The threshold is in the range 50 ... 250 (50 mA ... 250 mA).
 The default value is 100 (100 mA).

Digital Outputs # 1 - 8
(STANDARD) - Current
Limit

Digital Outputs - Current
Measurement

Digital Outputs # 9 - 16
(SAFETY) - Current Limit

PWM Outputs - Mode
Selection

Tri-State Coding Enable

Digital Outputs -
No-Load Threshold

130 Jetter AG

7 CANopen® Objects

 When a digital output’s load current is low (less than 1 A), measuring this
current becomes inaccurate (refer to section "Digital Outputs - Current
Measurement").
If a threshold current of 100 mA is specified, it is likely that the actual
measured current is 126 mA.

 This parameter stores an output current limit value affecting all 3 PWM
outputs.

 The threshold is specified in milliamps.
 The threshold is in the range 10 ... 1,000 (10 mA ... 1,000 mA).
 The default value is 100 (100 mA).
 No-load detection is available only in "static PWM duty-cycle output mode"

(no current control).

 This parameter sets the initial functional mode for the frequency inputs at
power on.

 Please refer to the section on Frequency Input object with index 0x2600
and sub-index 2.

 The default value is 0 selecting frequency input operation.

 This parameter stores an output current limit value for the H-bridge.
 The data is in units of 1 mA (i.e. 1 = 1 mA; 2,500 = 2.5 A).
 The current limit is in the range 250 ... 3,000 (250 mA ... 3.0 A).
 The default value is 2,500 (2.5 A).

 This parameter stores a no-load threshold for the H-bridge.
 The threshold is specified in milliamps.
 The threshold is in the range 100 ... 250 (100 mA ... 250 mA).
 The default value is 100 (100 mA).

 This parameter stores an output current limit value for the PWM outputs.
 The data is in units of 1 mA (i.e. 1 = 1 mA; 2,500 = 2.5 A).
 The current limit is in the range 500 ... 2,499 (500 mA ... 2.5 A).
 The default value is 2,499 (2.5 A).
 This parameter applies only when the outputs are used in "static PWM

duty-cycle output mode" without current control.

 This parameter sets the power on default biasing for the digital inputs
IN 1 through IN 5.

 Please refer to the section on Digital Input object with index 0x2100 and
sub-index 2.

 The default value is "0", i.e. inputs IN 1 through IN 5 are "Active-Low".

 This parameter sets the initial output state for the two switch feed outputs
at power on.

 Please refer to the section on Switch Feed Output object with index 0x2103
and sub-index 5.

 The default value is "0" selecting both outputs to be disabled.

PWM Outputs - No-Load
Threshold

Frequency Input Mode
Selection

H-Bridge - Current Limit
Value

H-Bridge - No-Load
Threshold

PWM Output - Current
Limit

Digital Inputs IN 1
through IN 5 - Initial Bias

Switch Feed Output -
Initial State

Jetter AG 131

JCM-350-E03 CANopen® Objects

 Use this parameter to enable/disable no-load detection on all 16 digital
output channels.

 Each channel is represented by a single bit in the 16-bit word.
 Bit 0: Channel 1 (OUT 1)
 Bit 1: Channel 2 (OUT 2)
 ...
 Bit 14: Channel 15 (OUT 15)
 Bit 15: Channel 16 (OUT 16)

 To enable/disable no-load detection set the corresponding bit value:
 0: No-load detection is disabled
 1: No-load detection is enabled

 The default value is "0" disabling no-load detection on all channels.

 Use this parameter to enable/disable no-load detection on all 3 PWM
output channels.

 Each channel is represented by a single bit in the 8-bit word.
 Bit 0: PWM output # 1
 Bit 1: PWM output # 2
 Bit 2: PWM output # 3

 To enable/disable no-load detection set the corresponding bit value:
 0: No-load detection is disabled
 1: No-load detection is enabled

 The default value is "0" disabling no-load detection on all 3 PWM channels.

 Use this parameter to enable/disable no-load detection on the H-bridge.
 This parameter can have the following values:
 0: No-load detection is disabled
 1: No-load detection is enabled

 The default value is "0" disabling no-load detection on the H-bridge.
 This parameter applies only when the H-bridge is used in PWM mode.

 Use this parameter to enable sending of a PDO message when an event
on one of the digital inputs occurs.

 Each of the 21 inputs is allocated to a bit of the 32-bit word:
 Bit 0: Digital input IN 1
 Bit 1: Digital input IN 2
 Bit 2: Digital input IN 3
 Bit 3: Digital input IN 4
 Bit 4: Digital input IN 5
 Bit 16: Digital input IN 6
 Bit 17: Digital input IN 7
 ...
 Bit 30: Digital input IN 20
 Bit 31: Digital input IN 21

Digital Output - No-Load
Detection Enable

PWM Output - No-Load
Enable

H-Bridge - No-Load
Enable

Event-triggered
transmission of a PDO
message

132 Jetter AG

7 CANopen® Objects

 To enable/disable event-triggered transmission of a PDO message set the
corresponding bit value:
 0: Event-triggered transmission is disabled
 1: Event-triggered transmission is enabled

 The default value is "0" disabling event-triggered transmission of a PDO
message for all inputs.

Jetter AG 133

JCM-350-E03 CANopen® Objects

Detailed Software Version Object (Index 0x4559)

The structure of the object "Detailed Software Version" is shown in the
following table. This read-only object supplies the same software version as
object 0x100A, but in a 32-bit unsigned integer format which is compatible with
the standard IP-type version numbers used at Jetter AG.
In addition, this object will also return the software version number for the two
processors including their bootloader version numbers.

Index Sub-Index Default Description Attributes

0x4559 0 5 Number of entries ro (read only)

 1 - Software version ro

 2 0 Master OS version ro

 3 0 Master bootloader
version

ro

 4 0 Slave OS version ro

 5 0 Slave bootloader
version

ro

Detailed Software
Version (Index 0x4559)

134 Jetter AG

7 CANopen® Objects

User EEPROM Access Object (Index 0x5000)

The structure of the object "User EEPROM Access" is shown in the following
table. This object grants the user read/write access to the EEPROM.

Index Sub-Index Default Description Attributes

0x5000 0 6 Number of entries ro (read only)

 1 0 Byte offset inside
memory space

rw (read &
write)

 2 1.024 Size of memory (in
bytes)

ro

 3 1 Auto increment ro

 4 - Byte R/W access rw

 5 - 16-bit word R/W
access

rw

 6 - 32-bit word R/W
access

rw

The function of sub-index 1 is described below:

 To use this object, enter the byte offset inside the memory space in
sub-index 1.

 If the byte offset is less than zero, the CANopen® error “Value of parameter
written too low” is returned.

 If the byte offset is larger than the value in sub-index 2 (default value:
1,024), the CANopen® error “Value of parameter written too high” is
returned.

 Also, if the byte offset is set to one of the last byte values and an attempt is
made to read or write a 16-bit or 32-bit word which would cause
reading/writing outside the memory space, the “General error” message is
returned.
Unfortunately CANopen® doesn’t have an error code that accurately
describes this condition.
Example:
If the byte offset is 1,022 and an attempt is made to read a 32-bit word, this
would normally try to read beyond the last memory address of 1023. This is
not allowed and the message "General error" is returned.

The function of sub-index 2 is described below:

 The JXM-IO-E02 offers 1 kB of EEPROM memory space, but for some
special devices the amount may differ.

 Reading sub-index 2 returns the available memory size in bytes.
 This sub-index is read-only.

User EEPROM Access
(Index 0x5000)

Sub-Index 1

Sub-Index 2

Jetter AG 135

JCM-350-E03 CANopen® Objects

The function of sub-index 3 is described below:

 Use sub-index 3 to enable/disable the function "Auto Increment":
 0: Auto increment is disabled
 1: Auto increment is enabled

 Auto increment works as follows:
 After either a read or write operation, the object will increment the offset

in the memory space by the number of bytes that were transferred.
 Example:

After a byte read the byte offset is incremented by 1.
After a 32-bit write the byte offset is incremented by 4.

The function of sub-index 4 is described below:

 Read sub-index 4 to read a byte from the memory.
 Enter a value into sub-index 4 to write a byte in the memory.

The function of sub-index 5 is described below:

 Read sub-index 5 to read a 16-bit word from the memory.
 Enter a value into sub-index 5 to write a 16-bit word in the memory.

The function of sub-index 6 is described below:

 Read sub-index 6 to read a 32-bit word from the memory.
 Enter a value into sub-index 6 to write a 32-bit word in the memory.

When writing to the EEPROM, a delay must be implemented after the SDO
command. The JXM-IO-E02 first writes to the EEPROM memory which takes
a while before transmitting the SDO reply. This process can take at least 50
ms. Therefore, it is recommended that a delay of 100 ms be implemented
before the next SDO or PDO access to the same JXM-IO-E02.

Sub-Index 3

Sub-Index 4

Sub-Index 5

Sub-Index 6

Delay

136 Jetter AG

7 CANopen® Objects

7.3 CANopen® PDO Specification

This chapter describes the CANopen® PDO specification implemented on the
JXM-IO-E02. PDO is short for Process Data Object. The PDO data allocation
is fixed and cannot be changed by the application. The JXM-IO-E02 allows
PDO access when the node has been set to operational state.

Topic Page
TX PDO Allocation on the JXM-IO-E02 .. 137
RX PDO Allocation on the JXM-IO-E02 .. 138

Introduction

Contents

Jetter AG 137

JCM-350-E03 CANopen® Objects

TX PDO Allocation on the JXM-IO-E02

The tables below show the allocation of TX PDOs implemented on the
JXM-IO-E02. CANopen® objects are linked with their corresponding PDOs.

From the controller point of view, the following data can be read back from the
JXM-IO-E02 via the macro PDO1_RX (0x180 + node ID):

Byte Offset Index /
Sub-index

Size [byte] Description

0 0x2101/04 2 Digital outputs read back

2 0x2100/04 2 Digital inputs

4 0x2100/04 1 Tri-state input

From the controller point of view, the following data can be read back from the
JXM-IO-E02 via the macro PDO2_RX (0x280 + node ID):

Byte Offset Index /
Sub-index

Size [byte] Description

0 0x2200/04 2 Analog input # 1

2 0x2201/04 2 Analog input # 2

4 0x2202/04 2 Analog input # 3

6 0x2203/04 2 Analog input # 4

From the controller point of view, the following data can be read back from the
JXM-IO-E02 via the macro PDO3_RX (0x380 + node ID):

Byte Offset Index /
Sub-index

Size [byte] Description

0 0x2600/04 2 Frequency input # 1

2 0x2601/04 2 Frequency input # 2

For PDO-3_RX, the frequency input fields change to sub-index 5 of the
respective objects when the frequency input is used as a digital input. This
allows monitoring of the digital input level by means of PDO.
Normally, the PDOs are transmitted asynchronously on request. However,
PDO1_RX can also be enabled to be transmitted asynchronously on events.
This is done using the “Event-based PDO TX enable” option in the System
Parameters interface.
Additionally, from OS version 2.10.0.01 PDO3_RX is also transmitted
asynchronously on events. The event that triggers this is the completion of a
frequency measurement. This function cannot be disabled and is only
available for frequency measurement at this time.

PDO Assignment and
Parameters

138 Jetter AG

7 CANopen® Objects

RX PDO Allocation on the JXM-IO-E02

The tables below show the allocation of RX PDOs implemented on the
JXM-IO-E02. CANopen® objects are linked with their corresponding PDOs.
Therefore, writing to that PDO will be the same as writing to that SDO index
and sub-index.

From the controller point of view, the following data on the JXM-IO-E02 can be
accessed via the macro PDO1_TX (0x200 + node ID):

Byte Offset Index /
Sub-index

Size [byte] Description

0 0x2101/05 2 Digital outputs

2 0x2103/05 1 Switch feed outputs

From the controller point of view, the following data on the JXM-IO-E02 can be
accessed via the macro PDO2_TX (0x300 + node ID):

Byte Offset Index /
Sub-index

Size [byte] Description

0 0x2500/05 2 H-bridge output state

2 0x2400/04 2 PWM-1 current

4 0x2401/04 2 PWM-2 current

6 0x2402/04 2 PWM-3 current

Please note that specification of current values is allowed only in mode
"Current-Controlled PWM Output".
If the PWM output is set to static duty-cycle mode, this parameter will actually
change to sub-index 5 to allow writing to the duty-cycle register. The PDO
interface can therefore be used to also select the duty cycle.

From the controller point of view, the following data on the JXM-IO-E02 can be
accessed via the macro PDO3_TX (0x400 + node ID):

Byte Offset Index /
Sub-index

Size [byte] Description

0 0x2300/04 2 Analog output - voltage

2 0x2300/05 2 Analog output - current

PDO Assignment and
Parameters

Jetter AG 139

JCM-350-E03 SAE J1939 STX API

8 SAE J1939 STX API

This chapter describes the STX functions of the SAE J1939 STX API.

SAE J1939 is an open standard for networking and communication in the
commercial vehicle sector. The focal point of the application is the networking
of the power train and chassis. The J1939 protocol originates from the
international Society of Automotive Engineers (SAE) and works on the
physical layer with CAN high-speed according to ISO 11898.

These STX functions are used in communication between the controller
JCM-350-E03 and other ECUs in the vehicle. As a rule, engine data e.g. rpm,
speed or coolant temperature are read and displayed.

