

Betriebsanleitung

JVM-104 - Bediengerät

60879280

We automate your success.

Variante: Jetter Ausführung: O01

Artikelnummer: 60879280

Version 4.01.2

Mai 2015 / Printed in Germany

Dieses Dokument hat die Jetter AG mit der gebotenen Sorgfalt und basierend auf dem ihr bekannten Stand der Technik erstellt.

Bei Änderungen, Weiterentwicklungen oder Erweiterungen bereits zur Verfügung gestellter Produkte wird ein überarbeitetes Dokument nur beigefügt, sofern dies gesetzlich vorgeschrieben oder von der Jetter AG für sinnvoll erachtet wird. Die Jetter AG übernimmt keine Haftung und Verantwortung für inhaltliche oder formale Fehler, fehlende Aktualisierungen sowie daraus eventuell entstehende Schäden oder Nachteile.

Die im Dokument aufgeführten Logos, Bezeichnungen und Produktnamen sind geschützte Marken der Jetter AG, der mit ihr verbundenen Unternehmen oder anderer Inhaber und dürfen nicht ohne Einwilligung des jeweiligen Inhabers verwendet werden.

JVM-104 Vorspann

Adresse So erreichen Sie uns:

Jetter AG

Gräterstraße 2

D-71642 Ludwigsburg

Germany

Telefon - Zentrale: +49 7141 2550-0
Telefon - Vertrieb: +49 7141 2550-433
Telefon - Technische Hotline: +49 7141 2550-444

Telefax - Vertrieb: +49 7141 2550-484

E-Mail - Vertrieb: sales@jetter.de

E-Mail - Technische Hotline: hotline@jetter.de

Bedeutung der Betriebsanleitung

Das Dokument ist Bestandteil des Geräts JVM-104:

- Bewahren Sie das Dokument immer, also bis zur Entsorgung des Geräts JVM-104, griffbereit auf.
- Geben Sie das Dokument bei Verkauf, Veräußerung oder Verleih des Geräts JVM-104 weiter.

Wenn Sie Inhalte aus dem Dokument nicht eindeutig verstehen, wenden Sie sich an Ihren Ansprechpartner der Jetter AG.

Die Jetter AG ist dankbar für jede Art von Anregung und Kritik von Ihrer Seite. Sie bittet Sie, die Anregung und Kritik der Jetter AG unter der E-Mail-Adresse info@jetter.de mitzuteilen. Die Mitteilung hilft der Abteilung Dokumentation, die Dokumente noch anwenderfreundlicher zu gestalten und auf Ihre Wünsche und Erfordernisse einzugehen.

Für folgende Fälle enthält das Dokument wichtige Informationen:

- Gerät transportieren
- Gerät montieren
- Gerät installieren
- Gerät programmieren
- Gerät bedienen
- Gerät warten
- Gerät reparieren

Deshalb müssen Sie das Dokument und besonders die Sicherheitshinweise sorgfältig lesen, verstehen und beachten.

Fehlende oder unzureichende Kenntnisse des Dokuments führen zum Verlust jeglicher Haftungsansprüche gegen die Firma Jetter AG. Dem Betreiber empfiehlt die Jetter AG dringend, sich die Einweisung der Personen schriftlich bestätigen zu lassen.

Inhaltsverzeichnis

1	Sicherheitshinweise	9
	Grundlegende Sicherheitshinweise	10
2	Produktbeschreibung und Geräteaufbau	13
	Produktbeschreibung	
	Teile und Schnittstellen	
	Bestellbezeichnung	
	Mechanische Abmessungen	18
3	Identifikation des JVM-104	19
3.1	Identifikation über das Typenschild	
	Typenschild	
3.2	Versionsregister	
	Gottwareversioner	20
4	Montage und Installation des JVM-104	25
4.1	Schnittstellen	
	Beispiel einer Verdrahtung	
	Anschluss der Spannungsversorgung	
4.0	CAN-Schnittstelle	
4.2	Montage des JVM-104 Montage	
	Workage	
5	Erstinbetriebnahme	39
5.1	Vorbereitung und Einstieg in die Programmierung mit JetSym STX	
	Vorbereitungen zur Erstinbetriebnahme	
- 0	Programmierung in der Sprache JetSym STX	
5.2	Konfiguration bei der Plattform ER-STX-CE	
	Erstinbetriebnahme in JetViewSoftVisualisierungsprojekt in JetSym anlegen und konfigurieren	
5.3	Programmierung bei der Plattform ER-STX-CE	
0.0	Werteingabe über das Digipot	
	Visualisierungsobjekt ändern über die Visualisierungskommandos	63
6	CANopen®-STX-API	65
	STX-Funktion CanOpenInit()	
	STX-Funktion CanOpenSetCommand()	
	STX-Funktion CanOpenUploadSDO()	
	STX-Funktion CanOpenDownloadSDO()	76
	STX-Funktion CanOpenAddPDORx()	81
	STX-Funktion CanOpenAddPDOTx()	
	Heartbeat-Überwachung	94
	CANopen®-Objektverzeichnis des JVM-104	98

