

Edition 1.00 4 May 2005 / Printed in Germany

JetControl 647
Version Update
V 3.03 to V 3.50

Version Update – 4 May 2005 JetControl 647 – V. 3.03 to V. 3.50

2 Jetter AG

Jetter AG reserves the right to make alterations to its products in the interest of technical
progress. These alterations need not to be documented in every single case.

This manual and the information contained herein have been compiled with due
diligence. Jetter AG shall not be liable for printing errors contained herein or for other
consequential damage.

The brand names and product names used in this manual are trade marks or registered
trade marks of the respective title owner.

JetControl 647 – V. 3.03 to V. 3.50 Version Update – 4 May 2005

Jetter AG 3

Table of Contents

1 Introduction 5

2 Eliminated Software Bugs 6

2.1 Interpreter 6

2.1.1 OUT Instructions with IO64 Boards 6
2.1.2 SHIFT instructions including a count with zero 6
2.1.3 POS instructions, when the axis number is greater than 255, and when this number is
identified directly 6

3 RemoteScan 7

3.1 General Information 7

3.2 Special Functions 8

3.2.1 Configuring RemoteScan 8
3.2.2 Starting RemoteScan 10
3.2.3 Stopping RemoteScan 10

3.3 Registers 11

3.4 Description 12

3.5 Registers 12

4 Server 12

4.1 Description 12

4.2 Supported Instructions 12

4.2.1 Register Access 12
4.2.2 Class 0 13
4.2.3 Class 1 13
4.2.4 Class 2 14

5 Client 14

5.1 General Information 14

5.2 RemoteScan 14

5.2.1 Overlaying of inputs/outputs on registers 15

5.3 Special Functions 15

5.3.1 Reading registers 16

Version Update – 4 May 2005 JetControl 647 – V. 3.03 to V. 3.50

4 Jetter AG

5.3.2 Writing to registers 16
5.3.3 ST sample program 18

6 Special Functions 60 and 61 Modbus CRC 22

6.1 Modbus RTU CRC Checksum 22

6.1.1 Function 60: Calculating the checksum 22
6.1.2 Function 61: Checking the Check Sum 22
6.1.3 Sample Program 23

7 Special Function 50: Sorting Data 24

7.1 Introduction 24

7.1.1 Input descriptor (parameter 1) 25
7.1.2 Return values (parameter 2) 26
7.1.3 Error code (parameter 2), offset 0 26
7.1.4 Execution time (parameter 2), offset 1 26

7.2 Example of data structuring 26

8 Sample Program 27

9 Start Delay 29

9.1 Description 29

10 Data Files 30

10.1 General Information 30

10.2 Special Functions 30

10.2.1 Implementation 30
10.2.2 File names 30
10.2.3 Saving values – creating a file 31
10.2.4 Saving values – append to file 31
10.2.5 Reading values from a file 32
10.2.6 Deleting a file 33

10.3 Registers 33

10.3.1 Availability 33
10.3.2 Status register 34

11 Appendices 35

A.1 File Format 35

JetControl 647 – V. 3.03 to V. 3.50 Version Update – 4 May 2005

Jetter AG 5

1 Introduction
Version Updates - Survey

Version Function upgraded corrected

V. 3.03 Application program
 Interpreter
 C-Task

V 3.50 E-mail
 http-server
 FTP-server
 Files system
 Interpreter
 Registers
 C-Task
 Modbus TCP

Version Update – 4 May 2005 JetControl 647 – V. 3.03 to V. 3.50

6 Jetter AG

2 Eliminated Software Bugs
2.1 Interpreter
2.1.1 OUT Instructions with IO64 Boards
Up to this version, there was an error when assignment to outputs was to be made. If
direct assignment by means of output numbers between 501 and 864 had been carried
out, an incorrect value would be transmitted to the left output. Yet, this error would only
refer to the constellation mentioned below. If other output numbers or, for example, an
indirect output instruction was used, this function would be fault-free.
The following term would lead to an error:

Assignment OUT xxx = Out501-864

This error has been corrected.

2.1.2 SHIFT instructions including a count with
zero
Up to this version, there was an error when shift instructions were to be given. If the
amount 0 had been transmitted for giving a SHIFT instruction, the result would be altered
without permission.

This error has been corrected.

2.1.3 POS instructions, when the axis number is
greater than 255, and when this number is identified
directly
Up to this version, there was an error when POS instructions were to be given.
Transmitting a POS instruction to an intelligent JX2-module would only function properly
when directed to module bus slot 1 and 2. On module bus slot 3, the POS instruction
would not be carried out. The error occurred with axis numbers > 255 after specifying one
axis number directly. After indirectly specifying the axis number, the POS instruction
would be carried out properly.

This error has been corrected.

JetControl 647 – V. 3.03 to V. 3.50 Version Update – 4 May 2005

Jetter AG 7

3 RemoteScan
3.1 General Information
The configurable RemoteScan function is used to cyclically copy register contents from
the JetControl to registers of network nodes. On the other hand, they can be read by the
nodes and copied in JetControl registers.
The RemoteScan function can be accessed by using special functions 80, 81, and 82.
Presently, only the Modbus/TCP Remote Scan is supported.

Version Update – 4 May 2005 JetControl 647 – V. 3.03 to V. 3.50

8 Jetter AG

3.2 Special Functions
3.2.1 Configuring RemoteScan
To configure RemoteScan, special function 80 is used. However, this function does not
start communication (see 3.2.2).

