

MCX - Diagnostics

Application Note 055

608 860 68_00

We automate your success.

This document has been compiled by Jetter AG with due diligence based on the state of the art as
known to them. Any revisions and technical advancements of our products are not automatically
made available in a revised document. Jetter AG shall not be liable for any errors either in form or
content, or for any missing updates, as well as for any damage or detriment resulting from such
failure.

Phone:
Switchboard +49 7141 2550-0
Sales +49 7141 2550-531
Technical hotline +49 7141 2550-444

E-mail: info@jetter.de
Technical hotline hotline@jetter.de
Sales vertrieb@jetter.de

Product name MCX - Diagnostics
Document type Application Note 055
Translation of the original German language document
Document revision 1.00
Item number 60886068_00
Date of issue 2021-05-21

Jetter AG www.jetter.de
Graeterstrasse 2
71642 Ludwigsburg
Germany

mailto:info@jetter.de
mailto:hotline@jetter.de
mailto:vertrieb@jetter.de
http://www.jetter.de

Application Note 055: MCX - Diagnostics Table of Contents

Jetter AG i

Table of Contents

1 Introduction.. 1

2 Types of Errors .. 2

2.1 User Errors .. 2

2.2 Axis Errors ... 2

2.3 Group Errors .. 2

3 JetSym .. 3

3.1 Controller - Checking for system errors .. 3

3.2 Motion Setup - Single Axis ... 4
 Status Overview - Single Axis .. 4 3.2.1

3.3 Motion Setup - Group ... 6
 Error Overview - Group .. 7 3.3.1
 Status Overview - Group .. 7 3.3.2

3.4 Motion Setup – MC-Global ... 8
 Errors .. 9 3.4.1

3.4.1.1 Status ... 10

3.5 Oscilloscope .. 11

4 Application Program - Motion API .. 12

4.1 MCX Boot Status: .. 12

4.2 MCX Errors in the Application Program.. 12
 Collective Errors .. 12 4.2.1
 System Error Registers .. 12 4.2.2
 Number of MCX Objects with Errors .. 12 4.2.3
 Checking Individual Motion Control Objects ... 12 4.2.4
 Error Evaluation ... 14 4.2.5

4.2.5.1 Motion Control Errors .. 14

4.2.5.2 Servoamplifier Errors .. 15

 Warnings and Messages: Detection and Evaluation .. 16 4.2.6
4.2.6.1 Motion Control Messages ... 16

4.2.6.2 Drive Messages .. 16

4.2.6.3 Drive Warnings ... 16

Application Note 055: MCX - Diagnostics Introduction

Jetter AG 1

1 Introduction
Programming, commissioning, testing and operation of an application by means of MCX also in-
volves the use of the diagnostic tools provided by the MCX and the JetSym programming environ-
ment.
This includes not only the evaluation of errors, but also the testing of the desired behavior or pro-
gram flow.
The purpose of this application note is to show which diagnostic tools are offered by JetSym and
how they are used. Furthermore, the various means of analysis within an application program are
presented.

Application Note 055: MCX - Diagnostics Types of Errors

Jetter AG 2

2 Types of Errors

2.1 User Errors

Incorrect operation of the MCX, e.g. specification of invalid values, travel commands for inactive
objects, ..

2.2 Axis Errors

Errors that have occurred on the drive, e.g. following error, DC link overvoltage, encoder error, …

2.3 Group Errors

If at least one axis error occurs in an active group, this becomes a group error.

Application Note 055: MCX - Diagnostics JetSym

Jetter AG 3

3 JetSym

3.1 Controller - Checking for system errors

Specific system registers can be displayed in the hardware setup window of the set controller.

These also include detected system errors:
Register 200008: Error register
 Bit 7: Error in extended error register
Register 200010: Extended error register 2

Bit 1: Error in the MCX object

A detailed description of the additional bits in these registers can be found in the manuals of the
respective controller.
Bit 7 in register 200008 only indicates that errors are displayed in the extended error registers, not
that an error has been detected in the MCX.
Bit 1 in the register is set as soon as the MCX has detected an error. Clearing the error with Clear-
Errors() does not reset this bit. It must be reset specifically. The associated bit 7 in register 200008
must also be reset separately. If other errors are displayed in the extended error registers, bit 7 in
register 200008 remains set.