The key SAE J1939 specifications are:

 J1939-11 - Information on the physical layer
 J1939-21 - Information on the data link layer
 J1939-71 - Information on the application layer vehicles
 J1939-73 - Information on the application layer range analysis
 J1939-81 - Network management

Topic Page
Content of a J1939 Message .. 140
STX Function SAEJ1939Init ... 142
STX Function SAEJ1939SetSA .. 143
STX Function SAEJ1939GetSA ... 144
STX Function SAEJ1939AddRx ... 145
STX Function SAEJ1939AddTx ... 148
STX Function SAEJ1939RequestPGN .. 152
STX Function SAEJ1939GetDM1 .. 155
STX Function SAEJ1939GetDM2 .. 158
STX Function SAEJ1939SetSPNConversion ... 161
STX Function SAEJ1939GetSPNConversion .. 162

Introduction

The SAE J1939 Standard

Application

Documentation

Contents

140 Jetter AG

8 SAE J1939 STX API

Content of a J1939 Message

The following diagram shows the content of a J1939 message:

Abbreviation Description

DA Destination Address

GE Group Extensions

PDU Protocol Data Unit

PGN Parameter Group Number

SA Source Address

The PGN is a number defined in the SAE J1939 standard that groups together
several SPNs into a meaningful group. The PGN is part of the CAN identifier.
The 8-byte data (PDU) contain the values of individual SPNs.

The example below shows a PGN 65262 (0xFEEE):

PGN 65262 Engine Temperature 1 - ET1

Part of the PGN Value Remarks

Transmission Repetition Rate 1 s

Data Length 8

Extended Data Page 0

Data Page 0

PDU Format 254

PDU Specific 238 PGN Supporting Information

Default Priority 6

Parameter Group Number 65262 in hex: 0xFEEE

Content of a J1939
Message

Meaning of the
Parameter Group
Number (PGN)

Jetter AG 141

JCM-350-E03 SAE J1939 STX API

Start position Length Parameter name SPN

1 1 byte Engine Coolant Temperature 110

2 1 byte Engine Fuel Temperature 1 174

3 - 4 2 bytes Engine Oil Temperature 1 175

5 - 6 2 bytes Engine Turbocharger Oil Temperature 176

7 1 byte Engine Intercooler Temperature 52

8 1 byte Engine Intercooler Thermostat Opening 1134

142 Jetter AG

8 SAE J1939 STX API

STX Function SAEJ1939Init

Calling up the SAEJ1939Init () function initializes one of the CAN busses (not
CAN 0 as this is reserved for CANopen®) available for the J1939 protocol.
From then on, the JCM-350-E03 has the SA (Source Address) assigned by
the function parameter mySA. It thus has its own device address on the bus.

Function SAEJ1939Init (

 CANNo:Int,

 mySA:Byte,

) :Int;

The function SAEJ1939Init () has the following parameters.

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

mySA Own source address 0 ... 253

This function transfers the following return values to the higher-level program.

Return Value

0 OK

-1 Error when checking parameters

-3 Insufficient memory for SAE J1939

The value of the CANMAX parameter depends on the device. The following
table provides information on this point.

Device CANMAX

JVM-407 2

BTM 07 2

BTM 012 1 - 2

BTM 011 n/a

JCM-350 4

JCM-620 2

Initializing the CAN-Bus 1. The JCM-350-E03 has Node-SA 20 (0x14).
The JCM-350-E03 can now send messages with the set SA (and only these
messages).

Result := SAEJ1939Init(1, 20);

Address Claiming has not been implemented.

Introduction

Function Declaration

Function Parameters

Return Value

Parameter CANNo

Using this Function

Address Claiming

Jetter AG 143

JCM-350-E03 SAE J1939 STX API

STX Function SAEJ1939SetSA

Calling up the function SAEJ1939SetSA changes the own SA (Source
Address) during runtime.

Function SAEJ1939SetSA (

 CANNo:Int,

 mySA:Byte,

) :Int;

The function SAEJ1939SetSA () has the following parameters.

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

mySA New SA 0 ... 253

The function transfers the following return values to the higher-level program.

Return Value

0 ok

-1 Error when checking parameters

The value of the CANMAX parameter depends on the device. The following
table provides information on this point.

Device CANMAX

JVM-407 2

BTM 07 2

BTM 012 1 - 2

BTM 011 n/a

JCM-350 4

JCM-620 2

The SA is changed during runtime.

Result := SAEJ1939SetSA(1, 20);

Messages are immediately sent/received with the new SA.

Introduction

Function Declaration

Function Parameters

Return Value

Parameter CANNo

Using this Function

Important Note

144 Jetter AG

8 SAE J1939 STX API

STX Function SAEJ1939GetSA

By calling up the function SAEJ1939GetSA, you can determine the own SA
(Source Address).

Function SAEJ1939GetSA (

 CANNo:Int,

 ref mySA:Byte,

) :Int;

The function SAEJ1939GetSA () has the following parameters.

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

mySA SA currently set 0 ... 253

The function transfers the following return values to the higher-level program.

Return Value

0 ok

-1 Error when checking parameters

The value of the CANMAX parameter depends on the device. The following
table provides information on this point.

Device CANMAX

JVM-407 2

BTM 07 2

BTM 012 1 - 2

BTM 011 n/a

JCM-350 4

JCM-620 2

This function returns the currently set SA.

Result := SAEJ1939SetSA(1, actual_SA);

Introduction

Function Declaration

Function Parameters

Return Value

Parameter CANNo

Using this Function

Jetter AG 145

JCM-350-E03 SAE J1939 STX API

STX Function SAEJ1939AddRx

Calling up the function SAEJ1939AddRx () prompts the JCM-350-E03 to
receive a specific message. This message is sent from another bus node. The
address of this bus node is transferred to this function as a bySA parameter. If
the message is not sent, the value received last remains valid. Cyclical
reading continues until the function SAEJ1939Init () is called up again.

Function SAEJ1939AddRx (

 CANNo:Int,

 IPGN:Long,

 bySA:Byte,

 BytePos:Int,

 BitPos:Int,

 DataType:Int,

 DataLength:Int,

 const ref VarAddr,

 ref stJ1939:TJ1939Rx

 EventTime: Int,

 InhibitTime: Int,

) :Int;

The function SAEJ1939AddRx () has the following parameters.

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

IPGN PGN
Parameter Group Number

0 ... 0x3FFFF

bySA Source Address of message
sender

0 ... 253

BytePos Starting position of bytes of data
to be received

1 ... n

BitPos Starting position of bits of data to
be received

1 ... 8

DataType Data type of data to be received 1 ... 3, 10 ... 16

DataLength Volume of data for the global
variable VarAddr

VarAddr Global variable into which the
received value is entered

TJ1939Rx Control structure

EventTime Time lag between two telegrams
(> Inhibit Time)

Default Value: 1,000 ms

InhibitTime Minimum time lag between two
telegrams received (<
EventTime)

Default Value: 100 ms

Introduction

Function Declaration

Function Parameters

146 Jetter AG

8 SAE J1939 STX API

The function transfers the following return values to the higher-level program.

Return Value

0 ok

-1 Error when checking parameters

The value of the CANMAX parameter depends on the device. The following
table provides information on this point.

Device CANMAX

JVM-407 2

BTM 07 2

BTM 012 1 - 2

BTM 011 n/a

JCM-350 4

JCM-620 2

Data types can include the following.

Byte types Bit types SAEJ1939

1 - SAEJ1939_UNSIGNED8
SAEJ1939_BYTE

2 - SAEJ1939_UNSIGNED16
SAEJ1939_WORD

4 - SAEJ1939_UNSIGNED32
SAEJ1939_DWORD

n - SAEJ1939_STRING

- 1 SAEJ1939_1BIT

- 2 SAEJ1939_2BIT

- 3 SAEJ1939_3BIT

- 4 SAEJ1939_4BIT

- 5 SAEJ1939_5BIT

- 6 SAEJ1939_6BIT

- 7 SAEJ1939_7BIT

TJ1939Rx: Struct

// Status of received message
 byStatus : Byte;

// Priority of received message
 byPriority : Byte;

 End_Struct;

Return Value

Parameter CANNo

Parameter DataType

Control Structure
TJ1939Rx

Jetter AG 147

JCM-350-E03 SAE J1939 STX API

Result := SAEJ1939AddRx (

 1,

 0xFEEE,

 0x00,

 2

 0

 SAEJ1939_BYTE,

 sizeof(var_Fueltemp),

 var_Fueltemp,

 struct_TJ1939Rx_EngineTemperatureTbl,

 1500,

 120);

The device JCM-350-E03 with the own SA of 20 wants to receive and display
the current fuel temperature. The parameters InhibitTime and EventTime are
not explicitly specified when calling up the function. In this case, the default
values are used. The controller that measures the fuel temperature has the
SA of 0. In practice, the address of the controller can be found in the engine
manufacturer's documentation.
The fuel temperature has the SPN 174 and is a component (byte 2) of the
PGN 65262 Engine Temperature 1.

#Include "SAEJ1939.stxp"

Var

 bySAEJ1939Channel : Byte;

 own_Source_Address : Byte;

// PGN 65262 Engine Temperature 1
 Fueltemp : Byte;

 EngineTemperatureTbl : TJ1939Rx;

End_Var;

Task main autorun

// Initializing CAN 1
bySAEJ1939Channel := 1;

own_Source_Address := 20;

SAEJ1939Init (bySAEJ1939Channel, own_Source_Address);

// Receive fuel temperature
SAEJ1939AddRx (bySAEJ1939Channel, 65262, 0x00, 2, 1, SAEJ1939_BYTE,
sizeof(Fueltemp), Fueltemp, EngineTemperatureTbl);

End_Task;

For information on the data (priority, PGN, SA and data byte structure) refer to
the manual provided by the engine manufacturer.

Using this Function

JetSym STX Program

Engine Manufacturer's
Manual

148 Jetter AG

8 SAE J1939 STX API

STX Function SAEJ1939AddTx

Calling up the function SAEJ1939AddTx () prompts the device JCM-350-E03
to cyclically send a specific message via the bus.
Cyclical sending continues until the function SAEJ1939Init () is called up
again.
Date are sent once the Event Time has elapsed or the given variables have
changed and Inhibit Time has elapsed.

Function SAEJ1939AddTx (

 CANNo:Int,

 IPGN:Long,

 BytePos:Int,

 BitPos:Int,

 dataType:Int,

 DataLength:Int,

 const ref VarAddr,

 ref stJ1939:TJ1939Tx

 EventTime: Int,

 InhibitTime: Int,

) :Int;

The function SAEJ1939AddTx () has the following parameters.

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

IPGN PGN
Parameter Group Number

0 ... 0x3FFFF

BytePos Starting position of the byte of
data to be sent

1 ... n

BitPos Starting position of the bit of data
to be sent

1 ... 8

DataType Data type of data to be sent 1 ... 3, 10 ... 16

DataLength Volume of data for the global
variable VarAddr

VarAddr Global variable into which the
value to be sent is entered

TJ1939Tx Control structure

EventTime Time lag between two telegrams
(> Inhibit Time)

Default Value: 1,000 ms

InhibitTime Minimum time lag between two
telegrams received (<
EventTime)

Default Value: 100 ms

Introduction

Function Declaration

Function Parameters

Jetter AG 149

JCM-350-E03 SAE J1939 STX API

The function transfers the following return values to the higher-level program.

Return Value

0 ok

-1 Error when checking parameters

The value of the CANMAX parameter depends on the device. The following
table provides information on this point.

Device CANMAX

JVM-407 2

BTM 07 2

BTM 012 1 - 2

BTM 011 n/a

JCM-350 4

JCM-620 2

Data types can include the following.

Byte types Bit types SAEJ1939

1 - SAEJ1939_UNSIGNED8
SAEJ1939_BYTE

2 - SAEJ1939_UNSIGNED16
SAEJ1939_WORD

4 - SAEJ1939_UNSIGNED32
SAEJ1939_DWORD

n - SAEJ1939_STRING

- 1 SAEJ1939_1BIT

- 2 SAEJ1939_2BIT

- 3 SAEJ1939_3BIT

- 4 SAEJ1939_4BIT

- 5 SAEJ1939_5BIT

- 6 SAEJ1939_6BIT

- 7 SAEJ1939_7BIT

Return Value

Parameter CANNo

Parameter DataType

150 Jetter AG

8 SAE J1939 STX API

TJ1939Tx : Struct

// Status of sent message
 byStatus : Byte;

// Priority of sent message
 byPriority : Byte;

 End_Struct;

Result := SAEJ1939AddTx (

 1,

 0xFEEE,

 0x00,

 2

 0

 SAEJ1939_BYTE,

 sizeof(var_Fueltemp),

 var_Fueltemp,

 struct_TJ1939Tx_EngineTemperatureTbl,

 1500,

 120);

Redefining the priority: Priority value 0 has the highest priority, priority value 7
has the lowest priority. A message with priority 6 can be superseded by a
message with priority 4 (if the messages are sent at the same time). The
parameters InhibitTime and EventTime are not explicitly specified when calling
up the function. In this case, the default values are used.

#Include "SAEJ1939.stxp"

Var

 bySAEJ1939Channel : Byte;

 own_Source_Address : Byte;

// PGN 65262 Engine Temperature 1
 Fueltemp : Byte;

 EngineTemperatureTbl : TJ1939Tx;

End_Var;

Task main autorun

// Initializing CAN 1
bySAEJ1939Channel := 1;

own_Source_Address := 20;

SAEJ1939Init (bySAEJ1939Channel, own_Source_Address);

// PGN 65262 Engine Temperature
// Set a new priority
EngineTemperatureTbl.byPriority := 6;

SAEJ1939AddTx (bySAEJ1939Channel, 65262, 0x00, 2, 1, SAEJ1939_BYTE,
sizeof(Fueltemp), Fueltemp, EngineTemperatureTbl);

End_Task;

Control Structure
TJ1939Tx

Using this Function

JetSym STX Program

Jetter AG 151

JCM-350-E03 SAE J1939 STX API

For information on the data (priority, PGN, SA and data byte structure) refer to
the manual provided by the engine manufacturer.

Engine Manufacturer's
Manual

152 Jetter AG

8 SAE J1939 STX API

STX Function SAEJ1939RequestPGN

Calling up the function SAEJ1939RequestPGN () sends a request to the DA
(Destination Address) following a PGN.
This function is not terminated until a valid value has been received or the
timeout of 1,250 ms has elapsed.
To obtain the value of the requested message its receipt must be scheduled
using the function SAEJ1939AddRx ().
This function must be constantly recalled in cycles.