7	SAE J1939-STX-API	103
	Aufbau einer J1939-Nachricht	
	STX-Funktion SAEJ1939Init()	
	STX-Funktion SAEJ1939SetSA()	
	STX-Funktion SAEJ1939GetSA()	
	STX-Funktion SAEJ1939AddRx()	
	STX-Funktion SAEJ1939AddTx()	
	STX-Funktion SAEJ1939RequestPGN()	
	STX-Funktion SAEJ1939GetDM1()	
	STX-Funktion SAEJ1939GetDM2()	
	STX-Funktion SAEJ1939SetSPNConversion()STX-Funktion SAEJ1939GetSPNConversion()	
8	Detainment	407
	Dateisystem	
8.1	Verzeichnisse	
	Verzeichnisse	
8.2	Eigenschaften	
	Eigenschaften der Flash-Disk	133
9	Programmierung	135
	Abkürzungen, Modulregistereigenschaften und Formatierungen	136
9.1	Speicherübersicht	137
	Speicher des Betriebssystems	138
	Speicher des Dateisystems	
	Speicher des Anwendungsprogramms	
	Speicher für flüchtige Variablen des Anwendungsprogramms	
	Speicher für nichtflüchtige Register des Anwendungsprogramms	142
	Speicher für nichtflüchtige Variablen des Anwendungsprogramms	
	Spezialregister	
	Merker	
9.2	Bedienelemente und Zündung	
	Eingabetasten	
	Digipot	
	Zündung und Ausschaltverzögerung	
9.3	Laufzeitregister	155
	Beschreibung der Laufzeitregister	
	Beispielprogramm Laufzeitregister	158
10	Betriebssystemupdate	161
10.1	Betriebssystemupdate bei einem Bediengerät	162
	Betriebssystemupdate mit JetSym	163
	Betriebssystemupdate über \App	
11	Anwendungsprogramm	165
	Standardablage des Anwendungsprogramms	166
	Anwendungsprogramm laden	

JVM-104 Inhaltsverzeichnis

12	Kurzreferenz JVM-104	169
Anhang		175
A:	Schnittstellen	176
	Gesamtübersicht der Anschlussbelegung	177
B:	Technische Daten	179
	Technische Daten	180
	Mechanische Abmessungen	
	Betriebsparameter Umwelt und Mechanik	
	Betriebsparameter EMV	
C:	Index	

JVM-104 Sicherheitshinweise

1 Sicherheitshinweise

Einleitung	Dieses Kapitel enthält die grundlegenden Sicherheitshinweise. Wenn erforder-
	lich, warnt das Kapitel auch vor Restgefahren.

Inhalt

Thema	Seite
Grundlegende Sicherheitshinweise	10

Grundlegende Sicherheitshinweise

Einleitung

Das Gerät erfüllt die geltenden Sicherheitsbestimmungen und Normen. Auf die Sicherheit der Anwender legt die Jetter AG besonderen Wert.

Für den Anwender gelten zusätzlich die folgenden Vorschriften:

- Einschlägige Unfallverhütungsvorschriften
- Allgemein anerkannte sicherheitstechnische Regeln
- EG-Richtlinien oder sonstige länderspezifische Bestimmungen

Bestimmungsgemäße Verwendung

Die bestimmungsgemäße Verwendung beinhaltet das Vorgehen nach dieser Betriebsanleitung.

Das Gerät ist zum Einbau in Nutzfahrzeugen und mobilen Arbeitsmaschinen bestimmt. Das Gerät JVM-104 ist ein Bediengerät mit integrierter Steuerung zum Datenaustausch mit Peripheriegeräten.