SPECIAL_FUNCTION(80, <Source Register Number>, <Destination Register Number>)

<Source Register Number> Specifies the number of the first register of the
description block.
<Destination Register Number> Specifies the result register number for this function.

The description block specifies the protocol and the number of communication units. A
communication unit specifies the register blocks to be transferred, as well as the address
of the communication partner. Up to 10 communication units can be specified. During
communication with a partner several different register blocks can be exchanged.

This function can be invoked only with no RemoteScan running. It is not possible to
change the configuration of the flash disk during running operation.

3.2.1.1 Description block
Register offset Description

0 Protocol 1 = JetWay
3 = JetIP
5 = Modbus/TCP

1 Amount of following communication units 1 .. 10
Communication unit 1

2 Address
3 Port number Modbus/TCP: 502
4 Update rate 10 .. 65535 ms
5 Amount of output registers Modbus/TCP: 0 .. 125
6 Output source register number local

Modbus/TCP: 66000 .. 66999
7 Output destination register number Remote
8 Amount of input registers Modbus/TCP: 0 .. 125
9 Input source register number Remote

10 Input destination register number local
Modbus/TCP: 66000 .. 66999

11 Number of the first register of the status register block
12 Timeout in milliseconds

With modules without input or output registers the corresponding amount has to be set to
0.
If the configuration comprises inputs and outputs, the outputs are sent first, then the
inputs are read.

3.2.1.2 Status register block
The number of the first register of the status register block, consisting of 3 consecutive
registers, has to be specified in the description block of each communication unit. Error
messages of this communication unit are stored to this block when RemoteScan is
running.
The status block has got the following structure:

JetControl 647 – V. 3.03 to V. 3.50 Version Update – 4 May 2005

Jetter AG 9

Register offset Meaning

0 Status (bit-coded)
Bit # Meaning

0 Scan is running is set after each update cycle
1 An error has

occurred
is set each time an error has
occurred

1 Error code The code of
the last error is
displayed.
Register
contents

Meaning

0 No error
< 0 Application-specific error

Modbus/T
CP:
Code

Meaning

-1 Error in the network driver
-2 Error in the conne

management
-3 Error when sending output regis
-4 Error when reading input registe
-5 Exception response
-6 Error when receiving the respon
-7 Wrong transaction ID
-8 Timeout

101 Timeout
102 Error when reading/writing local registers

103 / 104 Error in the lower-level communication layer
2 Number of errors The number is incremented each time an error occurs.

Note: It is useful to initialize the contents of the status register blocks with 0 before
starting the RemoteScan.

Version Update – 4 May 2005 JetControl 647 – V. 3.03 to V. 3.50

10 Jetter AG

3.2.1.3 Error Messages
After the function has been carried out, the results can be seen in the results register.

Register
contents

Meaning

> 0 Amount of configured communication units
-1 Protocol not supported
-2 Set amount of communication units > 10
-3 Invalid address or port number
-4 Invalid register number

-10 RemoteScan is already running

3.2.2 Starting RemoteScan
Special function 81 is used to start a RemoteScan that has been configured using special
function 80.

SPECIAL_FUNCTION(81, <Source Register Number>, <Destination Register Number>)

<Source Register Number> Specifies the number of the parameter register.
<Destination Register Number> Specifies the result register number for this function.

No parameters are transferred to this function. Thus, the content of the register to which
<Source Register Number> is pointing, is irrelevant.
This function always returns value 0 as result.

3.2.3 Stopping RemoteScan
Special function 82 is used to stop a running RemoteScan. When doing so, all possibly
existing communication connections are closed.

SPECIAL_FUNCTION(82, <Source Register Number>, <Destination Register Number>)

<Source Register Number> Specifies the number of the parameter register.
<Destination Register Number> Specifies the result register number for this function.

No parameters are transferred to this function. Thus, the content of the register to which
<Source Register Number> is pointing, is irrelevant.
This function always returns value 0 as result.

Please mind: Execution of this function may take a relatively long time, depending on the
configuration, since it waits until all currently running transfers will be terminated.

JetControl 647 – V. 3.03 to V. 3.50 Version Update – 4 May 2005

Jetter AG 11

3.3 Registers
 RemoteScan Protocol Registers

JC 647 JC 24x
63020 2965

Function Description

Read Protocol

1 = JetWay
3 = JetIP
5 = Modbus/TCP

Write not possible

Value range 32 bits

Value after reset 0

RemoteScan – Amount of Units
JC 647 JC 24x
63021 2966

Function Description

Read Amount of communication units

Write not possible

Value range 32 bits

Value after reset 0

RemoteScan Activation
JC 647 JC 24x
63022 2967

Function Description

Read 0 = Not active

1 = active (running)

Write not possible

Value range

Value after reset 0

Version Update – 4 May 2005 JetControl 647 – V. 3.03 to V. 3.50

12 Jetter AG

3.4 Description
For using the communication protocol 'Modbus/TCP', a licence file will not be needed.
This protocol is available as of version 3.04.

3.5 Registers
The bit-coded register 63827 has been expanded by 2 bits.

Register 63827: Web Functions
Function Description

Read Bit Number Meaning
0 0 = FTP server not available

1 = FTP server available
1 0 = HTTP server not available

1 = HTTP server available
2 0 = E-mail function not available

1 = E-mail function available
3 0 = Data file function not available

1 = Data file function available
4 0 = No Modbus/TCP

1 = Modbus/TCP has been licensed
5 0 = Modbus/TCP server not available

1 = Modbus/TCP server has been started
Write not possible

Value range 0 .. 255

Value after reset Depends on initialization

4 Server
4.1 Description
After starting the Modbus/TCP server, an external client can access registers, inputs and
outputs. In doing so, 4 connections may be opened at the same time.