Function SAEJ1939RequestPGN (

 CANNo:Int,

 byDA:Byte,

 ulPGN:Long,

 byPriority:Byte,

) :Int;

The function SAEJ1939RequestPGN () has the following parameters.

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

byDA Destination Address
Address from which the message
is requested

0 ... 253
The own SA cannot be
used

uIPGN PGN
Parameter Group Number

0 ... 0x3FFFF

byPriority Priority 0 ... 7
Default Value: 6

This function transfers the following return values to the higher-level program.

Return Value

0 Message has been received

-1 Timeout, as no reply has been received

The value of the CANMAX parameter depends on the device. The following
table provides information on this point.

Device CANMAX

JVM-407 2

BTM 07 2

BTM 012 1 - 2

BTM 011 n/a

JCM-350 4

JCM-620 2

Introduction

Function Declaration

Function Parameters

Return Value

Parameter CANNo

Jetter AG 153

JCM-350-E03 SAE J1939 STX API

Data types can include the following.

Byte types Bit types SAEJ1939

1 - SAEJ1939_UNSIGNED8
SAEJ1939_BYTE

2 - SAEJ1939_UNSIGNED16
SAEJ1939_WORD

4 - SAEJ1939_UNSIGNED32
SAEJ1939_DWORD

n - SAEJ1939_STRING

- 1 SAEJ1939_1BIT

- 2 SAEJ1939_2BIT

- 3 SAEJ1939_3BIT

- 4 SAEJ1939_4BIT

- 5 SAEJ1939_5BIT

- 6 SAEJ1939_6BIT

- 7 SAEJ1939_7BIT

Result := SAEJ1939RequestPGN (

 1,

 0x00,

 0xFEE5,

 5);

JCM-350-E03 with own SA of 20 wants to request the PGN 65253 "Engine
Hours" from an engine control unit with the SA 0. The SPN 247 "Engine Total
Hours of Operation" should be read from this PGN. It is therefore necessary to
register receipt of the SPN 247 by calling up the function SAEJ1939AddRx ().
The parameter "byPriority" is not explicitly specified when calling up the
function. In this case, the default value is used.

#Include "SAEJ1939.stxp"

Var

 bySAEJ1939Channel : Byte;

 own_Source_Address : Byte;

// PGN 65253 Engine Hours, Revolutions
 EngineTotalHours : Int;

 EngineHoursTbl : TJ1939Rx;

End_Var;

Task main autorun

// Initializing CAN 1

Parameter DataType

Using this Function

JetSym STX Program

154 Jetter AG

8 SAE J1939 STX API

bySAEJ1939Channel := 1;

own_Source_Address := 20;

SAEJ1939Init (bySAEJ1939Channel, own_Source_Address);

// Engine Hours, Revolutions -- on Request
SAEJ1939AddRx (bySAEJ1939Channel, 65253, 0x00, 1, 0,
SAEJ1939_DWORD, sizeof(EngineTotalHours), EngineTotalHours,
EngineHoursTbl, 5000, 150);

// Required for a cyclical task
TaskAllEnableCycle ();

EnableEvents;

End_Task;

Task t_RequestPGN_5000 cycle 5000

Var

 Return_value : Int;

End_Var;

// Request total machine operating hours
Return_value := SAEJ1939RequestPGN (bySAEJ1939Channel, 0x00,
65253);

If Return_value Then

 Trace ('PGN Request failed');

End_If;

End_Task;

Jetter AG 155

JCM-350-E03 SAE J1939 STX API

STX Function SAEJ1939GetDM1

Calling up the function SAEJ1939GetDM1 () requests the current diagnostics
error codes (also see SAE J1939-73 No. 5.7.1). The corresponding PGN
number is 65226. This function must be constantly recalled in cycles.

Function SAEJ1939GetDM1 (

 CANNo:Int,

 bySA:Byte,

 ref stJ1939DM1stat:TJ1939DM1STAT

 ref stJ1939DM1msg:TJ1939DM1MSG

) :Int;

The function SAEJ1939GetDM1 () has the following parameters.

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

bySA Source Address of message
sender

0 ... 253
The own SA cannot be
used

stJ1939DM1stat lStatus
lMsgCnt

lBuffer

Lamp Status
Number of received
messages
Size of variable
stJ1939DM1msg

stJ1939DM1msg lSPN
byOC
byFMI

Error Code
Error counter
Error Type

The function transfers the following return values to the higher-level program.

Return Value

0 ok

-1 Error when checking parameters

The value of the CANMAX parameter depends on the device. The following
table provides information on this point.

Device CANMAX

JVM-407 2

BTM 07 2

BTM 012 1 - 2

BTM 011 n/a

JCM-350 4

JCM-620 2

Introduction

Function Declaration

Function Parameters

Return Value

Parameter CANNo

156 Jetter AG

8 SAE J1939 STX API

Default: 0xFF00

Type Byte Bit group Description

Status 1 8 - 7 Malfunction Indicator Lamp Status

 6 - 5 Red Stop Lamp Status

 4 - 3 Amber Warning Lamp Status

 2 - 1 Protect Lamp Status

Flash 2 8 - 7 Flash Malfunction Indicator Lamp

 6 - 5 Flash Red Stop Lamp

 4 - 3 Flash Amber Warning Lamp

 2 - 1 Flash Protect Lamp

Type Byte Bit group
Value

Description

Status 1 00 Lamps off

 01 Lamps on

Flash 2 00 Slow Flash (1 Hz, 50 % duty cycle)

 01 Fast Flash (2 Hz or faster, 50 % duty cycle)

 10 Reserved

 11 Unavailable / Do Not Flash

Default Value:
ISPN = 0
byOC = 0
byFMI = 0
For older controllers (grandfathered setting):
ISPN = 524287 (0x7FFFF)
byOC = 31 (0x1F)
byFMI = 127 (0x7F)

Result := SAEJ1939GetDM1 (

 1,

 0x00,

 stdm1stat_pow,

 stdm1msg_pow,);

stJ1939DM1stat.lStatus

stJ1939DM1msg

Using this Function

Jetter AG 157

JCM-350-E03 SAE J1939 STX API

By calling up the function SAEJ1939GetDM1 (), the JCM-350-E03 requests
the current diagnostics error code (PGN 65226).

#Include "SAEJ1939.stxp"

Var

 bySAEJ1939Channel : Byte;

 own_Source_Address : Byte;

 stdm1stat_pow : TJ1939DM1STAT;

 stdm1msg_pow : Array[10] of STJ1939DM1MSG;

 MyTimer : TTimer;

End_Var;

Task main autorun

// Initializing CAN 1
bySAEJ1939Channel := 1;

own_Source_Address := 20;

SAEJ1939Init (bySAEJ1939Channel, own_Source_Address);

TimerStart (MyTimer, T#2s);

Loop

When (TimerEnd (MyTimer)) Continue;

// Request the diagnostics error codes DM1 POW
stdm1stat_pow.lBuffer := sizeof (stdm1msg_pow);

SAEJ1939GetDM1 (bySAEJ1939Channel, 0x00, stdm1stat_pow,
stdm1msg_pow);

TimerStart (MyTimer, T#2s);

End_Loop;

End_Task;

JetSym STX Program

158 Jetter AG

8 SAE J1939 STX API

STX Function SAEJ1939GetDM2

Calling up the function SAEJ1939GetDM2 () requests the diagnostics error
codes that preceded the current one (also see SAE J1939-73 No. 5.7.2). The
corresponding PGN number is 65227.

Function SAEJ1939GetDM2 (

 CANNo:Int,

 bySA:Byte,

 ref stJ1939DM2stat:TJ1939DM2STAT

 ref stJ1939DM2msg:TJ1939DM2MSG

) :Int;

The function SAEJ1939GetDM2 () has the following parameters.

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

bySA Source Address of message
sender

0 ... 253
The own SA cannot be
used

stJ1939DM2stat lStatus
lMsgCnt

lBuffer

Lamp Status
Number of received
messages
Size of variable
stJ1939DM2msg

stJ1939DM2msg lSPN
byOC
byFMI

Error Code
Error counter
Error Type

The function transfers the following return values to the higher-level program.

Return Value

0 ok

-1 Error when checking parameters

The value of the CANMAX parameter depends on the device. The following
table provides information on this point.

Device CANMAX

JVM-407 2

BTM 07 2

BTM 012 1 - 2

BTM 011 n/a

JCM-350 4

JCM-620 2

Introduction

Function Declaration

Function Parameters

Return Value

Parameter CANNo

Jetter AG 159

JCM-350-E03 SAE J1939 STX API

Default: 0xFF00

Type Byte Bit group Description

Status 1 8 - 7 Malfunction Indicator Lamp Status

 6 - 5 Red Stop Lamp Status

 4 - 3 Amber Warning Lamp Status

 2 - 1 Protect Lamp Status

Flash 2 8 - 7 Flash Malfunction Indicator Lamp

 6 - 5 Flash Red Stop Lamp

 4 - 3 Flash Amber Warning Lamp

 2 - 1 Flash Protect Lamp

Type Byte Bit group
Value

Description

Status 1 00 Lamps off

 01 Lamps on

Flash 2 00 Slow Flash (1 Hz, 50 % duty cycle)

 01 Fast Flash (2 Hz or faster, 50 % duty cycle)

 10 Reserved

 11 Unavailable / Do Not Flash

Default Value:
ISPN = 0
byOC = 0
byFMI = 0
For older controllers (grandfathered setting):
ISPN = 524287 (0x7FFFF)
byOC = 31 (0x1F)
byFMI = 127 (0x7F)

Result := SAEJ1939GetDM2 (

 1,

 0x00,

 stdm2stat_pow,

 stdm2msg_pow,);

stJ1939DM2stat.lStatus

stJ1939DM2msg

Using this Function

160 Jetter AG

8 SAE J1939 STX API

By calling up the function SAEJ1939GetDM2 (), the JCM-350-E03 requests
the current diagnostics error code (PGN 65227).

#Include "SAEJ1939.stxp"

Var

 bySAEJ1939Channel : Byte;

 own_Source_Address : Byte;

 stdm2stat_pow : TJ1939DM2STAT;

 stdm2msg_pow : Array[10] of STJ1939DM2MSG;

End_Var;

// Initializing CAN 1
bySAEJ1939Channel := 1;

own_Source_Address := 20;

SAEJ1939Init (bySAEJ1939Channel, own_Source_Address);

// Required for a cyclical task
TaskAllEnableCycle ();

EnableEvents;

End_Task;

Task t_RequestPGN_5000 cycle 5000

Var

 Return_value : Int;

End_Var;

// Request the diagnostics error codes DM2 POW
stdm2stat_pow.lBuffer := sizeof (stdm2msg_pow);

Return_value := SAEJ1939GetDM2 (bySAEJ1939Channel, 0x00,
stdm2stat_pow, stdm2msg_pow);

If Return_value Then

 Trace ('DM2 Request failed');

End_If;

End_Task;

JetSym STX Program

Jetter AG 161

JCM-350-E03 SAE J1939 STX API

STX Function SAEJ1939SetSPNConversion

Calling up the function SAEJ1939SetSPNConversion () determines the
configuration of bytes in the message, which is requested using function
SAEJ1939GetDM1 () or SAEJ1939GetDM2 (). In other words, it specifies the
conversion method.

Function SAEJ1939SetSPNConversion (

 CANNo:Int,

 bySA:Byte,

 iConversionMethod:Int,

) :Int;

The function SAEJ1939SetSPNConversion () has the following parameters.

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

bySA Source Address of message
sender

0 ... 253

iConversionMethod Conversion method 1 ... 4
4: Automatic detection
2: Default

The function transfers the following return values to the higher-level program.

Return Value

0 ok

-1 Error when checking parameters

The value of the CANMAX parameter depends on the device. The following
table provides information on this point.

Device CANMAX

JVM-407 2

BTM 07 2

BTM 012 1 - 2

BTM 011 n/a

JCM-350 4

JCM-620 2

Result := SAEJ1939SetSPNConversion (

 1,

 0xAE,

 4);

Introduction

Function Declaration

Function Parameters

Return Value

Parameter CANNo

Using this Function

162 Jetter AG

8 SAE J1939 STX API

STX Function SAEJ1939GetSPNConversion

Calling up the function SAEJ1939GetSPNConversion () ascertains the current
conversion method set.

Function SAEJ1939SetSPNConversion (

 CANNo:Int,

 bySA:Byte,

 iConversionMethod:Int,

) :Int;

The function SAEJ1939GetSPNConversion () has the following parameters.

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

bySA Source Address of message
sender

0 ... 253

iConversionMethod Conversion method 1 ... 4
4: Automatic detection
2: Default

The function transfers the following return values to the higher-level program.

Return Value

0 ok

-1 Error when checking parameters

The value of the CANMAX parameter depends on the device. The following
table provides information on this point.

Device CANMAX

JVM-407 2

BTM 07 2

BTM 012 1 - 2

BTM 011 n/a

JCM-350 4

JCM-620 2

Result := SAEJ1939GetSPNConversion (

 1,

 0xAE,

 actual_conversion_method);

Introduction

Function Declaration

Function Parameters

Return Value

Parameter CANNo

Using this Function

Jetter AG 163

JCM-350-E03 Programming

9 Programming

This chapter is for supporting you in programming the JCM-350-E03 in the
following fields of activity:

 Programming Additional Functions

To be able to program the JCM-350-E03 the following prerequisites must be
fulfilled:

 A USB CAN adaptor between PC and JCM-350-E03 and the driver
software for this adaptor have been installed.
The device is now connected to a PC via CAN bus.

 The programming tool JetSym 4.3 or higher is installed on the PC.