Das Bediengerät JVM-104 erfüllt die Anforderungen der KFZ-Richtlinie für elektrische/elektronische Unterbaugruppen.

Betreiben Sie das Bediengerät JVM-104 nur innerhalb der angegebenen Grenzen der technischen Daten. Das Bediengerät JVM-104 fällt aufgrund der niedrigen Betriebsspannung unter die Kategorie SELV (Safety Extra Low Voltage). Das Bediengerät JVM-104 fällt also nicht unter die EG-Niederspannungsrichtlinie.

Nicht bestimmungsgemäße Verwendung

Verwenden Sie das Gerät nicht in technischen Systemen, für die eine hohe Ausfallsicherheit vorgeschrieben ist, wie z. B. bei Seilbahnen und Flugzeugen.

Das Gerät JVM-104 ist kein Sicherheitsbauteil nach der Maschinenrichtlinie 2006/42/EG. Deshalb ist der Einsatz des Geräts für sicherheitsrelevante Aufgaben im Sinne des Personenschutzes ungeeignet und unzulässig.

Wenn Sie beabsichtigen, das Gerät bei Umgebungsbedingungen zu betreiben, die von den zulässigen Betriebsbedingungen abweichen, setzen Sie sich mit der Jetter AG vorher in Verbindung.

Personalqualifikation

Je nach Produktlebenszyklus ergeben sich andere Anforderungen an das Personal. Um einen sicheren Umgang mit dem Gerät in den jeweiligen Produktlebensphasen zu gewährleisten, müssen die Anforderungen erfüllt sein.

Produktlebensphase	Mindestanforderung an das Personal
Transport/Lagerung:	Geschultes und eingewiesenes Personal mit Kennt- nissen vom richtigen Umgang mit elektrostatisch gefährdeten Bauelementen.
Montage/Installation:	Geschultes Fachpersonal mit elektrotechnischer Ausbildung im Bereich Fahrzeugtechnik z. B. KFZ-Mechatroniker/in.
Inbetriebnahme/ Programmierung:	Geschultes und eingewiesenes Fachpersonal mit weitreichenden Kenntnissen und Erfahrung in den Bereichen Fahrzeugtechnik / Automatisierung z. B. Fahrzeugtechniker/in für Arbeitsmaschinen.
Betrieb:	Geschultes, eingewiesenes und beauftragtes Personal mit Kenntnissen vom richtigen Umgang mit elektronischen Geräten für Arbeitsmaschinen.

JVM-104 Sicherheitshinweise

Produktlebensphase	Mindestanforderung an das Personal
Außerbetriebnahme/ Entsorgung:	Geschultes Fachpersonal mit elektrotechnischer Ausbildung im Bereich Fahrzeugtechnik z. B. KFZ-Mechatroniker/in.

Umbauten und Veränderungen am Gerät

Aus Sicherheitsgründen sind keine Umbauten und Veränderungen am Gerät und dessen Funktion gestattet.

Nicht ausdrücklich durch die Jetter AG genehmigte Umbauten am Gerät führen zum Verlust jeglicher Haftungsansprüche gegen die Firma Jetter AG.

Die Originalteile sind speziell für das Gerät konzipiert. Teile und Ausstattungen anderer Hersteller sind von der Jetter AG nicht geprüft und deshalb auch nicht freigegeben.

Ihr An- und Einbau kann die Sicherheit und einwandfreie Funktion des Geräts beeinträchtigen.

Für Schäden, die durch die Verwendung von nicht originalen Teilen und Ausstattungen entstehen, ist jegliche Haftung durch die Firma Jetter AG ausgeschlossen.

Transport

Das Gerät JVM-104 enthält elektrostatisch gefährdete Bauelemente, die durch unsachgemäße Behandlung beschädigt werden können.

Der Transport des Geräts JVM-104, besonders auf dem Postweg, muss in Originalverpackung und geeigneter elektrostatischer Schutzverpackung erfolgen.

- Schützen Sie das Gerät JVM-104 durch geeignete Umverpackung vor äußeren Schlag- und Stoßeinwirkungen.
- Prüfen Sie bei beschädigter Verpackung das Gerät auf sichtbare Schäden.
 Informieren Sie den Transporteur und die Jetter AG.