4.2 Supported Instructions
4.2.1 Register Access
Since only registers with a width of 16 bits can be transferred via Modbus/TCP, access to
the high-order 16 bits of JetControl registers is not possible. When receiving register
values, sign extension to 32 bits will not be carried out.

JetControl 647 – V. 3.03 to V. 3.50 Version Update – 4 May 2005

Jetter AG 13

4.2.2 Class 0

4.2.2.1 read multiple registers (fc 3)
Reading register sets.
The number of the start register corresponds to the register number within the JC-647.

4.2.2.2 write multiple registers (fc 16)
Writing register sets.
The number of the start register corresponds to the register number within the JC-647.

4.2.3 Class 1

4.2.3.1 read coils (fc 1)
Reading outputs.
The output number has to be transferred in the internal format of the JC-647.
JetSym – User-oriented numbering format JC-647 – internal numbering
101 .. 164 0 .. 0x3F
201 .. 264 0x40 .. 0x7F
etc. etc.

4.2.3.2 read input discretes (fc 2)
Reading inputs.
The input number has to be transferred in the internal format of the JC-647.
JetSym – User-oriented numbering format JC-647 – internal numbering
101 .. 164 0 .. 0x3F
201 .. 264 0x40 .. 0x7F
etc. etc.

4.2.3.3 read input registers (fc 4)
Reading inputs summarized in 16-bit words.
Inputs Register Number
101 .. 116 0
201 .. 216 2
301 .. 316 4
etc. etc.

Version Update – 4 May 2005 JetControl 647 – V. 3.03 to V. 3.50

14 Jetter AG

4.2.3.4 write coil (fc 5)
Activating/deactivating an individual output.
The output number has to be transferred in the internal format of the JC-647.
JetSym – User-oriented numbering format JC-647 – internal numbering
101 .. 164 0 .. 0x3F
201 .. 264 0x40 .. 0x7F
etc. etc.

4.2.3.5 write single register (fc 6)
Entering values into the low-order 16 bits of a JC-647 register.

4.2.4 Class 2

4.2.4.1 force multiple coils (fc 15)
Activating/deactivating several outputs.
The output number has to be transferred in the internal format of the JC-647.
JetSym – User-oriented numbering format JC-647 – internal numbering
101 .. 164 0 .. 0x3F
201 .. 264 0x40 .. 0x7F
etc. etc.

4.2.4.2 read / write registers
Writing and simultaneously reading registers.
The number of the start register corresponds to the register number within the JC-647.
First, the registers polled by the client are read, then, the registers transferred from the
client are stored.

5 Client
5.1 General Information
The Modbus/TCP client in JetControl 647 supports Class 0 Conformance (see 4.2.2).
This means that read and write multiple registers instructions are used. Up to 125
registers with a width of 16 bits can be transmitted in one frame. When sending 32-bit
registers only the lower-order 16 bits are transmitted. When assigning incoming register
values to the JetControl-internal 32-bit registers sign extension to 32 bits will not be
carried out.
As protocol ID "0" is used, as unit ID "1". Assignment of sent and received frames is
carried out using the transaction ID.
Connections to 11 different servers may be opened at the same time.

5.2 RemoteScan
This function is for cyclically transferring the inputs and outputs 14001 through 19999 that
are combined in the 16-bit registers 66000 through 66999 from and to the configured
servers. One connection is established to each server (IP address and port) irrespective
of the number of communication units configured on this server.
If several communication units are configured on one server, accesses are serialized
since servers, as a rule, do not support "command pipelining". If several servers have
been configured, communication is carried out in parallel.

JetControl 647 – V. 3.03 to V. 3.50 Version Update – 4 May 2005

Jetter AG 15

5.2.1 Overlaying of inputs/outputs on registers
JC 24x JC 647
Registers Inputs / Outputs Registers Inputs / Outputs
8000 20001 – 20016 66000 14001 – 14016
8001 20017 – 20032 66001 14017 – 14032
8002 20033 – 20048 66002 14033 – 14048
etc. etc. etc. etc.
8999 66375 19999
 66998 Not assigned
 66999 Not assigned

Since the registers and the inputs/outputs overlaid on them merely are memory cells
located in the RAM, and no direct mapping to hardware takes place, it is not determined
whether a register contains inputs or outputs. Assignment is made not until configuration
in the communication units takes place.

Formula:

RegNo = (IONo-14001)/16+66000
BitNo = (IONo-14001) Modulo 16

e.g.
IO no. 14033 results in register 66002, bit no. 0

5.3 Special Functions
As acyclic transmission channel to a Modbus/TCP server the special functions 65
(reading registers) and 66 (writing registers) can be used (the functions are available
independent of RemoteScan).
While one of these two special functions is being carried out simultaneous calls of this
functions in other tasks are blocked until this function will be terminated.
These functions establish a connection to the specified server, transmit the desired data
and clear down the connection. In case a connection exists that has been established by
RemoteScan, this connection will be used. Setting-up and clearing-down the connection
is not required.
Please mind: It is not advisable to issue TaskBreak or TaskRestart instructions for this
task or to restart the program through JetSym while one of these functions is carried out
since in such a case the connection remains established which may block additional
transmissions.