Topic Page
Abbreviations, Module Register Properties and Formats 164
Memory Overview ... 165
Runtime Registers .. 174
Addressing the JXM-IO-E02 via CANopen® .. 178

Purpose of this Chapter

Prerequisites

Contents

164 Jetter AG

9 Programming

Abbreviations, Module Register Properties and Formats

The abbreviations used in this document are listed in the following table:

Abbreviation Meaning

R 100 Register 100

MR 150 Module register 150

Each module register is characterized by certain properties. For many module
registers most properties are identical. For example, their value after reset
is 0. In the following description, module register properties are mentioned
only if a property deviates from the following default properties.

Module Register Properties Default property for most module registers

Access Read / write

Value following a reset 0 or undefined (e.g. release number)

Takes effect Immediately

Write access Always

Data type Integer

The number formats used in this document are listed in the following table:

Notation Number Format

100 Decimal

0x100 Hexadecimal

0b100 Binary

The notation for sample programs used in this document is listed in the
following table:

Notation Meaning
Var, When, Task Key words
BitClear(); Instructions
100 0x100 0b100 Constant numerical value

// This is a comment Comments

// ... Further program processing

Abbreviations

Module Register
Properties

Number Formats

JetSym Sample
Programs

Jetter AG 165

JCM-350-E03 Programming

9.1 Memory Overview

The JCM-350-E03 features several types of program and data memories.
There is volatile memory that requires power to maintain the stored
information, and non-volatile memory which does not require power to
maintain the stored information. This memory is located directly on the CPU.
This chapter gives an overview of the available memory.

Topic Page
File System Memory ... 166
Operating System Memory ... 167
Application Program Memory ... 168
Memory for Non-Volatile Application Program Registers 169
Memory for Non-Volatile Application Program Variables 170
Special Registers .. 172
Flags ... 173

Introduction

Contents

166 Jetter AG

9 Programming

File System Memory

The file system memory is for storing data and program files.

 Internal flash disk
 Non-volatile
 Slow access: milliseconds up to seconds
 Limited number of write/delete cycles: approx. 1 million
 Internal flash disk size: 4 MBytes

 By operating system
 By JetSym
 By means of file commands from within the application program

Introduction

Properties

Memory Access

Jetter AG 167

JCM-350-E03 Programming

Operating System Memory

The OS is stored to a non-volatile flash memory in the CPU. Therefore, the
OS can be executed immediately after the JCM-350-E03 is powered up.

 Internal flash memory for storing the OS
 Internal volatile RAM for storing OS data

 The user is not allowed to directly access the OS memory.
 Changes to the OS can be made by means of an OS update.

 Updating the Operating System on page 209

Introduction

Features

Memory Access

Related Topics

168 Jetter AG

9 Programming

Application Program Memory

By default, the application program is uploaded from JetSym to the controller
and is stored to it.

 Stored as file within the file system
 Default directory: "/app"
 Files may also be stored to other directories (or on SD card)
 Size: 256 KByte max.

 By operating system
 By JetSym
 By means of file commands from within the application program

 Application Program on page 211

Introduction

Properties

Memory Access

Related Topics

Jetter AG 169

JCM-350-E03 Programming

Memory for Non-Volatile Application Program Registers

Non-volatile registers are used to store data which must be maintained when
the controller is de-energized.

 Global variables assigned to permanent addresses (%VL)
 Register variables always occupy 4 bytes
 Register variables are not initialized by the operating system
 Number of register variables: 6.000
 Register numbers: 1,000,000 through 1,005,999

 By JetSym
 From within the application program

In the following program a register variable is incremented by 1 every time the
application program is launched. Thus, it is used to count the number of
program launches.

Var

 ProgramStartCounter: Int At %VL 1000000;

End_Var;

Task Work Autorun

 ProgramStartCounter := ProgramStartCounter + 1;

 Loop

 // ...
 End_Loop;

End_Task;

The JetSym setup pane displays the content of the register variable.

Number Content Description

1 Present content of the
register variable

The content of the register variable is
incremented by 1 every time the program is
launched.

Introduction

Properties

Memory Access

JetSym STX Program

Setup Pane

170 Jetter AG

9 Programming

Memory for Non-Volatile Application Program Variables

Non-volatile variables are used to store data which must be maintained when
the controller is de-energized.

 Global variables assigned to permanent registers (%RL)
 Variables are stored in a compact way
 Size: 120,000 bytes
 Register numbers: 1,000,000 through 1,005,999

 By JetSym
 From within the application program

In the following program 4 non-volatile variables are incremented every
second. The working range of the counters is between 0 and 255 (variable
type: byte). For these 4 variables the 4 bytes of register 1000010 are used.

Var

 Cnt1, Cnt2, Cnt3, Cnt4: Byte At %RL 1000010;

End_Var;

Task Count4 Autorun

 Loop

 Inc(Cnt1);

 Inc(Cnt2, 2);

 Inc(Cnt3, 5);

 Inc(Cnt4, 10);

 Delay(T#1s);

 End_Loop;

End_Task;

The JetSym setup pane displays the content of the variable. As the type of the
4 counters is byte, this will result in counter overflow after a relatively short
time:

Number Content Description

1 Present content of the
variable Cnt1

The content of the variable is incremented by
1 every second.

2 Present content of the
variable Cnt2

The content of the variable is incremented by
2 every second.

Introduction

Properties

Memory Access

JetSym STX Program

Setup Pane

Jetter AG 171

JCM-350-E03 Programming

Number Content Description

3 Present content of the
variable Cnt3

The content of the variable is incremented by
5 every second.

4 Present content of the
variable Cnt4

The content of the variable is incremented by
10 every second.

172 Jetter AG

9 Programming

Special Registers

Special registers are used to control OS functions and to retrieve status
information.

 Global variables assigned to permanent addresses (%VL)
 When the operating system is launched, special registers are initialized

using default values.
 Register numbers: 100,000 through 999,999

 By JetSym
 From within the application program

Introduction

Properties

Memory Access

Jetter AG 173

JCM-350-E03 Programming

Flags

Flags are 1-bit operands. This means they can either have the value TRUE or
FALSE.

 Global variables assigned to permanent addresses (%MX)
 Non-volatile
 Quantity: 256
 Flag numbers: 0 through 255

 Global variables assigned to permanent addresses (%MX)
 Non-volatile
 Overlaid by registers 1000000 through 1000055
 Quantity: 1.792
 Flag numbers: 256 through 2047

 Global variables assigned to permanent addresses (%MX)
 When the operating system is launched, special flags are initialized using

default values.
 Quantity: 256
 Flag numbers: 2048 through 2303

 By JetSym
 From within the application program

In the following program the variable Counter1 is incremented every 500 ms if
flag 1 is set.

Var

 Flag1: Bool At %MX 1;

 Counter1: Int At %VL 1000000;

End_Var;

Task Flag Autorun

 Flag1:= False;

 Loop

 When Flag1 Continue;

 Inc(Counter1);

 Delay(T#500ms);

 End_Loop;

End_Task;

Introduction

Properties of User Flags

Properties of Overlaid
User Flags

Properties of Special
Flags

Memory Access

JetSym STX Program

174 Jetter AG

9 Programming

9.2 Runtime Registers

The JCM-350-E03 provides several registers which are incremented by the
operating system at regular intervals.

These registers can be used to easily carry out time measurements in the
application program.

Topic Page
Description of Runtime Registers ... 175
Sample Program - Runtime Registers .. 177

Introduction

Application

Contents

Jetter AG 175

JCM-350-E03 Programming

Description of Runtime Registers

The following registers are used in this manual:

Registers Description

R 201000 Application time base in milliseconds

R 201001 Application time base in seconds

R 201002 Application time base in R 201003 * 10 milliseconds

R 201003 Application time base unit for R 201002

R 201004 System time base in milliseconds

Application time base in milliseconds

Every millisecond this register is incremented by 1.

Register properties

Values -2,147,483,648 ... 2,147,483,647 (with overflow function)

Application time base in seconds

Every second this register is incremented by 1.

Register properties

Values -2,147,483,648 ... 2,147,483,647 (with overflow function)

Application time base in application time base units

Every [201003] * 10 milliseconds this register is incremented by 1. Using the
reset value in register 201003 of 10, this register is incremented every 100
milliseconds.

Register properties

Values -2,147,483,648 ... 2,147,483,647 (with overflow function)

Overview of Registers

R 201000

R 201001

R 201002

176 Jetter AG

9 Programming

Application time base unit for R 201002

This register contains the multiplier for runtime register R 201002.

Register properties

Values 1 ... 2,147,483,647 (* 10 ms)

Value following reset 10 (--> 100 ms)

Enabling Conditions after at least 10 ms

System time base in milliseconds

Every millisecond this register is incremented by 1.

Register properties

Values -2,147,483,648 ... 2,147,483,647 (with overflow function)

Access Read access

R 201003

R 201004

Jetter AG 177

JCM-350-E03 Programming

Sample Program - Runtime Registers

Measure how much time it takes to store variable values to a file.

Before storing the values register 201000 is set to 0. Once the values have
been stored, from this register can be seen how much time it took to store the
values [in milliseconds].

Var

 DataArray: Array[2000] Of Int;

 File1: File;

 WriteTime: Int;

 WriteIt: Bool;

 MilliSec: Int At %VL 201000;

End_Var;

Task WriteToFile Autorun

 Loop

 // clear start flag
 WriteIt := False;

 // wait until start flag set by user
 When WriteIt Continue;

 // open file in write mode
 If FileOpen(File1, '/Test.dat', fWrite) Then

 // restart timer register
 MilliSec := 0;

 // write array data to file
 FileWrite(File1, DataArray,

 SizeOf(DataArray));

 // capture time
 WriteTime := MilliSec;

 FileClose(File1);

 // show measured time
 Trace(StrFormat('Time : %d [ms]$n',

 WriteTime));

 Else

 // show error message
 Trace('Unable to open file!$n');

 End_If;

 End_Loop;

End_Task;

Task

Solution

JetSym STX Program

178 Jetter AG

9 Programming

9.3 Addressing the JXM-IO-E02 via CANopen®

This chapter describes how to address the JXM-IO-E02 by means of
JetSym STX.

The JCM-350-E03 consists of the controller JCM-350 and the I/O module
JXM-IO-E02 which are internally connected via CAN bus. The CAN bus is
brought out to allow communication with other CANopen® nodes. The default
node ID of the JXM-IO-E02 is 16, the default node ID of the JCM-350 is 127.
This way, both components within the JCM-350-E03 can be addresses
separately.

Topic Page
Digital Outputs ... 179
Digital Inputs ... 184
H-Bridge .. 189
PWM Outputs .. 192

Purpose of this Chapter

JCM-350-E03 -
Configuration

Contents

Jetter AG 179

JCM-350-E03 Programming

9.4 Digital Outputs

This chapter describes how to address digital outputs by using PDO and SDO.

Topic Page
Reading In the Number of Available Digital Outputs Per SDO 180
Setting Digital Outputs Per PDO .. 182

Introduction

Contents

180 Jetter AG

9 Programming

Reading In the Number of Available Digital Outputs Per SDO

Read in the number of available digital outputs on the JXM-IO-E02.

SDO is used to access the object "Universal I/O" in the object dicitionary and
to obtain its value.

Initial commissioning of JCM-350-E03 has been completed. This means:

 Installation of the device is completed
 The device is connected via USB CAN adaptor to the PC.
 In JetSym an active connection to the JCM-350-E03 exists.

The program accesses the object "Universal I/O" with index 0x2101 and
sub-index 6 on the JXM-IO-E02 by means of the CANopen® STX-API function
CanOpenUploadSDO() and reads out its value. This value is stored to the
variable Data_Outputs. The content of this variable can be displayed in the
JetSym setup pane.

Const

 CAN_CONTROLLER_0 = 0;

 //Node ID of the controller
 NodeID_Node_0 = 0x7F;

 //Node ID of the I/O module
 NodeID_Node_1 = 0x10;

End_Const;

Var

 SW_Version: String;

 busy: int;

 Data_Outputs: Long;

 Objectindex: Long;

 Subindex: Byte;

End_Var;

Task Main Autorun

// Software version of the controller
SW_Version := 'v4.3.0';

// Initializing CAN 0
CanOpenInit(CAN_CONTROLLER_0, NodeID_Node_0, SW_Version);

// Obtaining the number of available digital outputs per SDO

// Digital Output Object
Objectindex := 0x2101;

Subindex := 6;

Task

Solution

Prerequisites

How it Works

JetSym STX Program

Jetter AG 181

JCM-350-E03 Programming

CanOpenUploadSDO(CAN_CONTROLLER_0, NodeID_Node_1, Objectindex,
Subindex, CANOPEN_DWORD, sizeof(Data_Outputs), Data_Outputs,
busy);

End_Task;

If the variable "Data_Outputs" has been selected in the JetSym setup pane,
the value in the column "Content" shows that 16 outputs are available:

Setup Pane

182 Jetter AG

9 Programming

Setting Digital Outputs Per PDO

Set a digital output on the JXM-IO-E02.

By means of a PDO the message for setting the digital output is sent to the
CAN bus.

Initial commissioning of JCM-350-E03 has been completed. This means:

 Installation of the device is completed
 The device is connected via USB CAN adaptor to the PC.
 In JetSym an active connection to the JCM-350-E03 exists.

First, the controller JCM-350 is initialized. Then, it sends the data required for
setting the digital output to the CAN bus by using the function
CanOpenAddPDOTx(). Please note that the I/O module JXM-IO-E02
receives process data on the CAN bus only on request. This is achieved by
the parameter "CANopen_ASYNCPDORTRONLY". Following this, the
JXM-IO-E02 is set into the state "operational". Now, the JXM-IO-E02 receives
the data in question and sets the digital outputs as requested.