Einlagerung

Beachten Sie bei der Einlagerung des Geräts JVM-104 die klimatischen Bedingungen aus den technischen Daten.

Reparatur und Wartung

Reparaturen an dem Gerät dürfen nicht vom Betreiber selbst durchgeführt werden. Das Gerät enthält keine vom Betreiber reparierbaren Teile. Schicken Sie das Gerät zur Reparatur an die Firma Jetter AG ein.

Entsorgung

Für die Entsorgung des Geräts gelten für den Standort der Betreiberfirma die Umweltrichtlinien des jeweiligen Landes.

2 Produktbeschreibung und Geräteaufbau

Einleitung Dieses Kapitel besch

Dieses Kapitel beschreibt den Geräteaufbau und den Aufbau der Bestellbezeichnung mit ihren Optionen.

Inhalt

Thema	Seite
Produktbeschreibung	14
Teile und Schnittstellen	15
Bestellbezeichnung	17
Mechanische Abmessungen	18

Produktbeschreibung

Das Bediengerät JVM-104

Das JetView der mobilen Serie 104 ist ein vollgrafisches kompaktes Bediengerät. Das Bediengerät JVM-104 ist aufgrund seiner kompakten Bauform und der integrierten Steuerung vielseitig einsetzbar. Das JVM-104 ist speziell für den rauen Einsatz in Nutzfahrzeugen und mobilen Arbeitsmaschinen entwickelt.

Das Bediengerät lässt sich bei allen Lichtverhältnissen optimal bedienen. Dafür sorgen die beleuchteten Tasten sowie ein Lichtsensor, der die Helligkeit des Displays automatisch an das Umgebungslicht anpasst.

Produkteigenschaften

In folgender Liste sind die Produkteigenschaften dargestellt:

- Display: 3,5"-TFT, 350 cd/m²
- Auflösung: QVGA (320 x 240 Pixel)
- Touchscreen
- 4 Funktionstasten (beleuchtet)
- 1 Digipot mit Druckknopf
- Hintergrundbeleuchtung einstellbar
- Nachtbeleuchtung einstellbar
- Lautsprecher Lautstärke: 83 dB in 10 cm Abstand bei Resonanzfrequenz 2.670 Hz Frequenz und Lautstärke sind einstellbar.
- Leistungsfähige Programmiersprache JetSym STX
- Schnelle ARM11-CPU
- Nicht flüchtige Register: 30.000
- RAM-Speicher: 128 MByte Flash-Speicher: 512 MByte
- 1 CAN-2.0B-Schnittstelle

Zubehör

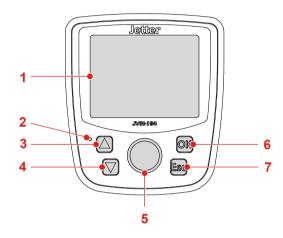
Als Zubehör können Sie ein Montage-Kit bestellen. Es besteht aus einem Haltebügel, Dichtungsring und passenden Schrauben und Muttern.

Artikel-Nr.	Anzahl	Beschreibung
60880138	1	Montage-Kit

Lieferumfang

Zum Lieferumfang des Bediengeräts JVM-104 gehören folgende Artikel:

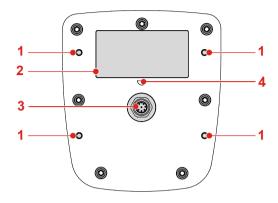
Artikel-Nr.	Anzahl	Beschreibung
10001018	1	Bediengerät JVM-104
60879282	1	Installationsanleitung


Teile und Schnittstellen

Einleitung

Dieses Kapitel beschreibt die Teile und Schnittstellen des JVM-104.

Vorderseite des JVM-104


Das Gerät JVM-104 hat ein Touchscreen mit einer aktiven Fläche von 3,5". Die Abbildung zeigt die Vorderseite des Geräts mit allen Bedienelementen.