Version Update – 4 May 2005 JetControl 647 – V. 3.03 to V. 3.50

16 Jetter AG

5.3.1 Reading registers

SPECIAL_FUNCTION(65, <Source Register Number>, <Destination Register Number>)

<Source Register Number> Specifies the number of the first register of a description
block.
<Destination Register Number> Specifies the result register number for this function.

Description Block
Register offset Meaning

0 IP-address
1 Port number 502
2 Timeout in milliseconds
3 Number of the source

register
remote

4 Number of the designation
register

local

5 Amount of registers 1 .. 125

Result Meaning

0 No error
-1 or -2 Error during connection set-up

-4 Error during data transfer
-5 Error message from server
-8 Timeout

-10 No Modbus/TCP license

5.3.2 Writing to registers

 SPECIAL_FUNCTION(66, <Source Register Number>, <Destination Register
Number>)

<Source Register Number> Specifies the number of the first register of a description
block.
<Destination Register Number> Specifies the result register number for this function.

Description Block
Register offset Meaning

0 IP-address
1 Port number 502
2 Timeout in milliseconds
3 Number of the source

register
local

4 Number of the designation
register

remote

5 Amount of registers 1 .. 125

Result Meaning

0 No error
-1 or -2 Error during connection set-up

-3 Error during data transfer
-5 Error message from server

JetControl 647 – V. 3.03 to V. 3.50 Version Update – 4 May 2005

Jetter AG 17

-8 Timeout
-10 No Modbus/TCP license

Version Update – 4 May 2005 JetControl 647 – V. 3.03 to V. 3.50

18 Jetter AG

5.3.3 ST sample program
// ***
// *** Program: ModbusTCPTest.stp
// *** Version: 1.0
// *** Date: 24-07-2003
// *** Author: Jetter AG
// ***
// ***
// *** This Software has the purpose to test the ModbusTCP function on the JC 647
// ***
// JC 647 : 192.168.10.240
// Phoenix : 192.168.10.25

type
 REMOTESCAN_CFGHEADER: struct
 nProtocol: INT;
 nNoOfRemotes: INT;
 end_struct;
 REMOTESCAN_CFG: struct
 nAddress: INT;
 nPortNo: INT;
 ntUpdateRate: INT;
 nNoOfOutputRegs: INT;
 nOutputSource: INT;
 nOutputDest: INT;
 nNoOfInputRegs: INT;
 nInputSource: INT;
 nInputDest: INT;
 nFirstStatusReg: INT;
 nTimeout: INT;
 end_struct;
 REMOTESCAN_STATE: struct
 nStatus: INT;
 nErrorCode: INT;
 nNoOfErrors: INT;
 end_struct;
 MODBUS_RW: struct
 nAddress: INT;
 nPortNo: INT;
 nTimeout: INT;
 nSource: INT;
 nDest: INT;
 nNoOfRegs: INT;
 end_struct;
end_type;
const
 cMaxNoOfRemotes = 1;
 cModbusTCP = 5;
 cModbusTCPReadReg = 65;
 cModbusTCPWriteReg = 66;
 cConfigRemoteScan = 80;
 cStartRemoteScan = 81;
 cStopRemoteScan = 82;
#ifdef _CONTROLLER_JC_24X
 cStartRegModbus = 8000; // 24x :8000 64x: 66000
#endif
#ifdef _CONTROLLER_JC_64X

JetControl 647 – V. 3.03 to V. 3.50 Version Update – 4 May 2005

Jetter AG 19

 cStartRegModbus = 66000; // 24x :8000 64x: 66000
#endif
 zPosNFText = 3;
end_const;
var
 stModbusReadWrite: MODBUS_RW:
 at %vl 90;
 nModbusRwResult: INT
 at %vl 90 + sizeof(MODBUS_RW);
 nRemoteScanCfgResult: INT
 at %vl 99;
 stRemoteScanCfgHdr: REMOTESCAN_CFGHEADER
 at %vl 100;
 astRemoteScanConfig: ARRAY[cMaxNoOfRemotes] of REMOTESCAN_CFG
 at %vl 100 + sizeof(REMOTESCAN_CFGHEADER);
 astRemoteScanStatus: ARRAY[cMaxNoOfRemotes] of REMOTESCAN_STATE
 at %vl 200;
 nServerOutputDest: INT
 at %vl 200 +
sizeof(REMOTESCAN_STATE)*cMaxNoOfRemotes;
 nServerInputSource: INT
 at %vl &nServerOutputDest ; // Überlagerung mit
nServerOutputDest !!!!
 nCountOfModules: INT
 at %vl 300;
 nTestReg1: INT
 at %vl 301;
 nDelayModbusTask: INT
 at %vl 302;
 aStartRegModbus: ARRAY[100] of INT
 at %vl cStartRegModbus ;
 fModbusTest1Flag: BOOL
 at %mx 200;
#ifdef _CONTROLLER_JC_64X
 nRegRemoteScanProtocol: INT at %vl 63020;
 nRegRemoteScanNoCommUnits: INT at %vl 63021;
 nRegRemoteScanActivityState: INT at %vl 63022;
#endif
end_var;

task 0
 nCountOfModules := cMaxNoOfRemotes;
 stRemoteScanCfgHdr.nProtocol := cModbusTCP;
 stRemoteScanCfgHdr.nNoOfRemotes := nCountOfModules;
#ifdef _CONTROLLER_JC_64X
 // Wait for Starting ...
 flags[100] := FALSE;
 when flags[100] continue;
#endif

 nRemoteScanCfgResult := 22; // set it to a value != zero

 SYSTEMFUNCTION(cStopRemoteScan, &stRemoteScanCfgHdr,
&nRemoteScanCfgResult);

 if NOT (nRemoteScanCfgResult = 0)
 then
 // Result 0

Version Update – 4 May 2005 JetControl 647 – V. 3.03 to V. 3.50

20 Jetter AG

 DISPLAY_TEXT(0, zPosNFText,'Modbus E001$');
 GOTO sError
 end_if;