Const

 CAN_CONTROLLER_0 = 0;

 //Node ID of the controller
 NodeID_Node_0 = 0x7F;

 //Node ID of the I/O module
 NodeID_Node_1 = 0x10;

 Event_Time = 100;

 Inhibit_Time = 20;

End_Const;

Var
// Variable for setting outputs
 Data_Outputs: Word;

 SW_Version: String;

End_Var;

Task Main Autorun

// Setting output 1
Data_Outputs:= 1;

// Software version of the controller
SW_Version := 'v4.3.0';

Task

Solution

Prerequisites

How it Works

JetSym STX Program

Jetter AG 183

JCM-350-E03 Programming

// Initializing CAN 0
CanOpenInit(CAN_CONTROLLER_0, NodeID_Node_0, SW_Version);

// Sending process data to the bus
CanOpenAddPDOTx(CAN_CONTROLLER_0,
CANOPEN_PDO1_TX(NodeID_Node_1), 0, CANOPEN_WORD,
sizeof(Data_Outputs), Data_Outputs, Event_Time, Inhibit_Time,
CANOPEN_ASYNCPDORTRONLY);

// All devices on the CAN bus have the status of PREOPERATIONAL
// Setting all devices on the CAN bus to OPERATIONAL status
CanOpenSetCommand(CAN_CONTROLLER_0,
CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES, CAN_CMD_NMT),
CAN_NMT_START);

End_Task;

184 Jetter AG

9 Programming

9.5 Digital Inputs

This chapter describes how to read and configure digital inputs by using
PDO and SDO.

Topic Page
Digital Inputs SDO... 185
Digital Inputs PDO... 187

Introduction

Contents

Jetter AG 185

JCM-350-E03 Programming

Digital Inputs SDO

Set a digital input on the JXM-IO-E02 to "Active-High" by means of the internal
pulldown resistors.

SDO is used to access the object "Digital Inputs" and to set input 1 to
"Active-High".

Initial commissioning of JCM-350-E03 has been completed. This means:

 Installation of the device is completed
 The device is connected via USB CAN adaptor to the PC.
 In JetSym an active connection to the JCM-350-E03 exists.

The program accesses the object "Digital Inputs" with index 0x2100 and
sub-index 2 by means of the CANopen® STX-API function
CanOpenDownloadSDO(). Then, input 1 is set to "Active-High" (bit 0 = 1).

Const

 CAN_CONTROLLER_0 = 0;

 //Node ID of the controller
 NodeID_Node_0 = 0x7F;

 //Node ID of the I/O module
 NodeID_Node_1 = 0x10;

End_Const;

Var

 busy: Int;

 SW_Version: String;

 Inputs_Mode: Long;

 Objectindex: Word;

 Subindex: Byte;

End_Var;

Task Main Autorun

// Software version of the controller
SW_Version := 'v4.3.0';

// First input Active-High
Inputs_Mode:= 1;

// Initializing CAN 0

CanOpenInit(CAN_CONTROLLER_0, NodeID_Node_0, SW_Version);

Objectindex := 0x2100;

Subindex := 2;

Task

Solution

Prerequisites

How it Works

JetSym STX Program

186 Jetter AG

9 Programming

// Set input 1 to Active-High
CanOpenDownloadSDO(CAN_CONTROLLER_0, NodeID_Node_1, Objectindex,
Subindex, CANOPEN_DWORD, sizeof(Inputs_Mode), Inputs_Mode, busy);

End_Task;

Jetter AG 187

JCM-350-E03 Programming

Digital Inputs PDO

Read in the digital inputs on the JXM-IO-E02.

PDO is used to enter the process data to be received.

Initial commissioning of JCM-350-E03 has been completed. This means:

 Installation of the device is completed
 The device is connected via USB CAN adaptor to the PC.
 In JetSym an active connection to the JCM-350-E03 exists.

First, the controller JCM-350 is initialized. Then, it enters the process data
required for reading the digital inputs by using the function
CanOpenAddPDORx(). Please note that the I/O module JXM-IO-E02 sends
process data only on request. This is achieved by the parameter
"CANOPEN_ASYNCPDORTRONLY". Following this, the JXM-IO-E02 is set
into the state "operational". Now, the JXM-IO-E02 sends the requested data.

Const

 CAN_CONTROLLER_0 = 0;

 //Node ID of the controller
 NodeID_Node_0 = 0x7F;

 //Node ID of the I/O module
 NodeID_Node_1 = 0x10;

 Event_Time = 100;

 Inhibit_Time = 20;

End_Const;

Var

// State of the digital inputs
 Data_Inputs: Word;

 SW_Version: String;

End_Var;

Task Main Autorun

// Software version of the controller
SW_Version := 'v4.3.0';

// Initializing CAN 0

CanOpenInit(CAN_CONTROLLER_0, NodeID_Node_0, SW_Version);

// Entering process data to be sent

Task

Solution

Prerequisites

How it Works

JetSym STX Program

188 Jetter AG

9 Programming

CanOpenAddPDORx(CAN_CONTROLLER_0,
CANOPEN_PDO1_RX(NodeID_Node_1), 2, CANOPEN_WORD,
sizeof(Data_Inputs), Data_Inputs, Event_Time, Inhibit_Time,
CANOPEN_ASYNCPDORTRONLY);

// All devices on the CAN bus have the status of PREOPERATIONAL
// Setting all devices on the CAN bus to OPERATIONAL status
CanOpenSetCommand(CAN_CONTROLLER_0,
CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES, CAN_CMD_NMT),
CAN_NMT_START);

End_Task;

If the variable "Data_Inputs" has been selected in the JetSym setup pane, its
content is displayed as shown below. The value of this variable depends on
the state of the digital inputs and on their configuration (active-high or
active-low). In the given case, input 1 has been configured as active-high and
the other four inputs as active-low. These inputs are not connected.

Setup Pane

Jetter AG 189

JCM-350-E03 Programming

9.6 H-Bridge

This chapter describes how the H-bridge is configured by means of SDO and
how a PWM signal with a static duty-cycle is output by using PDO.

Topic Page
Configuring the H-Bridge by Using SDO and PDO 190

Introduction

Contents

190 Jetter AG

9 Programming

Configuring the H-Bridge by Using SDO and PDO

A PWM signal with a static duty-cycle is to be output at the H-bridge outputs.

First, SDO is used to access the object "H-bridge" and to select the operating
mode. Then, a PWM signal with a static duty-cycle is output by means of
PDO.

Initial commissioning of JCM-350-E03 has been completed. This means:

 Installation of the device is completed
 The device is connected via USB CAN adaptor to the PC.
 In JetSym an active connection to the JCM-350-E03 exists.

The program has two main functions:

 The program first accesses the object "H-Bridge" with index 0x2500 and
sub-index 2 by means of the CANopen® STX-API function
CanOpenDownloadSDO(). The value 0x02 is entered into sub-Index 2 to
select the output mode. In this mode, the output connected to pin 69 is a
PWM-controlled active-high output, whereas the output connected to pin
70 is always low.

 Then, the CANopen® STX-API function CanOpenAddPDOTx() is used to
set the PWM duty cycle of the H-bridge to 150. Please note that the I/O
module JXM-IO-E02 receives process data on the CAN bus only on
request. This is achieved by the parameter
"CANopen_ASYNCPDORTRONLY". Following this, the JXM-IO-E02 is set
into the state "operational". Now, the JXM-IO-E02 receives the data in
question and sets the PWM duty cycle as requested.

Const

 CAN_CONTROLLER_0 = 0;

 //Node ID of the controller
 NodeID_Node_0 = 0x7F;

 //Node ID of the I/O module
 NodeID_Node_1 = 0x10;

 Event_Time = 100;

 Inhibit_Time = 20;

End_Const;

Var

 busy: Int;

 SW_Version: String;

 HBridge_Mode: Long;

 PWM_Value: Long;

 Objectindex: Word;

 Subindex: Byte;

End_Var;

Task

Solution

Prerequisites

How it Works

JetSym STX Program

Jetter AG 191

JCM-350-E03 Programming

Task Main Autorun

// Software version of the controller
SW_Version := 'v4.3.0';

// Mode
HBridge_Mode:= 0x02;

// Init PWM
PWM_Value:= 150;

// Initializing CAN 0

CanOpenInit(CAN_CONTROLLER_0, NodeID_Node_0, SW_Version);

// SDO
Objectindex := 0x2500;

Subindex := 2;

// Mode
CanOpenDownloadSDO(CAN_CONTROLLER_0, NodeID_Node_1, Objectindex,
Subindex, CANOPEN_DWORD, sizeof(HBridge_Mode), HBridge_Mode,
busy);

// PWM Value
CanOpenAddPDOTx(CAN_CONTROLLER_0,
CANOPEN_PDO2_TX(NodeID_Node_1), 0, CANOPEN_WORD,
sizeof(PWM_Value), PWM_Value, Event_Time, Inhibit_Time,
CANOPEN_ASYNCPDORTRONLY);

// All devices on the CAN bus have the status of PREOPERATIONAL
// Setting all devices on the CAN bus to OPERATIONAL status
CanOpenSetCommand(CAN_CONTROLLER_0,
CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES, CAN_CMD_NMT),
CAN_NMT_START);

End_Task;

192 Jetter AG

9 Programming

9.7 PWM Outputs

This chapter describes how the PWM output 1 is configured by means of SDO
and how a PWM signal with a static duty-cycle is output by using PDO.

Topic Page
Configuring the PWM Output 1 by Using SDO and PDO 193

Introduction

Contents

Jetter AG 193

JCM-350-E03 Programming

Configuring the PWM Output 1 by Using SDO and PDO

A PWM signal with a static duty-cycle is to be output at PWM output 1.

First, SDO is used to access the object "PWM" and to select the operating
mode. Then, a PWM signal with a static duty-cycle is output at PWM output 1
by means of PDO.

Initial commissioning of JCM-350-E03 has been completed. This means:

 Installation of the device is completed
 The device is connected via USB CAN adaptor to the PC.
 In JetSym an active connection to the JCM-350-E03 exists.

The program has two main functions:

 The program first accesses the object "PWM" with index 0x2400 and
sub-index 2 by means of the CANopen® STX-API function
CanOpenDownloadSDO(). The value 0x02 is entered into sub-Index 2 to
select the output mode. In this mode, a PWM signal with static duty-cycle is
output.

 Then, the CANopen® STX-API function CanOpenAddPDOTx() is used to
set the PWM duty-cycle of PWM output 1. Please note that the I/O module
JXM-IO-E02 receives process data on the CAN bus only on request. This
is achieved by the parameter "CANopen_ASYNCPDORTRONLY".
Following this, the JXM-IO-E02 is set into the state "operational". Now, the
JXM-IO-E02 receives the data in question and sets the PWM duty cycle at
PWM output 1 as requested.

Const

 CAN_CONTROLLER_0 = 0;

 //Node ID of the controller
 NodeID_Node_0 = 0x7F;

 //Node ID of the I/O module
 NodeID_Node_1 = 0x10;

 Event_Time = 100;

 Inhibit_Time = 20;

End_Const;

Var

 busy: Int;

 SW_Version: String;

 PWM_Mode: Long;

 PWM_Value: Long;

 Objectindex: Word;

 Subindex: Byte;

End_Var;

Task

Solution

Prerequisites

How it Works

JetSym STX Program

194 Jetter AG

9 Programming

Task Main Autorun

// Software version of the controller
SW_Version := 'v4.3.0';

// Mode
PWM_Mode:= 0x02;

// Init PWM
PWM_Value:= 150;

// Initializing CAN 0

CanOpenInit(CAN_CONTROLLER_0, NodeID_Node_0, SW_Version);

// SDO
Objectindex := 0x2400;

Subindex := 2;

// Mode
CanOpenDownloadSDO(CAN_CONTROLLER_0, NodeID_Node_1, Objectindex,
Subindex, CANOPEN_DWORD, sizeof(PWM_Mode), PWM_Mode, busy);

// PWM Value
CanOpenAddPDOTx(CAN_CONTROLLER_0,
CANOPEN_PDO2_TX(NodeID_Node_1), 2, CANOPEN_WORD,
sizeof(PWM_Value), PWM_Value, Event_Time, Inhibit_Time,
CANOPEN_ASYNCPDORTRONLY);

// All devices on the CAN bus have the status of PREOPERATIONAL
// Setting all devices on the CAN bus to OPERATIONAL status
CanOpenSetCommand(CAN_CONTROLLER_0,
CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES, CAN_CMD_NMT),
CAN_NMT_START);

End_Task;

Jetter AG 195

JCM-350-E03 Protection and Diagnostic Features - JXM-IO-E02

10 Protection and Diagnostic Features - JXM-IO-E02

This chapter describes the available protection and diagnostic features
implemented on the JXM-IO-E02. The following features are currently
supported:

 Detecting faults in the application program or visualization.
 Identifying the root cause of a fault.
 Troubleshooting an error that caused a fault message.

To be able to troubleshoot a fault on the JXM-IO-E02 module the following
prerequisites must be fulfilled:

 The JXM-IO-E02 module is connected to a controller or is integrated into
the controller JCM-350-E03.

 The controller is connected to a PC.
 The programming tool JetSym is installed on the PC.
 The minimum requirements regarding modules, controllers and software

are fulfilled.

When a fault is detected, the module JXM-IO-E02 will disable the function that
caused the fault. It will transmit a CANopen® Emergency Object to inform the
controller of the problem. The fault is also recorded in a history list of error
events. These error events are compliant to the CANopen® "Pre-defined Error
Field".
The external controller can immediately reactivate the function, but as long as
the fault remains, the module JXM-IO-E02 will again disable the function and
retransmit the error notification.