Nummer	Teil	Beschreibung
1	TFT-Display	Aktive Fläche, Touchscreen
2	Helligkeitssensor	Erfasst die Umgebungshelligkeit
3	Eingabetaste UP	Taste mit Hintergrundbeleuchtung
4	Eingabetaste DOWN	Taste mit Hintergrundbeleuchtung
5	Digipot	Drehknopf mit Taster
6	Eingabetaste OK	Taste mit Hintergrundbeleuchtung
7	Eingabetaste ESC	Taste mit Hintergrundbeleuchtung

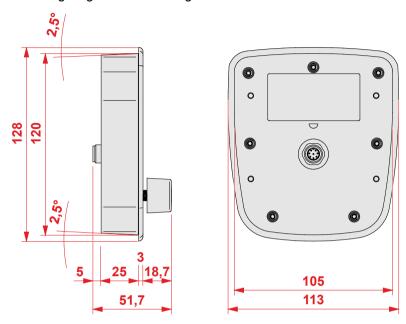
Rückseite des JVM-104

Die Abbildung zeigt die Rückseite des Geräts mit allen Anschlüssen und dem Typenschild.

Nummer	Teil	Beschreibung
1	Bohrung	Zur Befestigung des Bediengeräts, max. 12 mm tief
2	Typenschild	
3	M12-Stecker	
4	DAE	Druckausgleichelement

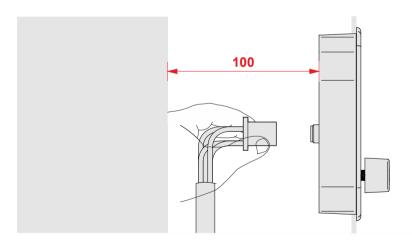
Bestellbezeichnung

Bestellbezeichnung


Das Bediengerät JVM-104 ist unter folgender Artikelnummer bei der Jetter AG bestellbar.

Artikel-Nr.	Bestellbezeichnung
10001018	JVM-104-K00-O01

Mechanische Abmessungen


Mechanische Abmessungen

Die Abbildung zeigt die Abmessungen des JVM-104 in Millimeter.

Platzbedarf für den Einbau und Service

Die Abbildung zeigt den Platzbedarf für das Bediengerät JVM-104. Das Maß ist in Millimeter angegeben.

Halten Sie den Raum um das Gehäuse für den Servicefall frei.

• Der Stecker muss sich jederzeit abziehen lassen.

3 Identifikation des JVM-104

Zweck des Kapitels

Dieses Kapitel unterstützt die Identifikation des JVM-104 in folgenden Punkten:

- Bestimmung der Hardwarerevision.
- Auslesen des elektronischen Typenschilds EDS. Im EDS sind zahlreiche fertigungsrelevante Daten abgelegt.
- Bestimmung der Softwareversionen.

Voraussetzungen

Zur Identifikation des Bediengeräts JVM-104 müssen folgende Voraussetzungen erfüllt sein:

- Das Bediengerät ist mit einem PC verbunden.
- Auf dem PC ist die Programmiersoftware JetSym ab der Version 5.1.2 installiert.

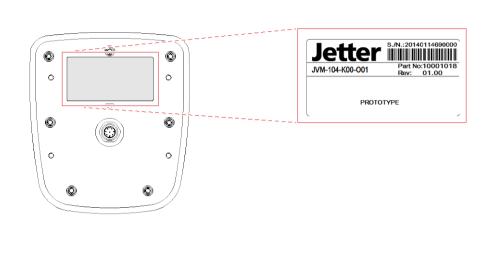
Infos für die Hotline

Wenn Sie sich wegen eines Problems an die Hotline der Jetter AG wenden müssen, halten Sie folgende Informationen des Bediengeräts JVM-104 bereit:

- Seriennummer
- Betriebssystemversion des Bediengeräts
- Hardwarerevision

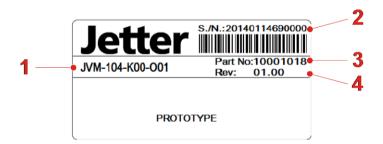
Inhalt

Thema	Seite
Identifikation über das Typenschild	20
Versionsregister	22


3.1 Identifikation über das Typenschild

Einleitung Jedes Bediengerät JVM-104 identifiziert Gehäuse. Wenn Sie sich wegen eines F wenden müssen, dann benötigen Sie di Seriennummer.		olems an die Hotline der Jetter AG
Inhalt		
	Thema	Seite
	Typenschild	21

Typenschild


Position des Typenschilds

Die folgende Abbildung zeigt die Position des Typenschilds auf der Rückseite des JVM-104.