 // PhoenixContact Smart IO
 astRemoteScanConfig[0].nAddress := IP#192.168.10.25;
 astRemoteScanConfig[0].nPortNo := 502;
 astRemoteScanConfig[0].ntUpdateRate := 10;
 astRemoteScanConfig[0].nNoOfOutputRegs := 1;
 astRemoteScanConfig[0].nOutputSource := cStartRegModbus+3;
 astRemoteScanConfig[0].nOutputDest := 384;
 astRemoteScanConfig[0].nNoOfInputRegs := 3;
 astRemoteScanConfig[0].nInputSource := 0;
 astRemoteScanConfig[0].nInputDest := cStartRegModbus+8;
 astRemoteScanConfig[0].nFirstStatusReg :=
&astRemoteScanStatus[0].nStatus;
 astRemoteScanConfig[0].nTimeout := 10;
 // Reset Errors
 astRemoteScanStatus[0].nStatus := 0;
 astRemoteScanStatus[0].nErrorCode := 0;
 astRemoteScanStatus[0].nNoOfErrors := 0;
 nRemoteScanCfgResult := 22; // set it to a value != zero
 SYSTEMFUNCTION(cConfigRemoteScan, &stRemoteScanCfgHdr,
&nRemoteScanCfgResult);
 if NOT (nRemoteScanCfgResult = nCountOfModules)
 then
 // Result 3
 DISPLAY_TEXT(0, zPosNFText,'Modbus E002$');
 GOTO sError
 end_if;
 when nRemoteScanCfgResult > 0 continue;
 nRemoteScanCfgResult := 22; // set it to a value != zero
 SYSTEMFUNCTION(cStartRemoteScan, &stRemoteScanCfgHdr,
&nRemoteScanCfgResult);
 if NOT (nRemoteScanCfgResult = 0)
 then
 // Result 0
 DISPLAY_TEXT(0, zPosNFText,'Modbus E003$');
 GOTO sError
 end_if;
label loop:
 // PhoenixContact Smart IO
 stModbusReadWrite.nAddress := IP#192.168.10.214;
 stModbusReadWrite.nPortNo := 502;
 stModbusReadWrite.nTimeout := 100;
 stModbusReadWrite.nSource := 0;
 stModbusReadWrite.nDest := cStartRegModbus+6;
 stModbusReadWrite.nNoOfRegs := 1;
 SYSTEMFUNCTION(cModbusTCPReadReg, &stModbusReadWrite,
&nModbusRwResult);
 // PhoenixContact Smart IO
 stModbusReadWrite.nAddress := IP#192.168.10.214;
 stModbusReadWrite.nPortNo := 502;
 stModbusReadWrite.nTimeout := 100;
 stModbusReadWrite.nSource := cStartRegModbus+11;
 stModbusReadWrite.nDest := 0;
 stModbusReadWrite.nNoOfRegs := 1;

JetControl 647 – V. 3.03 to V. 3.50 Version Update – 4 May 2005

Jetter AG 21

 SYSTEMFUNCTION(cModbusTCPWriteReg, &stModbusReadWrite,
&nModbusRwResult);
goto loop;
label sError:
goto sFehler;
end_task

Version Update – 4 May 2005 JetControl 647 – V. 3.03 to V. 3.50

22 Jetter AG

6 Special Functions 60 and 61 Modbus
CRC
6.1 Modbus RTU CRC Checksum
Special functions 60 and 61serve for generating and testing the Modbus RTU CRC
checksum.
It is assumed that the characters of the Modbus telegram have been stored to registers
one after the other.
Please mind: other than in the special functions, in which the first function parameter
specifies a register by means of the input data, while the second prameter specifies a
register for the resulting data of the function, the first parameter of Modbus CRC routines
specifies the beginning of the Modbus telegram, while the second parameter specifies its
end.
The special functions are activated by transferring registers directly or indirectly, e.g.

SPECIALFUNCTION (60, 100, 103)
SPECIALFUNCTION (60, 100, @103)
SPECIALFUNCTION (61, 100, 103)
SPECIALFUNCTION (61, @100, @103)

6.1.1 Function 60: Calculating the checksum
Operating principle This special function calculates a two-byte checksum
from the transferred telegram and adds the two bytes to the end of the telegram.
Parameter 1 Number of the register with the first datum of the Modbus
protocol.
Parameter 2 Number of the register with the last data of the Modbus protocol
without the two bytes for the CRC check sum.
Potential errors - the number of the last register is smaller than the number of the
first register;

- each register may contain useful data in the lowest 8
bits only.

Result in case of error Undefined
Computing time approx. 68 µs when the data length is 100
registers.

6.1.2 Function 61: Checking the Check Sum
Operating Principle This special function checks the check sum of a telegram
and adds the result to the end of this telegram.
Parameter 1 Number of the register with the first datum of the Modbus
protocol.
Parameter 2 Number of the register with the last datum of the Modbus
protocol with the two bytes for the CRC check sum.
Potential errors - the number of the last register is smaller than the number of the
first register;

- each register may contain useful data in the lowest 8
bits only.