Topic Page
Standard Feed Power Input (STANDARD FEED) 196
Safety Feed Power Input (SAFETY FEED) .. 197
Digital Outputs 1 ... 8 (Standard Outputs) ... 198
Digital Outputs 9 ... 16 (Safety Outputs) ... 199
Analog Output ... 200
PWM Outputs 1 ... 3 ... 201
H-Bridge .. 202
Switch Feed Outputs 1 ... 2 .. 203
Safety Switch (Relay) ... 204
5 V Reference Output ... 205
Generic Fault Detection .. 206

Purpose of this Chapter

Prerequisites

Background

Contents

196 Jetter AG

10 Protection and Diagnostic Features - JXM-IO-E02

Standard Feed Power Input (STANDARD FEED)

The input current on STANDARD FEED is monitored by software. The
software will issue an over-current error notification if the current exceeds
30 A.
The software implements a function allowing temporary over-current. This is
useful in situations where high peak currents are required.

This error may be caused by the following root causes:

 The maximum current of 30 A has been exceeded.
 The time limit for overcurrent has been exceeded.

The module responds to this error in the following levels:

Level Description

1 The module will send a CANopen® emergency object to the controller.

2 The module will block the function that has caused the error.

The module will set the corresponding bit in the CANopen® error register and
will send the following error code:

Error Type Error Code Error Register

Over-current 0x2323 2

The controller must respond to the error message and disable the outputs on
the module JXM-IO-E02.

Detecting the Error

Root Cause of Error

Response of the Module
to this Error

Fixing the Root Cause

Jetter AG 197

JCM-350-E03 Protection and Diagnostic Features - JXM-IO-E02

Safety Feed Power Input (SAFETY FEED)

The input current on SAFETY FEED is monitored by software. The software
will issue an over-current error notification if the current exceeds 30 A.
The solid state switch used to disable the safety outputs (safety switch) also
implements a hardware limit. The safety switch will switch off automatically if
the switch temperature rises too high and the set actual current is exceeded.
The actual current that will cause the safety switch to disconnect is dependent
on the ambient temperature.
The software implements a function allowing temporary over-current. This is
useful in situations where high peak currents are required.

This error may be caused by the following root causes:

 The maximum current of 30 A has been exceeded.
 The time limit for over-current has been exceeded.
 If the safety switch temperature rises too high and the actual current is at

least 30 A.

The module responds to this error in the following levels:

Level Description

1 The module will send a CANopen® emergency object to the controller.

2 The module will block the function that has caused the error.

The module will set the corresponding bit in the CANopen® error register and
will send the following error code:

Error Type Error Code Error Register

Over-current 0x2322 2

Safety Switch Failure 0x5001 8

If the switch fails in the ON state, the JCM-350-E03 will additionally issue the
"Safety Switch Failure" notification.

Detecting the Error

Root Cause of Error

Response of the Module
to this Error

198 Jetter AG

10 Protection and Diagnostic Features - JXM-IO-E02

Digital Outputs 1 ... 8 (Standard Outputs)

A threshold can be programmed for both over-current and cable breakage (no
load) via the System Parameters interface. Over-current limit can be set to
between 100 mA and 2.5 A per channel. The no-load threshold can be set
between 50mA and 250mA.
Note that this no-load threshold is shared for all digital outputs. No-load
detection can be enabled or disabled for individual output channels. A no-load
fault can only be detected when a channel is switched on (enabled).
The software implements a function allowing temporary over-current. This is
useful in situations where high peak currents are required.

This error may be caused by the following root causes:

 The programmed limit for over-current has been exceeded.
 The load current has exceeded 10 A and the over-current situation has

exceeded 180 ms.
 The programmed limit for no-load has been exceeded.

The module responds to this error in the following levels:

Level Description

1 The module will send a CANopen® emergency object to the controller.

2 The module will block the function that has caused the error.

The module will set the corresponding bit in the CANopen® error register and
will send the following error code:

Error Type Error Code Error Register

Short to GND 0x9000 - 0x9007 1

Over-current 0x2300 - 0x2307 2

No load (cable breakage) 0x23A0 - 0x23A7 2

Detecting the Error

Root Cause of Error

Response of the Module
to this Error

Jetter AG 199

JCM-350-E03 Protection and Diagnostic Features - JXM-IO-E02

Digital Outputs 9 ... 16 (Safety Outputs)

A threshold can be programmed for both over-current and cable breakage (no
load) via the System Parameters interface. Over-current limit can be set to
between 100 mA and 5 A per channel. The no-load threshold can be set
between 50mA and 250mA.
Note that this no-load threshold is shared for all digital outputs. No-load
detection can be enabled or disabled for individual output channels. A no-load
fault can only be detected when a channel is switched on (enabled).
The software implements a function allowing temporary over-current. This is
useful in situations where high peak currents are required.

This error may be caused by the following root causes:

 The programmed limit for over-current has been exceeded.
 The load current has exceeded 10 A and the over-current situation has

exceeded 180 ms.
 The programmed limit for no-load has been exceeded.

The module responds to this error in the following levels:

Level Description

1 The module will send a CANopen® emergency object to the controller.

2 The module will block the function that has caused the error.

The module will set the corresponding bit in the CANopen® error register and
will send the following error code:

Error Type Error Code Error Register

Short to GND 0x9010 - 0x9017 1

Over-current 0x2310 - 0x2317 2

No load (cable breakage) 0x23B0 - 0x23B7 2

Detecting the Error

Root Cause of Error

Response of the Module
to this Error

200 Jetter AG

10 Protection and Diagnostic Features - JXM-IO-E02

Analog Output

The analog output will detect short circuit to ground faults.
No other faults are tested for on the Analog Output because the output is both
current and voltage controlled. The controller algorithm is responsible to keep
the output voltage and current within specified limits.

This error may be caused by the following root cause:

 When a short to ground is detected, the output is disabled and the fault
notification is sent out.

The module responds to this error in the following levels:

Level Description

1 The module will send a CANopen® emergency object to the controller.

2 The module will block the function that has caused the error.
The analog output will remain disabled until the module is instructed to set
the analog output to a normal mode again or until a power cycle has
occurred.

The module will set the corresponding bit in the CANopen® error register and
will send the following error code:

Error Type Error Code Error Register

Short to GND 0x9020 1

Detecting the Error

Root Cause of Error

Response of the Module
to this Error

Jetter AG 201

JCM-350-E03 Protection and Diagnostic Features - JXM-IO-E02

PWM Outputs 1 ... 3

The PWM outputs can be used in one of two modes:

 Current-controlled output
 PWM output with static duty cycle.

When these outputs are used as current-controlled outputs, the module
JXM-IO-E02 will detect short circuit to ground and no load faults. No load is
defined by a current threshold which is user selectable through the system
parameters interface.
When a PWM output is set as a static duty-cycle output, the module
JXM-IO-E02 will additionally detect over-current faults. These faults are also
defined by a user selectable current threshold.

This error may be caused by the following root causes:

 The programmed limit for over-current has been exceeded.
 The programmed limit for no-load has been exceeded.
 A short-circuit to ground has occurred.

The module responds to this error in the following levels:

Level Description

1 The module will send a CANopen® emergency object to the controller.

2 The module will block the function that has caused the error.

The module will set the corresponding bit in the CANopen® error register and
will send the following error code:

Error Type Error Code Error Register

Short to GND 0x90D0 - 0x90D2 1

Over-current 0x23D0 - 0x23D2 2

No load (cable breakage) 0x23C0 - 0x23C2 2

Detecting the Error

Root Cause of Error

Response of the Module
to this Error

202 Jetter AG

10 Protection and Diagnostic Features - JXM-IO-E02

H-Bridge

Full protection is only available when the H-Bridge is used in the H-Bridge
PWM output modes.
If the H-Bridge is used as two independent digital outputs, only short-circuit to
ground fault detection is possible. This detection is unable to detect which of
the two outputs caused the problem and will disable both outputs if a problem
has been detected.
Over-current and no load faults have user selectable thresholds. These can be
set through the System Parameters interface.

This error may be caused by the following root causes:

 The programmed limit for over-current has been exceeded.
 The programmed limit for no-load has been exceeded.
 A short-circuit to ground has occurred.

The module responds to this error in the following levels:

Level Description

1 The module will send a CANopen® emergency object to the controller.

2 The module will block the function that has caused the error.

The module will set the corresponding bit in the CANopen® error register and
will send the following error code:

Error Type Error Code Error Register

Short to GND 0x9021 1

Over-current 0x2321 2

No load (cable breakage) 0x2331 2

Detecting the Error

Root Cause of Error

Response of the Module
to this Error

Jetter AG 203

JCM-350-E03 Protection and Diagnostic Features - JXM-IO-E02

Switch Feed Outputs 1 ... 2

Although the fault condition is "over-temperature", this fault encompasses both
short-circuit to ground and over-current faults. If either fault occurs, the module
JXM-IO-E02 will issue an over-temperature error for the output.

This error may be caused by the following root causes:

 The programmed limit for over-current has been exceeded.
 A short-circuit to ground has occurred.

The module responds to this error in the following levels:

Level Description

1 The module will send a CANopen® emergency object to the controller.

2 The module will block the function that has caused the error.

The module will set the corresponding bit in the CANopen® error register and
will send the following error code:

Error Type Error Code Error Register

Over-temperature 0x4231 - 0x4232 4

Detecting the Error

Root Cause of Error

Response of the Module
to this Error

204 Jetter AG

10 Protection and Diagnostic Features - JXM-IO-E02

Safety Switch (Relay)

This error may be caused by the following root cause:

 The safety switch (relay) fails to disable the safety outputs.

The module will set the corresponding bit in the CANopen® error register and
will send the following error code to the controller:

Error Type Error Code Error Register

Over-temperature 0x4231 - 0x4232 4

Root Cause of Error

Response of the Module
to this Error

Jetter AG 205

JCM-350-E03 Protection and Diagnostic Features - JXM-IO-E02

5 V Reference Output

This error may be caused by the following root causes:

 The limit for over-current has been exceeded.
 A short-circuit to ground has occurred.

The module responds to this error in the following levels:

Level Description

1 The module will send a CANopen® emergency object to the controller.

2 The module will block the function that has caused the error.

The module will set the corresponding bit in the CANopen® error register and
will send the following error code:

Error Type Error Code Error Register

Over-current 0x2320 2

Root Cause of Error

Response of the Module
to this Error

206 Jetter AG

10 Protection and Diagnostic Features - JXM-IO-E02

Generic Fault Detection

The module JXM-IO-E02 can also detect certain faults which are not directly
linked to a specific input or output, such as:

 Internal Communication Failure
 Parameter Mismatch

If the internal communications of the module JXM-IO-E02 fail, this error is
reported. If this event occurs, certain inputs and/or output may no longer be
controllable and the external controller should consider it a serious failure.

This fault indicates that the two copies of System Parameters stored inside the
module JXM-IO-E02 are no longer synchronized. Detection of this fault is not
currently implemented, but it can be added in the near future.

The module responds to this error in the following levels:

Level Description

1 The module will send a CANopen® emergency object to the controller.

2 The module will block the function that has caused the error.

The module will set the corresponding bit in the CANopen® error register and
will send the following error code:

Error Type Error Code Error Register

Internal Communication
Failure

0x5002 5

Parameter Mismatch 0x6300 6

Fault Description

Detection of internal
communcation errors

Detection of parameter
mismatch

Response of the Module
to this Error

Jetter AG 207

JCM-350-E03 Operating System Update

11 Operating System Update

Jetter AG are continuously striving to enhance the operating systems for their
controllers and peripheral modules. Enhancing means adding new features,
upgrading existing functions and fixing bugs.
This chapters describes how to perform an operating system update for a
system equipped with a JCM-350-E03 controller.

You can download operating systems from the Jetter AG homepage at
www.jetter.de http://www.jetter.de. You get to the OS files by clicking on the
quick link "Operating System Download" located on the website of the
corresponding controller or module.

The operating system of the following mobile controllers can be updated:

 Controller JCM-350-E03

Topic Page
Updating the Operating System of the Controller 208

Introduction

Downloading an
Operating System

Mobile Controllers

Contents

http://www.jetter.de/

208 Jetter AG

11 Operating System Update

11.1 Updating the Operating System of the Controller

This chapter describes how to update the OS of the controller JCM-350-E03.
To transfer the OS file to the controller the following options are available:

 Using the OS update feature of the programming tool JetSym

Topic Page
Operating System Update Using JetSym ... 209

Introduction

Contents

Jetter AG 209

JCM-350-E03 Operating System Update

Operating System Update Using JetSym

The programming tool JetSym offers an easy way to transfer an OS file to the
JCM-350-E03.

 An OS file for the JCM-350-E03 must be available.
 An active CAN connection between JetSym and the controller is set up.
 During booting, the controller is waiting for the OS update, or the OS is

already running.
 Make sure that the controller is not de-energized during OS update.

To update the OS proceed as follows:

Step Action

1 In JetSym, click on the menu Build and select item Update OS..., or click
in the configuration window of the Hardware Manager on OS Update.
Result: The file selection box opens.

2 Select the new OS file here.
Result: In JetSym, a confirmation dialog opens.

3 Launch the OS upload by clicking the button Yes.

4 Wait until the update process is completed.

5 Reboot the controller to launch the updating operating system.

Introduction

Prerequisites

Updating the OS

Jetter AG 211

JCM-350-E03 Application Program

12 Application Program

This chapter explains how the application program is stored to the
JCM-350-E03 and how the user selects the program to be executed.

This chapter requires knowledge on how to create application programs in
JetSym and how to transmit them via the JCM-350-E03 file system.

Topic Page
Loading an Application Program ... 212
Application Program - Default Path .. 213

Introduction

Required Programmer's
Skills

Contents

212 Jetter AG

12 Application Program

Loading an Application Program

If mode selector S11 is in RUN position, the application program is loaded and
executed by the file system either on relaunch of the application program via
JetSym or on re-boot of the controller.

The application program is loaded by the controller's OS as follows:

State Description

1 The OS reads the file "/app/start.ini" from the internal flash disk.

2 The OS reads out the path to the application program from the entry
"Project".

3 The OS reads out the program name from the entry "Program". The path
is relative to the directory "/app".

4 The OS loads the application program from the file <Project>/<Program>.

Introduction

Loading Process

Jetter AG 213

JCM-350-E03 Application Program

Application Program - Default Path

When uploading the application program from JetSym to the JCM-350-E03, it
is stored as file to the internal flash disk. Path and file name are entered into
the file "/app/start.ini".