Application Note 055: MCX - Diagnostics JetSym

Jetter AG 4

3.2 Motion Setup - Single Axis

On each commissioning page there is an overview of pending errors or warnings.

If errors or warnings are present, they are signaled by the red display of the respective tab.
If the "Errors" tab is active, errors affecting the given axis are listed in area A. Likewise, when the
"Warnings" tab is selected, the pending warnings are displayed.
In addition, in area B is displayed whether an axis or user error is active.
The "Clear Error" button can be used to acknowledge pending errors.

 Status Overview - Single Axis 3.2.1

This overview page displays important status information about a single axis.
- Operating system version of the drive
- MCX version
- Switches
- Hardware status of the drive
- Display of MCX states
- Miscellaneous information

o Operating mode
o Type of active motion
o Ramp (slope) status
o Reference status

Application Note 055: MCX - Diagnostics JetSym

Jetter AG 5

Application Note 055: MCX - Diagnostics JetSym

Jetter AG 6

3.3 Motion Setup - Group

On the commissioning page of an axis group, the active status of the group is displayed as well as
whether there is a user error or a group error.

The "Clear Error" button can be used to acknowledge pending errors.

Application Note 055: MCX - Diagnostics JetSym

Jetter AG 7

 Error Overview - Group 3.3.1

This overview lists the current errors, warnings and messages of the group and its member ob-
jects.
The "Clear Error" button can be used to acknowledge pending errors. If "Clear Error" is applied for
the group, this also clears the errors of its members.

 Status Overview - Group 3.3.2

As with the status overview of the single axis, the current states of the axis group are displayed
here.
There are 4 categories available:

- Operating mode
- Operating state
- Type of active motion
- Ramp (slope) status

Application Note 055: MCX - Diagnostics JetSym

Jetter AG 8

3.4 Motion Setup – MC-Global

MC-Global provides an overview of the entire MCX system.

The "MC-Global" node is created in the hardware tree as soon as an MCX object is created.

Application Note 055: MCX - Diagnostics JetSym

Jetter AG 9

 Errors 3.4.1

All axis objects created in the Hardware Manager are listed in this view.
The operating status of each object is displayed.
Errors and warnings are listed for each object.
The "Clear Error" button can be used to acknowledge pending errors. If "Clear Error" is applied for
the group, this also clears the errors of its members.
A process image can be generated for later analysis. A "*_Tmp99.ini" file is created in the file sys-
tem of the controller with the currently active axis parameters.

Application Note 055: MCX - Diagnostics JetSym

Jetter AG 10

3.4.1.1 Status
The MCX stores the accesses or commands in a ring buffer.
This allows you to trace the time history of MCX events.

This example shows the boot history, which ends with "…successfully initialized and started".
However, you can also see that an invalid value was entered for axis 1 when MovePtp was called.
Although this message does not show for which parameter which invalid value was entered, but
this message can be used to further investigate in the application program.
In this way, it is possible to trace which command caused an error or in which phase errors oc-
curred.

Application Note 055: MCX - Diagnostics JetSym

Jetter AG 11

3.5 Oscilloscope

The JetSym oscilloscope lets you not only record positions and speeds.
MCX provides many other parameters that may be of interest for analyzing a sequence. Further-
more, registers/variables from the application program can also be recorded.
Thanks to these functions, the oscilloscope is not only a tool for commissioning axes, but also for
debugging and visualizing application program sequences.

In this example, in addition to the setpoint positions of the master and follower axes, the setpoint
velocity and the setpoint acceleration are also shown.
In addition, the curve characteristic can also be checked by displaying the segment number of a
cam profile.
The behavior during the different coupling phases is checked by recording the coupling status.
With the help of the ramp status, it can be seen that the master axis has only reached the target
velocity shortly from the synchronization point.