Typenschild

Das Typenschild eines Bediengeräts JVM-104 beinhaltet folgende Informationen:

Nummer	Beschreibung
1	Produktname
2	Seriennummer
3	Artikelnummer
4	Hardwarerevision

3.2 Versionsregister

Das Betriebssystem des Geräts JVM-104 besitzt einige Register, über die Sie die Versionsnummern des Betriebssystems und seiner Komponenten auslesen können. Wenn Sie sich wegen eines technischen Problems an die Hotline der Jetter AG wenden, dann benötigen Sie diese Angaben.

Inhalt

Einleitung

Thema	Seite
Softwareversionen	23

Softwareversionen

Einleitung

Das Gerät JVM-104 beinhaltet Software mit eindeutigen Versionsnummern, die über Spezialregister lesbar sind.

Format von Softwareversionsnummern

Die Softwareversionsnummern des JVM-104 sind durch vier Zahlen dargestellt.

Element	Beschreibung
1	Major- oder Hauptversionsnummer
2	Minor- oder Nebenversionsnummer
3	Branch- oder Zwischenversionsnummer
4	Build-Versionsnummer

Freigegebene Version

Bei einer freigegebenen Version haben die Branch- und die Build-Versionsnummer den Wert 0.

Registerübersicht

Aus folgenden Registern können Sie die Softwareversionen auslesen:

Register	Beschreibung	
200000	Version des Betriebssystems	
210001	Version der STX-Interpreters für das STX-Anwendungsprogramm (JetVM-Version)	

Versionsnummern im JetSym-Setup

Die folgende Abbildung zeigt ein Setup-Fenster in JetSym, das die Versionsregister darstellt. Wählen Sie zur Anzeige einer Versionsnummer im JetSym-Setup das Format **IP-Adresse** aus.

	Name	Nummer	Inhalt
1	os	200000	328
2	JetVM_Version	210001	1.50.67
3			

4 Montage und Installation des JVM-104

Zweck des Kapitels

Dieses Kapitel unterstützt die Installation des Bediengeräts JVM-104 im Fahrzeug in folgenden Punkten:

- Planung der Verdrahtung des JVM-104
- Montage
- Konfiguration der IP-Schnittstelle des JVM-104

Inhalt

Thema	Seite
Schnittstellen	26
Montage des JVM-104	32

4.1 Schnittstellen

-	-	-		_	_	-	-	-		•	_	•	•	-	-	_	-	

Das Bediengerät JVM-104 hat folgende Schnittstelle:

■ M12-Stecker

M12-Stecker

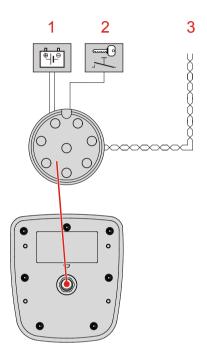
Einleitung

Der M12-Stecker hat folgende Funktion:

- Spannungsversorgung des JVM-104
- CANopen®-Busschnittstelle: CAN 1
- Erkennung der Zündung

Inhalt

Thema	Seite
Beispiel einer Verdrahtung	27
Anschluss der Spannungsversorgung	28
CAN-Schnittstelle	30


Beispiel einer Verdrahtung

Einleitung

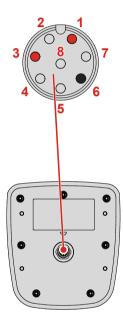
Folgend ist anhand eines Beispiels das Anschließen eines JVM-104 beschrieben.

Beispiel

Die Abbildung zeigt ein Beispiel für eine Verdrahtung.

Nummer	Beschreibung
1	Spannungsversorgung (Batterie)
2	Zündschloss
3	CANopen®-Bus

Anschluss der Spannungsversorgung


Verwendung des Steckers

Dieser Stecker wird auch für folgende Peripherie verwendet:

- Spannungsversorgung
- Erkennung Zündung

Anschlusspins der Spannungsversorgung

Die Abbildung zeigt die Pinbelegung des Anschlusssteckers für die Spannungsversorgung und den Anschluss der Zündung (Blick auf die Kabelseite):

Die Pinbelegung ist wie folgt:

Pin	Beschreibung	Klemmenbezeichnung in KFZ
1	Versorgungsspannung UB für die Logik des Geräts Spannung: DC12 V oder DC 24 V Stromaufnahme: Maximal 2 A	KL 30
3	Zündung (+)	KL 15
6	Bezugspotenzial GND	KL 31