In the directory "/app" JetSym, by default, creates a subdirectory and assigns
the project name to it. Then, JetSym stores the application program to this
subdirectory assigning the extension "*.es3" to it. Path and file names are
always converted into lower case letters.

This file is a text file with one section holding two entries:

Element Description

[Startup] Section name

Project Path to the application program. This path is relative
to "/app".

Program Name of the application program file

Example:

[Startup]

Project = test_program

Program = test_program.es3

Result: The application program is loaded from the file
"/app/test_program/test_program.es3".

 Storing the Application Program to the SD Card

Introduction

Path and File Name

File "/app/start.ini"

Related Topics

Jetter AG 215

JCM-350-E03 Quick Reference - JCM-350

13 Quick Reference -
JCM-350

OS version

This quick reference summarizes the registers and flags of the controller
JCM with OS version 1.09.0.200

General Overview - Registers

100000 ... 100999 Electronic Data Sheet (EDS)
101000 ... 101999 Configuration

200000 ... 209999 General system registers
210000 ... 219999 Application program
310000 ... 319999 File system / data files

1000000 ... 1005999 JCM-350: Application registers (remanent;
Int/Float)

General Overview - Flags

0 ... 255 Application flags (remanent)
256 ... 2047 overlaid by registers 1000000 through

1000055
2048 ... 2303 Special flags

Electronic Data Sheet (EDS)

100500 Interface (0 = CPU)
[Identification]
100600 Internal version number
100601 Module ID
100602 ...
100612

Module name (register string)

100613 PCB revision
100614 PCB options
[Production]
100700 Internal version number
100701 ...
100707

Serial number (register string)

100708 Day
100709 Month
100710 Year
100711 TestNum.
100712 TestRev.
[Features] I/O Module

100808 Features
100809 Diagnostics mask
[Features] JCM-350
100800 Internal version number
100801 MAC Address (Jetter)
100802 MAC Address (device)
100803 Serial interface
100804 Switch
100805 STX
100806 Remanent registers
100808 CAN bus
100809 SD memory card
100810 Motion control
100811 Intelligent slave modules
100812 HTTP / e-mail
100813 Modbus/TCP
100815 LED for SD memory card
100816 User LEDs
100817 RTC

Configuration

 From file /system/ config.ini
101100 IP address
101101 Subnet mask

101102 Default gateway
101103 DNS server
101132 Host name suffix type
101133 ...
101151

Host name (register string)

101164 JetIP port number
101165 STX debugger port number
 Used by the system

101200 IP address
101201 Subnet mask
101202 Default gateway
101203 DNS server
101232 Host name suffix type
101233 ...
101251

Host name (register string)

101264 JetIP port number
101265 STX debugger port number

General System Registers

200000 OS version (major * 100 + minor)
200001 Application program is running (bit 0 = 1)
200008

Error register (identical with 210004)
Bit 1: Error on JX3 bus
Bit 2: Error on JX2 bus
Bit 8: Illegal jump
Bit 9: Illegal call
Bit 10: Illegal index
Bit 11: Illegal opcode
Bit 12: Division by 0
Bit 13: Stack overflow
Bit 14: Stack underflow
Bit 15: Illegal stack
Bit 16: Error when loading application program
Bit 24: Timeout - cycle time
Bit 25: Timeout - task lock
Bit 31: Unknown error

200168 Bootloader version (IP format)
200169 OS version (IP format)
200170 Controller type (340/350)

201000 Runtime registers in milliseconds (rw)
201001 Runtime registers in seconds (rw)
201002 Runtime register in register 201003
 Units (rw)

201003 * 10 ms units for register 201002 (rw)
201004 Runtime registers in milliseconds (ro)

202930

Web status (bit-coded)
Bit 0 = 1: FTP server available
Bit 1 = 1: HTTP server available
Bit 2 = 1: E-mail available
Bit 3 = 1: Data file function available
Bit 4 = 1: Modbus/TCP has been licensed
Bit 5 = 1: Modbus/TCP available
Bit 6 = 1: Ethernet/IP available

202936

Control register - File System
0xc4697a4b: Formatting the flash disk

202960 Password for system command register (0x424f6f74)
202961 System command register

202980 Error history: Number of entries
202981 Error history: Index
202982 Error history: Entry

203000 Interface monitoring: JetIP
203001 Interface monitoring: SER
203005 Interface monitoring: Debug server

216 Jetter AG

13 Quick Reference - JCM-350

203100 ...
203107

32-bit overlaying - Flag 0 ... 255

203108 ...
203123

16-bit overlaying - Flag 0 ... 255

203124 ...
203131

32-bit overlaying - Flag 2048 ... 2303

203132 ...
203147

16-bit overlaying - Flag 2048 ... 2303

209700 System logger: Global enable
209701 ...
209739

Enabling system components

Application Program

210000 Application program is running (bit 0 = 1)
210001 JetVM version
210004

Error register (bit-coded)
Bit 1: Error on JX3 bus
Bit 2: Error on JX2 bus
Bit 8: Illegal jump
Bit 9: Illegal call
Bit 10: Illegal index
Bit 11: Illegal opcode
Bit 12: Division by 0
Bit 13: Stack overflow
Bit 14: Stack underflow
Bit 15: Illegal stack
Bit 16: Error when loading application program
Bit 24: Timeout - cycle time
Bit 25: Timeout - task lock
Bit 31: Unknown error

210006 Highest task number
210007 Minimum program cycle time
210008 Maximum program cycle time
210009 Current program cycle time
210011 Current task number
210050 Current program position within a execution unit
210051 ID of the execution unit being processed
210056 Desired total cycle time in µs
210057 Calculated total cycle time in µs
210058 Maximum time slice per task in µs
210060 Task ID (for register 210061)
210061 Task priority for the task [reg. 210060]
210063 Length of scheduler table
210064 Index in scheduler table
210065 Task ID in scheduler table
210070 Task ID (for register 210071)
210071 Timer number (0 ... 31)
210072 Manual triggering of a timer event (bit-coded)
210073 End of cyclic task (task ID)
210074 Command for cyclic tasks
210075 Number of timers
210076 Timer number (for register 210077)
210077 Timer value in milliseconds

210100 ...
210199

Task - state

210400 ...
210499

Task - programm address

210600 Task ID of a cyclic task (for register 210601)
210601 Processing time of a cyclical task in per mil figure
210609 Task lock timeout in ms
 -1: Monitoring disabled

210610 Timeout (bit-coded,
 bit 0 -> timer 0, etc.)

File System / Data File Function

312977 Status of file operation
312978 Task ID

Application Registers

1000000 ...
1005999

JC-350: 32-bit integer or floating point number
(permanent)

Special Flags - Interface Monitoring

2088 OS flag - JetIP
2089 User flag - JetIP
2090 OS flag - SER
2091 User flag - SER
2098 OS flag - debug server
2099 User flag - debug server

32 Combined Flags

203100 0 ... 31
203101 32 ... 63
203102 64 ... 95
203103 96 ... 127
203104 128 ... 159
203105 160 ... 191
203106 192 ... 223
203107 224 ... 255

16 Combined Flags

203108 0 ... 15
203109 16 ... 31
203110 32 ... 47
203111 48 ... 63
203112 64 ... 79
203113 80 ... 95
203114 96 ... 111
203115 112 ... 127
203116 128 ... 143
203117 144 ... 159
203118 160 ... 175
203119 176 ... 191
203120 192 ... 207
203121 208 ... 223
203122 224 ... 239
203123 240 ... 255

32 Combined Special Flags

203124 2048 ... 2079
203125 2080 ... 2111
203126 2112 ... 2143
203127 2144 ... 2175
203128 2176 ... 2207
203129 2208 ... 2239
203130 2240 ... 2271
203131 2272 ... 2303

16 Combined Special Flags

203132 2048 ... 2063
203133 2064 ... 2079
203134 2080 ... 2095
203135 2096 ... 2111
203136 2112 ... 2127
203137 2128 ... 2143
203138 2144 ... 2159
203139 2160 ... 2175
203140 2176 ... 2191
203141 2192 ... 2207
203142 2208 ... 2223
203143 2224 ... 2239
203144 2240 ... 2255
203145 2256 ... 2271
203146 2272 ... 2287
203147 2288 ... 2303

Overlaid Application Registers/Flags

1000000 256 ... 287
1000001 288 ... 319
1000002 320 ... 351

Jetter AG 217

JCM-350-E03 Quick Reference - JCM-350

1000003 352 ... 383
1000004 384 ... 415
1000005 416 ... 447
1000006 448 ... 479
1000007 480 ... 511
1000008 512 ... 543
1000009 544 ... 575
1000010 576 ... 607
1000011 608 ... 639
1000012 640 ... 671
1000013 672 ... 703
1000014 704 ... 735
1000015 736 ... 767
1000016 768 ... 799
1000017 800 ... 831
1000018 832 ... 863
1000019 864 ... 895
1000020 896 ... 927
1000021 928 ... 959
1000022 960 ... 991
1000023 992 ... 1023
1000024 1024 ... 1055
1000025 1056 ... 1087
1000026 1088 ... 1119
1000027 1120 ... 1151
1000028 1152 ... 1183
1000029 1184 ... 1215
1000030 1216 ... 1247
1000031 1248 ... 1279
1000032 1280 ... 1311
1000033 1312 ... 1343
1000034 1344 ... 1375
1000035 1376 ... 1407
1000036 1408 ... 1439
1000037 1440 ... 1471
1000038 1472 ... 1503
1000039 1504 ... 1535
1000040 1536 ... 1567
1000041 1568 ... 1599
1000042 1600 ... 1631
1000043 1632 ... 1663
1000044 1664 ... 1695
1000045 1696 ... 1727
1000046 1728 ... 1759
1000047 1760 ... 1791
1000048 1792 ... 1823
1000049 1824 ... 1855
1000050 1856 ... 1887
1000051 1888 ... 1919
1000052 1920 ... 1951
1000053 1952 ... 1983
1000054 1984 ... 2015
1000055 2016 ... 2047

System Functions

4 BCD to HEX conversion
5 HEX to BCD conversion
20 Square root
21 Sine
22 Cosine
23 Tangent
24 Arc Sine
25 Arc cosine
26 Arc tangent
27 Exponential function
28 Natural logarithm
29 Absolute value
30 Separation of digits before and after the decimal point
60 CRC generation for Modbus RTU
61 CRC check for Modbus RTU
65/67 Reading register block via Modbus/TCP
66/68 Writing register block via Modbus/TCP
80/85 Initializing RemoteScan
81 Starting RemoteScan
82 Stopping RemoteScan
90 Writing data file
91 Appending data file
92 Reading data file
96 Deleting data file

110 E-mail feature
150 Configuring NetCopyList
151 Deleting NetCopyList
152 Sending NetCopyList

218 Jetter AG

13 Quick Reference - JCM-350

Jetter AG 219

JCM-350-E03 Appendix

Appendix

This appendix contains electrical and mechanical data, as well as operating
data.

Topic Page
Technical Data .. 220
Index ... 230

Introduction

Contents

220 Jetter AG

 Appendix

A: Technical Data

This chapter contains information on electrical and mechanical data, as well
as on operating data of the JCM-350-E03.

Topic Page
Technical Specifications .. 221
Physical Dimensions ... 226
Operating Parameters - Environment and Mechanics 228
Operating Parameters - EMC ... 229

Introduction

Contents

Jetter AG 221

JCM-350-E03 Appendix

Technical Specifications

Parameter Description

Manufacturer/Model Tyco AMP

Article # 963484

Design 70-pin

Coding A 1

Parameter Description

Operating voltage DC 8.0 ... 32.0 V

Operating voltage - IGNITION FEED min. DC 5.9 V

Peak Current:

IGNITION FEED max. 2.0 A

STANDARD FEED max. 52.0 A

SAFETY FEED max. 40.0 A

Overcurrent detection Yes

Parameter Description

Bus type CAN bus

Protocol CANopen®

Baud rate 250 kBaud (1 MBaud)

Terminating resistor Can be activated by means of
software

Parameter Description

Application for device coding
 as digital inputs

Type of inputs Pull-up resistor to IGNITION FEED
and pull-down resistor to ground

Tri-state detection Tri-state operation is detected by a
pull-down resistor to ground.

Rated voltage IGNITION FEED

Threshold level OFF < 1.0 V

Threshold level ON > 4.0 V

Connector

Electrical Data - Power
Supply

Communication

Technical Data - Tri-State
Inputs

222 Jetter AG

 Appendix

Parameter Description

Type of inputs Software selectable with either 2 kΩ
pull-up to STANDARD FEED or 2 kΩ
pull-down to ground.