Application Note 055: MCX - Diagnostics Application Program - Motion API

Jetter AG 12

4 Application Program - Motion API

4.1 MCX Boot Status:

The MCX R59997904 system register shows whether the boot process was successful. A status
value of "21" signals that the MCX kernel has started and was able to create and initialize the ob-
jects (axes, group).
It is sufficient to check this value when starting the application, as the value does not change dur-
ing runtime.
If the value is not equal to "21", the MCX could not start successfully.
The application program can generate a user message here.
This error cannot be acknowledged. User intervention is required.
Example: The specified hardware does not match the connected hardware.

- Check the set hardware configuration and, if necessary, transfer it to the controller again.
- Are the connected drives powered up?
- Are the addresses correct?
- Check the connection cables.
- …

4.2 MCX Errors in the Application Program

 Collective Errors 4.2.1

If an error occurs for one or more MC objects, this error is displayed as a group error. The dis-
played errors are to be regarded as equal.

 System Error Registers 4.2.2

System errors are displayed in the higher-level error registers of the controller:
Error register 1 R200008.Bit7 indicates that an error is present in other error registers.
Error register 3 R200010.Bit1 indicates that there is an error in the Motion Control.
To detect Motion Control errors, it is sufficient to monitor only R200010.Bit1. For cascaded moni-
toring it is sufficient to monitor whether error register 1 is not equal to 0. In some cases, a corre-
sponding error response is already triggered here and the analysis is then continued in the follow-
ing. If a deviation is detected, the additional error registers are only checked when bit 7 is set in
this register. If then error register3.bit1 is found to be set, the error response or the analysis of the
errors is continued.

 Number of MCX Objects with Errors 4.2.3

The number of MCX objects with errors can be determined via the Motion API command
mcMgr.FaultyObjectCount . If a value > 0 is returned here, at least one Motion Control object has
an error. It is then possible to proceed with the error response or analysis.

 Checking Individual Motion Control Objects 4.2.4

The Motion API provides a corresponding diagnostic object for each Motion Control object created.
Motion API 1.0 Motion API 2.0 Error location

MCAxis. MCAxis.
Diagnostics.IsErrorPending Diagnostics.IsErrorPending Axis object
Diagnostics.Software.IsErrorPending() MCX
Diagnostics.Drive.IsErrorPending() Drive.Diagnostics.IsErrorPending Drive
Diagnostics.Drive.IsErrorPending(ErrorNr) Specific drive *1)

Application Note 055: MCX - Diagnostics Application Program - Motion API

Jetter AG 13

Motion API 1.0 Motion API 2.0 Error location
MCGeo. MCGeo.
Diagnostics.IsErrorPending Diagnostics.IsErrorPending Path Group

MCTechno. MCTechno.
Diagnostics.IsErrorPending Diagnostics.IsErrorPending Technology group

1) MCAxis.Diagnostics.Drive.IsErrorPending(ErrorNr): There is exactly this error at this drive.
The ErrorNr corresponds exactly to the error number of the JetMove 100/200.
See also the user information on the JetMove 2xx:
jetmove_2xx_at_jetcontrol_bi_2114_userinformation.pdf

Example:
// an error occurred on MyAxis

when MyAxis.Diagnostics.IsErrorPending continue;
// execute error handling and create an alarm

// check which axis has an error

if MyAxis1.Diagnostics.IsErrorPending then
// execute error handling and create an alarm
end_if;
if MyAxis2.Diagnostics.IsErrorPending then
//….
else
//….
end_if;

Application Note 055: MCX - Diagnostics Application Program - Motion API

Jetter AG 14

 Error Evaluation 4.2.5

4.2.5.1 Motion Control Errors
For the Motion Control objects created, errors are stored in a buffer until they are cleared.
The Motion API provides the functions to read out this buffer.

MotionApi 1.0
Pending errors for all object types are read back in the same way.

MotionApi 2.0
For axis objects, pending errors are read back directly in the diagnostic object, while errors of
group objects are read back in the same way as in MotionApi1.0.