Result in case of error Undefined
Computing time approx. 68 µs when the data length is 100
registers.

JetControl 647 – V. 3.03 to V. 3.50 Version Update – 4 May 2005

Jetter AG 23

6.1.3 Sample Program
In the following example, the CRC check sum of a received Modbus RTU telegram is
checked by means of special function 61. If the check sum is correct, a 1 is returned.
Else, a 0 is attached to the telegram received.

REGISTER_LOAD (100, 0x02) // Slave Address
REGISTER_LOAD (101, 0x03) // Function code
REGISTER_LOAD (102, 0x00) // Starting number
REGISTER_LOAD (103, 0x20) // Starting number
REGISTER_LOAD (104, 0x00) // Amount
REGISTER_LOAD (105, 0x04) // Amount
REGISTER_LOAD (106, 0x45) // CRC check sum
REGISTER_LOAD (107, 0xF0) // CRC check sum
SPECIALFUNCTION (61, 100, 107) // Check CRC check sum
// The result is contained in register 108
IF REG 108 = 1
THEN ... // CRC check sum correct
ELSE ... // CRC check sum incorrect

Version Update – 4 May 2005 JetControl 647 – V. 3.03 to V. 3.50

24 Jetter AG

7 Special Function 50: Sorting Data
7.1 Introduction

In order to sort data in the controller, up to now the sorting algorithm had to be written in
SYMPAS, respectively in JetSym ST. The advantage of sorting was that each source line
was known; the disadvantage was that the sorting performance was not the best.
In order to grant the greatest possible flexibility to the user, the sorting algorithm is
separated from the data. The sorting algorithm has been stored to the operating system
of the controller. The data that are to be sorted are indirectly addressed by parameter 1.
Indirect addressing is necessary, as the value of parameter 2 specifies a register, where
the desciptor has been stored. The descriptor contains a register (offset 0) that is pointing
to the data. Further, the way of sorting etc. is specified in the descriptor, see "Input
descriptor, parameter 1". The descriptor is necessary, as the special functions have got
two transfer parameters only. Parameter 2 specifies a register address, to which an error
code and the processing time are to be stored. By activating special function 50, the data
specified in parameter 1 can be sorted.

SPECIALFUNCTION (50, 100, 200)

Parameter 1 specifies the pointer to the input descriptor.
Parameter 2 specifies the pointer to the result.

 Sort-Kriterium

Satz 1

Satz 2

Satz 3

Data 1

Sort-Kriterium

Data2

Data 1

Data 2

Data 1

Sort-Kriterium

Data 2

Sort-Kriterium

Register n

Register n+1

Register n+2

Register n+3

Register n+4

JetControl 647 – V. 3.03 to V. 3.50 Version Update – 4 May 2005

Jetter AG 25

7.1.1 Input descriptor (parameter 1)
Parameter 1 specifies, to which part of the controller memory the descriptor will be
stored. Before the function is activated, this descriptor must be initialized by entering
useful values.

Offset Parameters Value range Description
0 Data Start Register 0-20479 Start Register, which contains the data th

to be sorted
1 Amount of data sets 2-1000 Amount of data records, 1000 max.
2 Data length 2-1000 Amount of registers per data record
3 Sorting element 0-999 Element within a data record; this el

serves as a sorting criterion.
4 Mode 0-1 This parameter specifies the way of so

in ascending or descending sequence
Bit position
0: deleted: ascending; set: descending
1: unused
2: unused
3: unused

5 Vacant unused kept for further expansions
6 Vacant unused kept for further expansions
7 Vacant unused kept for further expansions
8 Vacant unused kept for further expansions
9 Vacant unused kept for further expansions

Version Update – 4 May 2005 JetControl 647 – V. 3.03 to V. 3.50

26 Jetter AG

7.1.2 Return values (parameter 2)

Offset Parameters Description
0 Error code See "Error code (parameter 2)".
1 Execution time in [us] Calculation time for sorting the data
2 Vacant kept for further expansions
3 Vacant kept for further expansions

7.1.3 Error code (parameter 2), offset 0

After having been activated, parameter 2, offset 0, will contain the return value.

Return value Meaning
0 OK; no error has occurred
1000 Start register > 20479
2000 Target register > 20479
3000 Amount of data records > 240
4000 Data length > 1000
5000 Sorting mode > 256
6000 Sorting element > (data length-1)

The sorting element is outside the valid
range

7.1.4 Execution time (parameter 2), offset 1

The expired time for sorting will be stored to this register.