Rated voltage STANDARD FEED

Permissible voltage range DC 8 ... 32 V

Threshold level OFF < 1.0 V

Threshold level ON > 3.5 V

Parameter Description

Type of inputs Can be configured as active-high
inputs

Rated voltage STANDARD FEED

Permissible voltage range DC 8 ... 32 V

Threshold level OFF 51 % of IGNITION FEED

Threshold level ON 51 % of IGNITION FEED

Input impedance 100 kΩ

Parameter Description

Type of outputs Active-high output

Rated voltage STANDARD FEED

Permissible voltage range DC 8 ... 32 V

Signal voltage OFF < 1.0 V

Signal voltage ON USTANDARD - 0.5 V

Load current of OUT 1 through OUT 8 max. 2.5 A

Maximum inrush current tbd

Short-circuit proof Yes

Overcurrent detection Yes

No-load detection Yes

Technical Data -
Digital Inputs IN 1
through IN 5

Technical Data -
Digital Inputs IN 6
through IN 13

Technical Data -
Digital Outputs
(STANDARD FEED)

Jetter AG 223

JCM-350-E03 Appendix

Parameter Description

Type of inputs Can be configured as active-high
inputs

Rated voltage SAFETY FEED

Permissible voltage range DC 8 ... 32 V

Threshold level OFF < 51 % of IGNITION FEED

Threshold level ON > 51 % of IGNITION FEED

Input impedance 100 kΩ

Parameter Description

Type of outputs Active-high output

Rated voltage SAFETY FEED

Permissible voltage range DC 8 ... 32 V

Signal voltage OFF < 1.0 V

Signal voltage ON USAFETY - 0.5 V

Load current of OUT 9 through OUT 10 max. 2.5 A

Load current of OUT 11 through OUT 16 max. 5.0 A

Maximum inrush current tbd

Can be switched off by electronic safety
switch

Yes

Short-circuit proof Yes

Overcurrent detection Yes

No-load detection Yes

Parameter Description

Type of switch outputs Active-high output

Rated voltage STANDARD FEED

Permissible voltage range DC 8 ... 32 V

Signal voltage OFF < 1.0 V

Signal voltage ON USTANDARD - 0.5 V

Load current each 2.5 A max.

Short-circuit proof Yes

Overcurrent detection Yes

No-load detection Yes

Technical Data -
Digital Inputs IN 14
through IN 21

 Technical Data -
Digital Outputs (SAFETY
FEED)

Technical Data -
Switch Outputs

224 Jetter AG

 Appendix

Parameter Description

Operating Modes Current-controlled output
 PWM output with static duty cycle

Dither function Yes, at PWM freq: 2 kHz

Resolution 8 bits

Load current 0 ... 2.5 A

Short-circuit proof Yes

Overcurrent detection Yes

No-load detection Yes

Parameter Description

Voltage range at 50 mA 0 ... STANDARD FEED

Current range 0 ... 100 mA

Resolution 10 bits

Electrical isolation none

Short circuit detection Yes

Parameter Description

Voltage range 0 ... 5 V
 0 ... IGNITION FEED

Current range 0 ... 20 mA
 4 ... 20 mA

Input impedance at 0 ... 5 V 100 kΩ

Input impedance at 0 ... IGNITION FEED 50 kΩ

Input impedance at 0 ... 20 mA 240 Ω

Resolution 10 bits

Electrical isolation none

Parameter Description

Application as frequency counter
 as two digital inputs

Type of inputs Software selectable with either 2 kΩ
pull-up to STANDARD FEED or 2 kΩ
pull-down to ground.

Frequency measurement range 5 Hz ... 20 kHz

Measurement method time-based

Result of measurement Period of the signal in nanoseconds

Resolution 62.5 ns

Technical Data -
PWM Outputs

Technical Data -
Analog Output

Technical Data -
Analog Inputs

Technical Data -
Frequency Inputs

Jetter AG 225

JCM-350-E03 Appendix

Parameter Description

Application used as H-Bridge
 as two independent digital inputs

Rated output current max. 2.5 A

Accuracy of current measurement (H-bridge) < 100 mA

Short-circuit proof Yes

Overcurrent detection Yes

No-load detection Yes

Parameter Description

Regulated voltage DC 5 V

Load current max. 250 mA

Overcurrent detection Yes

Type of Fault Response

Short circuit The faulty function is disabled
automatically

 A CANopen® emergency object is
sent to the controller

 The error message is stored to a
history list which is compatible
with the CANopen® standard

Overload

No load (cable breakage)

Technical Data -
H-Bridge

Technical Data -
Regulated Output

Protective and
Diagnostic Functions

226 Jetter AG

 Appendix

Physical Dimensions

This chapter details the physical dimensions of the JCM-350-E03 and the
conditions for installation.

The diagram shows the dimensions of the JCM-350-E03.

The diagram shows the space required for the JCM-350-E03.

Ensure there is enough space around the connector for servicing
requirements. It should be possible to disconnect the connector at any time.

Introduction

Physical Dimensions

Space Required for
Installation and Service

Jetter AG 227

JCM-350-E03 Appendix

The diagram indicates the safety distances to protect against overheating.

Please note:

 The JCM-350-E03 increases the temperature of the environment as a
result of heat emission under load.

 The JCM-350-E03 operates without interruption at an ambient temperature
of up to +85 °C.

Consider the heat emission from the device, in particular when installing it in a
critical environment:

 in the vicinity of the fuel tank
 in the vicinity of the fuel pipe
 in the vicinity of flammable vehicle components
 in the vicinity of thermally malleable vehicle components

Space Required to
Protect Against
Overheating

228 Jetter AG

 Appendix

Operating Parameters - Environment and Mechanics

Parameter Value Standard

Operating temperature range -40 ... +85 °C

Storage temperature range -40 ... +85 °C DIN EN 61131-2
DIN EN 60068-2-1
DIN EN 60068-2-2

Air humidity 10 ... 95 % DIN EN 61131-2

Climate test Humid heat DIN EN 60068-2-30

Pollution degree 2 DIN EN 61131-2

Parameter Value Standard

Vibration resistance Vibration, broadband noise DIN EN 60068-2-6
Severity level 2

Shock resistance 30 g occasionally, 18 ms,
sinusoidal half-wave, 3
shocks in the directions of all
three spatial axes

DIN EN 60068-2-27

Degree of protection IP68 DIN EN 60529
including all changes
to date

Environment

Mechanical Parameters

Jetter AG 229

JCM-350-E03 Appendix

Operating Parameters - EMC

As per Directive 72/245/EEC with all amendments up to 2009/19/EC checked
and compliant.

Parameter Value Standard

Interference immunity to
conducted faults

compliant Directive 72/245/EEC
with all changes up to
2009/19/EC

Interference immunity to
external magnetic field

20 ... 1,000 MHz: 100 V/m
1,000 ... 2,000 MHz: 30 V/m

Directive 72/245/EEC
with all changes up to
2009/19/EC

Load Dump Impulse 5b 70 V ISO 7637-2

EMC - Emitted
Interference

EMC - Interference
Immunity

230 Jetter AG

Index

B: Index

A
Application Program

Default Path - 223
Loading an Application Program - 222

C
CANopen® Objects - 101
CANopen® STX API - 73
Components of JXM-IO-E02 - 17
Connector Specification - 39

D
Diagnostic Features - 205
Disposal - 12

E
EDS - 24, 130
EEPROM - 140
Example of Wiring Layout - 40

I
Identification via Version Register - 30
Initial Commissioning - 61
Installation - 56
Intended Conditions of Use - 12
Interfaces

Analog I/Os - 52
CAN - 43
Controlled Output (5 volts) - 41
Digital Inputs and Outputs - 47
Frequency Inputs - 52
H Bridge - 52
Power Supply - 41
Switch Feed Outputs - 47

J
JXM-IO-E02 - Description of Errors - 205
JXM-IO-E02 - Troubleshooting - 205

M
Maintenance - 12
Memory Overview - 175
Memory Types - 175
Modifications - 12

N
Name Plate - 23

O
Operating Parameters

EMC - 239
Environment and Mechanics - 238

Operating System Update - 130, 219
Order Reference - JCM-350-E03 - 18

P
PDO Specification - 142
Personnel Qualification - 12
Physical Dimensions - 19
Product Description - JCM-350-E03 - 16
Programming

Configuring the H Bridge - 199
Configuring the PWM Output - 202
Reading In Digital Inputs - 194
Setting Digital Outputs - 189

Protective Features - 205

Q
Quick Reference - 225

R
Repair - 12
Runtime Registers - 184

S
SAE J1939 STX API - 145
Safety Instructions - 11
Software Version - 30, 139
Specification - CAN Bus Cable - 45
System Parameters - 131

T
Technical Data - 231
Transport - 12

U
Usage Other Than Intended - 12

232 Jetter AG

 Jetter AG

 Graeterstrasse 2

 D-71642 Ludwigsburg

 Germany

 Phone: +49 7141 2550-0

 Phone -
Sales:

+49 7141 2550-433

 Fax -
Sales:

+49 7141 2550-484

 Hotline: +49 7141 2550-444

 Internet: http://www.jetter.de

 E-Mail: sales@jetter.de

Jetter Subsidiaries

Jetter (Switzerland) AG Jetter UK Ltd. Jetter USA Inc.
Münchwilerstrasse 19 Old Witney Road 13075 US Highway 19 North

CH-9554 Tägerschen Eynsham Florida - 33764 Clearwater

 OX29 4PU Witney

Switzerland Great Britain U.S.A

Phone: +41 71 91879-50 Phone: +44 1865 883346 Phone: +1 727 532-8510

Fax: +41 71 91879-69 Fax: +44 1865 883347 Fax: +1 727 532-8507

E-Mail: info@jetterag.ch E-Mail: info@jetter.uk.com E-Mail: bschulze@jetterus.com

Internet: http://www.jetterag.ch Internet: http://www.jetter.uk.com Internet: http://www.jetter.de

	User Manual JCM-350-E03
	Hazard Levels
	Table of Contents
	1 Safety Instructions
	General Safety Instructions
	Residual Dangers and Protective Measures

	2 Product Description and Design
	Product Description - JCM-350-E03
	Parts and Interfaces
	Order Reference / Options
	Physical Dimensions

	3 Identifying the Controller
	3.1 Identification by Means of the Nameplate
	Nameplate

	3.2 Electronic Data Sheet EDS
	EDS File "eds.ini"
	EDS Registers

	3.3 Version Registers
	Hardware Revisions
	Software Versions

	3.4 Identifying a JXM-IO-E02 via CAN Bus
	Electronic Data Sheet (EDS) and Software Version

	4 Mounting and Installation
	4.1 Wiring
	Wiring Principle
	Example of Wiring Layout
	Connecting the Power Supply and the 5 V Output
	CAN Interface and Node ID
	Specification - CANopen® Bus Cable
	Connecting Digital Inputs and Outputs
	Connecting Analog Inputs and Outputs

	4.2 Installing the JCM-350-E03
	Installing the JCM-350-E03

	5 Initial Commissioning
	Preparatory Work for Initial Commissioning
	Initial Commissioning in JetSym
	Information on Communication with a JXM-IO-E02

	6 CANopen® STX API
	STX Function CanOpenInit
	STX Function CanOpenSetCommand
	STX Function CanOpenUploadSDO
	STX Function CanOpenDownloadSDO
	STX Function CanOpenAddPDORx
	STX Function CanOpenAddPDOTx

	7 CANopen® Objects
	7.1 CANopen® Object Dictionary for JCM-350-E03
	Supported CANopen® SDO Objects

	7.2 CANopen® Object Dictionary for JXM-IO-E02
	Objects Ranging from Index 0x1000 through 0x2000
	Digital Inputs Object (Index 0x2100)
	Universal I/O Object (Index 0x2101)
	Tri-State Inputs Object (Index 0x2102)
	Switch Feed Output Object (Index 0x2103)
	Analog Input Objects (Index 0x2200 through 0x2203)
	Voltage Sense Analog Input Object (Index 0x2210)
	Feed Currents Object (Index 0x2211)
	Analog Output Object (Index 0x2300)
	Objects "PWM Output" (Index 0x2400 through 0x2402)
	H-Bridge Object (Index 0x2500)
	Frequency Input Objects (Index 0x2600 through 0x2601)
	OS Update (Index 0x4554) and EDS Objects (Index 0x4555)
	Object "System Parameters" (Index 0x4556)
	Detailed Software Version Object (Index 0x4559)
	User EEPROM Access Object (Index 0x5000)

	7.3 CANopen® PDO Specification
	TX PDO Allocation on the JXM-IO-E02
	RX PDO Allocation on the JXM-IO-E02

	8 SAE J1939 STX API
	Content of a J1939 Message
	STX Function SAEJ1939Init
	STX Function SAEJ1939SetSA
	STX Function SAEJ1939GetSA
	STX Function SAEJ1939AddRx
	STX Function SAEJ1939AddTx
	STX Function SAEJ1939RequestPGN
	STX Function SAEJ1939GetDM1
	STX Function SAEJ1939GetDM2
	STX Function SAEJ1939SetSPNConversion
	STX Function SAEJ1939GetSPNConversion

	9 Programming
	Abbreviations, Module Register Properties and Formats
	9.1 Memory Overview
	File System Memory
	Operating System Memory
	Application Program Memory
	Memory for Non-Volatile Application Program Registers
	Memory for Non-Volatile Application Program Variables
	Special Registers
	Flags

	9.2 Runtime Registers
	Description of Runtime Registers
	Sample Program - Runtime Registers

	9.3 Addressing the JXM-IO-E02 via CANopen®
	9.4 Digital Outputs
	Reading In the Number of Available Digital Outputs Per SDO
	Setting Digital Outputs Per PDO

	9.5 Digital Inputs
	Digital Inputs SDO
	Digital Inputs PDO

	9.6 H-Bridge
	Configuring the H-Bridge by Using SDO and PDO

	9.7 PWM Outputs
	Configuring the PWM Output 1 by Using SDO and PDO

	10 Protection and Diagnostic Features - JXM-IO-E02
	Standard Feed Power Input (STANDARD FEED)
	Safety Feed Power Input (SAFETY FEED)
	Digital Outputs 1 ... 8 (Standard Outputs)
	Digital Outputs 9 ... 16 (Safety Outputs)
	Analog Output
	PWM Outputs 1 ... 3
	H-Bridge
	Switch Feed Outputs 1 ... 2
	Safety Switch (Relay)
	5 V Reference Output
	Generic Fault Detection

	11 Operating System Update
	11.1 Updating the Operating System of the Controller
	Operating System Update Using JetSym

	12 Application Program
	Loading an Application Program
	Application Program - Default Path

	13 Quick Reference - JCM-350
	Appendix
	A: Technical Data
	Technical Specifications
	Physical Dimensions
	Operating Parameters - Environment and Mechanics
	Operating Parameters - EMC

	B: Index

	Addresses Jetter AG