Motion API 1.0 Motion API 2.0 Description
MCAxis.Diagnostics.Software MCAxis.Diagnostics.

ErrorCount ErrorCount Number of error entries in the buffer
GetErrorCode(BufferIndex) GetErrorCode(BufferIndex) Error entry

MCGeo.Diagnostics.Software

ErrorCount Number of error entries in the buffer
GetErrorCode(BufferIndex)

MCTechno.Diagnostics.Software

ErrorCount Number of error entries in the buffer
GetErrorCode(BufferIndex)

ErrorCount: Number of error entries in the buffer
GetErrorCode(BufferIndex): Returns pending errors. Via BufferIndex all entries can be read out
one after the other. If the function parameter remains empty, the first entry in the buffer is always
returned.

Example:
When in this Motion API 2.0 example an MCX error occurs, the MC Manager object "mcMgr" is
used to systematically read out the pending errors from all objects with an error.

#include ".\GeneralFunctions.stxp"

type

 SystemExtErrorRegsiter2: bits(

 MCX = 1

);

end_type;

function superviseAnyError()

var

 nListIndex: int32;

 nErrorIndex: int32;

 pDiagnostics: pointer to MCDiagnosticsSoftware;

end_var;

 if mcMgr.FaultyObjectCount > 0 then

 for nListIndex := 0 to mcMgr.FaultyObjectCount by 1 do

 pDiagnostics := 0;

 case mcMgr.FaultyObject[nListIndex].Info.ClassID of

 MCClassIDs.Axis:

 pDiagnostics := mcMgr.AxisList[nListIndex].Diagnostics;

Application Note 055: MCX - Diagnostics Application Program - Motion API

Jetter AG 15

 break;

 MCClassIDs.Techno:

 pDiagnostics := mcMgr.TechnoList[nListIndex].Diagnostics.Software;

 break;

 MCClassIDs.Geo:

 pDiagnostics := mcMgr.GeoList[nListIndex].Diagnostics.Software;

 break;

 end_case;

 if pDiagnostics != 0 then

 for nErrorIndex := 0 to mcMgr.AxisList[nListIndex].Diagnostics.ErrorCount by 1 do

 // Error Evaluation

 trace(mcMgr.FaultyObject[nListIndex].Info.Name + ': '+ IntTo-

Str(pDiagnostics.GetErrorCode(nErrorIndex)) + ';$n');

 end_for;

 end_if;

 end_for;

 end_if;

end_function;

var

 g_SystemErrorExt2: SystemExtErrorRegsiter2 at %vl 200010;

 g_bClearError: bool;

end_var;

// Task supervises if any MCX-error occured

task supervision autorun

 when g_SystemErrorExt2.MCX continue;

 superviseAnyError();

 g_bClearError := false;

 when g_bClearError continue;

 resetTechnoAll();

 resetAxisAll();

 g_SystemErrorExt2.MCX := false;

end_task;

4.2.5.2 Servoamplifier Errors

Motion API 1.0 with JetMove2xx

You can evaluate existing errors either by directly querying the error or by reading out the super-
imposed error registers. In these registers, errors are bit-coded.
MCAxis.Diagnostics.Drive.IsErrorPending(ErrorNr): If true, this error is present.
MCAxis.Diagnostic.Drive. ErrorFlags1: Bit-coded errors 00 to 31 on the JetMove2xx.
MCAxis.Diagnostic.Drive. ErrorFlags2: Bit-coded errors 32 to 43 on the JetMove2xx.
The bit-wise evaluation can be done e.g. in a counting loop. The meaning of the individual error
bits is described in the User Information on the JetMove 2xx:
jetmove_2xx_at_jetcontrol_bi_xxxx_user_information.pdf

MotionApi 2.0 with EtherCAT drives

MCAxis.Drive.Diagnostics.IsErrorPending: If true, an error is pending.
MCAxis.Drive.Diagnostics.ActualError: Return value of the pending error. Refer to the relevant
user manual for the error numbers.