7.2 Example of data structuring
Parameter 1 of special function 50 = 100
Parameter 2 of special function 50 = 200

Registers Offset Parameter / Description Valu

e
100 0 Data start register 400
101 1 Amount of data records 3
102 2 Amount of elements per data record 4
103 3 Master element_3 is used 2
104 4 Mode 0
105 5 Vacant
106 6 Vacant
107 7 Vacant
108 8 Vacant
109 9 Vacant

JetControl 647 – V. 3.03 to V. 3.50 Version Update – 4 May 2005

Jetter AG 27

Register
s

Description

400 DataRecord[0].Element_1
401 DataRecord[0].Element_2
402 DataRecord[0].Element_3
403 DataRecord[0].Element_4
404 DataRecord[1].Element_1
405 DataRecord[1].Element_2
406 DataRecord[1].Element_3
407 DataRecord[1].Element_4
408 DataRecord[2].Element_1
409 DataRecord[2].Element_2
410 DataRecord[2].Element_3
411 DataRecord[2].Element_4

8 Sample Program
//**
//************************ Specialfunction 50 – Sorting of Data in Direct and Indirect Manner

//**

 REGISTER_LOAD (100, 3000) // Data start Register
 REGISTER_LOAD (101, 4) // Amount of data records
 REGISTER_LOAD (102, 2) // Data length
 REGISTER_LOAD (103, 0) // Sorting criterion Element here
0-1
 REGISTER_LOAD (104, 0) // Mode: Bit 0 = 0 - Register
3000 contains the smallest value
 // Mode: Bit 0 = 1 - Register
3000 contains the greatest value
 REGISTER_LOAD (105, 0) // not used at the moment
 REGISTER_LOAD (106, 0) // not used at the moment
 REGISTER_LOAD (107, 0) // not used at the moment
 REGISTER_LOAD (108, 0) // not used at the moment
 REGISTER_LOAD (109, 0) // not used at the moment

 // Generate data

Version Update – 4 May 2005 JetControl 647 – V. 3.03 to V. 3.50

28 Jetter AG

 REGISTER_LOAD (3000, 8) // Data
 REGISTER_LOAD (3001, 1) // Record 1
 REGISTER_LOAD (3002, 1) // Data
 REGISTER_LOAD (3003, 2) // Record 2
 REGISTER_LOAD (3004, 4) // Data
 REGISTER_LOAD (3005, 3) // Record 3
 REGISTER_LOAD (3006, 20) // Data
 REGISTER_LOAD (3007, 4) // Record 4

 // Specify default values for error recognition

 REGISTER_LOAD (200, 55555) // Offset 0: Specify return value
 REGISTER_LOAD (201, 55555) // Offset 1: Sorting time in
microseconds. 100 data records in about
 // 4000 microseconds
 REGISTER_LOAD (202, 0) // Offset 2: not used
 REGISTER_LOAD (203, 0) // Offset 3: not used

 SPECIALFUNCTION (50, 100, 200)

IF

REG 200 # 0
THEN
 DISPLAY_TEXT (0, zPosNFText, "SortFct d/d 1")
 GOTO sError
ELSE

IF
 REG 201 > 1000
THEN
 DISPLAY_TEXT (0, zPosNFText, "SortFct d/d 1.1")
 GOTO sError
ELSE

IF
 REG 3000 # 1 OR // DATA
 REG 3001 # 2 OR // record 2
 REG 3002 # 4 OR // DATA
 REG 3003 # 3 OR // record 3
 REG 3004 # 8 OR // DATA
 REG 3005 # 1 OR // record 1
 REG 3006 # 20 OR // DATA
 REG 3007 # 4 // record 4
THEN
 DISPLAY_TEXT (0, zPosNFText, "SortFct d/d 2")
 GOTO sError
ELSE

JetControl 647 – V. 3.03 to V. 3.50 Version Update – 4 May 2005

Jetter AG 29

9 Start Delay
9.1 Description
When the JetControl 647 (supplied with 24 V) is started, a delay time is taken, which has
been set in register 63892, before the modules at the system bus are initialized, and
before the user program is started.
Only the red LED (ERR) is lit while this time is elapsing. The value in register 63892
specified the delay time in multiples of 100 ms. The min. value is 0 (function disabled).
The maximum value is 300, i.e. 30 seconds.

Version Update – 4 May 2005 JetControl 647 – V. 3.03 to V. 3.50

30 Jetter AG

10 Data Files
10.1 General Information
The latest register values and flag states can be written into a file or read-out of a file with
the help of some special functions. This read/write process is controlled by the
application program.
The file format is identical to the format of the "data dump" files created by JetSym (see
11).
The file names consist of two constant parts and a register content. So, files can be
selected by different register values (see 10.2.2).
Written files are stored to the root directory. Files to be loaded must also be located in the
root directory. Access to data files is carried out with administrator rights and cannot be
restricted.

10.2 Special Functions
10.2.1 Implementation
Since file operations may take considerable long time, especially with large files, other
application tasks are processed while one of the file operations is running. However, only
one function can be processed at a time. Tasks which invoke one of these functions while
a file operation of another task is running are therefore blocked until this operation is
completed.
That implies that data consistency of value blocks to be written or read is not ensured.
Data consistency has to be ensured by accordingly programming the application
program.
The state of the currently running operation can be polled through the registers specified
below (see 10.3).

10.2.2 File names
File names always start with "Data_" followed by a numerical value and the extension
"da". The numerical value for drawing a distinction between various files is acquired from
the parameter register of the special functions.
Examples:

 Data_123456789.da
Data_0.da

Please mind: Observe capitalization. The file system is case-sensitive.

JetControl 647 – V. 3.03 to V. 3.50 Version Update – 4 May 2005

Jetter AG 31

10.2.3 Saving values – creating a file
Special function 90 is for creating a new data file and inserting a selectable register or
flag block into this file.

SPECIAL_FUNCTION(90, <Source Register Number>, <Destination Register Number>)

<Source Register Number> Specifies the number of the first register of the parameter
block.
<Destination Register Number> Specifies the result register number for this function.