Application Note 055: MCX - Diagnostics Application Program - Motion API

Jetter AG 16

Motion API 1.0 Motion API 2.0 Description
MCAxis.Diagnostics.Drive MCAxis.Drive.Diagnostics.

IsErrorPending(ErrorNr) IsErrorPending Number of error entries in the buffer
ErrorFlags1 ActualError Error entry
ErrorFlags2 Error entry

 Warnings and Messages: Detection and Evaluation 4.2.6

4.2.6.1 Motion Control Messages
In addition to error messages, the Motion Control also generates general messages. This is infor-
mation that may be of interest for reviewing processes.
If, for example, a cam disc is to be activated at a certain master axis position and another cam disc
is activated before this point is reached, the message is generated that a pending cam activation is
aborted.

Motion API 1.0 Motion API 2.0 Description
MCAxis.Diagnostics. MCAxis.Diagnostics.

IsMessagePending There is a message.

MCAxis.Diagnostics.Software MCAxis.Diagnostics.
IsMessagePending There is a message.

MessageCount Number of messages in the buffer.
GetMessageCode(BufferIndex) Message entry

MCTechno.Diagnostics.
MCGeo.Diagnostics.

IsMessagePending There is a message.

.Software.
IsMessagePending There is a message.

MessageCount Number of messages in the buffer.
GetMessageCode(BufferIndex) Message entry

<MCObject>.Diagnostics.IsMessagePending and <MCOb-
ject>.Diagnostics.Software.IsMessagePending are identical properties of the diagnostics object.

4.2.6.2 Drive Messages

Motion API 1.0 Motion API 2.0 Description
 MCAxis.Drive.Diagnostics.
- IsMessagePending There is a message.

4.2.6.3 Drive Warnings
In the MCX system, warnings are generated only by the drive amplifier.
Motion API 1.0 lets you read out not only existing warnings, but also the contents of the warning
register on the JM-2xx. The meaning of the individual warning bits is described in the User Infor-
mation on the JetMove 2xx:
jetmove_2xx_at_jetcontrol_bi_xxxx_user_information.pdf
Motion API 2.0 can only detect that warnings are present. If you want to read out the warning, then
this must be done by means of a CANopen object. These objects are described in the manual of
the respective drive.

Application Note 055: MCX - Diagnostics Application Program - Motion API

Jetter AG 17

Motion API 1.0 Motion API 2.0 Description
MCAxis.Diagnostics.

IsWarningPending There is a warning.

MCAxis.Diagnostics.Drive MCAxis.Drive.Diagnostics
IsWarningPending IsWarningPending There is a warning.

WarningFlags JM-2xx warning register

Jetter AG
Graeterstrasse 2
71642 Ludwigsburg
Germany
www.jetter.de

E-mail info@jetter.de
Phone +49 7141 2550-0

We automate your success.

http://www.jetter.de
mailto:info@jetter.de

	Application Note 055: MCX - Diagnostics

	1 Introduction
	2 Types of Errors
	2.1 User Errors
	2.2 Axis Errors
	2.3 Group Errors

	3 JetSym
	3.1 Controller - Checking for system errors
	3.2 Motion Setup - Single Axis
	3.2.1 Status Overview - Single Axis

	3.3 Motion Setup - Group
	3.3.1 Error Overview - Group
	3.3.2 Status Overview - Group

	3.4 Motion Setup – MC-Global
	3.4.1 Errors
	3.4.1.1 Status

	3.5 Oscilloscope

	4 Application Program - Motion API
	4.1 MCX Boot Status:
	4.2 MCX Errors in the Application Program
	4.2.1 Collective Errors
	4.2.2 System Error Registers
	4.2.3 Number of MCX Objects with Errors
	4.2.4 Checking Individual Motion Control Objects
	4.2.5 Error Evaluation
	4.2.5.1 Motion Control Errors
	4.2.5.2 Servoamplifier Errors

	4.2.6 Warnings and Messages: Detection and Evaluation
	4.2.6.1 Motion Control Messages
	4.2.6.2 Drive Messages
	4.2.6.3 Drive Warnings

	Jetter AG - Contact Information