10.2.3.1 Parameter block
The function parameters are specified starting from register<Source Register Number>.

Register offset Meaning

0 "File Name" Numerical component of the file name (see 10.2.2)
1 Type 1 = Register

3 = Flag
2 Start of data block Number of the first register or flag
3 End of data block Number of the last register or flag

10.2.3.2 Function result
The result of the function can be read out of register <Destination Register Number>.

Register
Contents

Meaning

0 No error
-1 Error when creating a file (e.g. disk is full)
-2 Error when writing data
-4 Error when closing a file
-6 Invalid register / flag number

-10 Data file function not available (see 10.3)
-20 Internal OS error

10.2.4 Saving values – append to file
Special function 91 is for appending a selectable register or flag block to an existing file.
In case this file does not exist, a new file will be created.

 SPECIAL_FUNCTION(91, <Source Register Number>, <Destination Register
Number>)

<Source Register Number> Specifies the number of the first register of the parameter
block.
<Destination Register Number> Specifies the result register number for this function.

Version Update – 4 May 2005 JetControl 647 – V. 3.03 to V. 3.50

32 Jetter AG

10.2.4.1 Parameter block
The function parameters are specified starting from register <Source Register Number>.

Register offset Meaning

0 "File Name" Numerical component of the file name (see 10.2.2)
1 Type 1 = Register

3 = Flag
2 Start of data block Number of the first register or flag
3 End of data block Number of the last register or flag

10.2.4.2 Function result
The result of the function can be read out of register <Destination Register Number>.

Register
Contents

Meaning

0 No error
-1 Error when opening or creating file
-2 Error when writing data
-4 Error when closing a file
-6 Invalid register / flag number

-10 Data file function not available (see 10.3)
-20 Internal OS error

10.2.5 Reading values from a file
Special function 92 is for reading register values and flag states out of a data file and
entering them into the corresponding registers or flags. The information is processed in
the order specified by the content of the file.

 SPECIAL_FUNCTION(92, <Source Register Number>, <Destination Register
Number>)

<Source Register Number> Specifies the number of the register containing the

numerical component of the file name.
<Destination Register Number> Specifies the result register number for this function.

10.2.5.1 Function result
The result of the function can be read out of register <Destination Register Number>.

Register
Contents

Meaning

0 No error
-1 Error when opening file (e.g. file not found)
-3 Error when reading data
-4 Error when closing a file

-10 Data file function not available (see 10.3)
-20 Internal OS error

JetControl 647 – V. 3.03 to V. 3.50 Version Update – 4 May 2005

Jetter AG 33

10.2.6 Deleting a file
Special function 96 is for deleting a data file from the flash disk.

 SPECIAL_FUNCTION(96, <Source Register Number>, <Destination Register
Number>)

<Source Register Number> Specifies the number of the register containing the

numerical component of the file name.
<Destination Register Number> Specifies the result register number for this function.

10.2.6.1 Function result
The result of the function can be read out of register <Destination Register Number>.

Register
Contents

Meaning

0 No error
-5 Error when deleting the file (e.g. file not found)

-10 Data file function not available (see 10.3)
-20 Internal OS error

10.3 Registers
10.3.1 Availability
The bit-coded register 63827 has been expanded by 1 bit.

Register: Web Functions
JC 647 JC 24x
63827 2930

Function Description

Read Bit Number Meaning
0 0 = FTP server not available

1 = FTP server available
1 0 = HTTP server not available

1 = HTTP server available
2 0 = E-mail function not available

1 = E-mail function available
3 0 = Data file function not available

1 = Data file function available
4 0 = No Modbus/TCP

1 = Modbus/TCP has been licensed
5 0 = Modbus/TCP server not available

1 = Modbus/TCP server has been started
Write not possible

Value range 0 .. 255

Value after reset Depends on initialization

Version Update – 4 May 2005 JetControl 647 – V. 3.03 to V. 3.50

34 Jetter AG

10.3.2 Status register
The processing state of a file operation and the number of the task carrying out the
operation can be read from two registers.

Register: Processing State
JC 647 JC 24x
63835 2977

Function Description

Read 0: No data file operation in progress

1: Processing transferred to file module

2: Data is being read/written

3: File operation completed

Write illegal

Value range 0 .. 255

Value after reset 0

Register: Task number
JC 647 JC 24x
63836 2978

Function Description

Read Number of the task performing a file operation

0 .. 99: Task number

255: No task

Write illegal

Value range 0 .. 255

Value after reset 255

JetControl 647 – V. 3.03 to V. 3.50 Version Update – 4 May 2005

Jetter AG 35

11 Appendices
A.1 File Format
These files are pure text files with one line for each entry. The entries are to be
terminated with "carriage return / line feed". Comment lines are allowed.
A data file is to start with the entry "SD1001".
Data lines start with an identifier for the variable. Now follows the variable number, also
separated by a blank or tab. Now follows the value of the variable also separated by a
blank or tab.
The IDs at the beginning of a line must not be indented.

Variable ID Variable type
FS Flags
QS Floating point numeral

register
RS Integer Register

All lines that do not start with such a variable ID are regarded as comment lines with the
exception of the first line containing the file ID.

Example:

SD1001
; JC-647 DATA FILE - Jetter AG
FS 111 1
This is a comment
RS 20112 110
 FS 113 1
QS 65024 -3.141593

QS 65025 6.789e-05

The third line from below is also a comment line since the variable's ID ("FS") does not stand at the
beginning of the line.

Version Update – 4 May 2005 JetControl 647 – V. 3.03 to V. 3.50

36 Jetter AG