Technische Daten -Spannungsversorgung UR

Parameter	Beschreibung
Nennspannung	DC 12 V oder DC 24 V
Zulässiger Spannungsbereich UB	DC 8 V DC 32 V, gemäß ISO 7637
Zulässiger Spannungsbereich Zündung	DC 5 V DC 32 V
Maximaler Strom	2 A
Load-Dump Schutz	Bis DC 70 V
Typische Stromaufnahme Logik (UB)	170 mA bei DC 12 V 90 mA bei DC 24 V
Leistungsaufnahme	Ca. 2 W
Integrierte Schutzfunktionen	Verpolschutz, Überlast, Kurzzeitige Spannungspulse

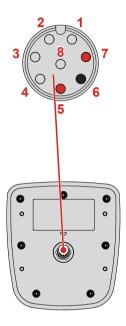
Hinweis zur Zündung

Zum Starten des JVM-104 muss Pin 3 (Zündung +) mit Pin 1 verbunden sein. Das Steuersignal Zündung (+) wird mit der Schlüsselstellung *Zündung EIN* verbunden.

Hinweis zur Stromaufnahme

Die Stromaufnahme beim Einschalten des JVM-104 ist kurzzeitig höher. Um einen zuverlässigen Start des JVM-104 zu gewährleisten, stellen Sie mindestens das 3-fache des benötigten typischen Stroms bereit.

Gegenstück


Kompatibles Gegenstück des 8-poligen M12-Steckers ist die folgende Buchse:

Hersteller	Z. B. BELDEN
	Lumberg automation
Herstellerartikelnummer	RKCN 8/9
Anschließbarer Adernquerschnitt	0,5 mm ² (AWG 20)

CAN-Schnittstelle

Anschlusspins des CANopen®-Busses

Die Abbildung zeigt die Pinbelegung des Anschlusssteckers für den CANopen®-Bus (Blick auf die Kabelseite). Der Pin 6 des Bezugspotenzials ist auch farblich gekennzeichnet.

Die Pinbelegung ist wie folgt:

Pin	Beschreibung
5	CAN_L
6	Bezugspotenzial GND
7	CAN_H

Technische Daten - CAN-Schnittstelle

Parameter	Beschreibung
Baudrate	250 kBaud 1 MBaud
Busabschlusswiderstand	Keiner im Gerät verbaut
Externer Busabschluss	120 Ω
Anschlussspezifikation	Verdrillte Adern, ungeschirmt

Busabschlusswiderstand

Das JVM-104 hat keinen integrierten Busabschlusswiderstand.

Drillung

Die Leitungen CAN_L und CAN_H müssen miteinander verdrillt sein.

Spezifikation CAN-Bus-Kabel

Parameter	Beschreibung
Querschnitt	1000 kBaud: 0,25 0,34 mm ² 500 kBaud: 0,34 0,50 mm ² 250 kBaud: 0,34 0,60 mm ²
Kapazität des Kabels	Max. 60 pF/m
Spezifischer Widerstand	1000 kBaud: Max. 70 Ω /km 500 kBaud: Max. 60 Ω /km 250 kBaud: Max. 60 Ω /km
Adernzahl	2
Drillung	Adernpaar CAN_L und CAN_H verdrillt

Leitungslängen

Die maximal zulässige Leitungslänge ist abhängig von der verwendeten Baudrate und der Anzahl der angeschlossenen CANopen®-Geräte.

Baudrate	Leitungslänge	Stichleitungslänge	Gesamtstichlei- tungslänge
1000 kBaud	max. 25 m	max. 0,3 m	1,5 m
500 kBaud	max. 100 m	max. 5 m	30 m
250 kBaud	max. 250 m	max. 10 m	60 m

Gegenstück

Kompatibles Gegenstück des 8-poligen M12-Steckers ist die folgende Buchse:

Hersteller	Z. B. BELDEN
	Lumberg automation
Herstellerartikelnummer	RKCN 8/9
Anschließbarer Adernquerschnitt	0,5 mm ² (AWG 20)
ı	

4.2 Montage des JVM-104

Einleitung	Dieses Kapitel beschreibt die Montage des JVM-104.				
Inhalt					
	Thema	Seite			
	Montage	33			

Montage

Einleitung

Dieses Kapitel beschreibt die Montage des Bediengeräts JVM-104.

Einbauort wählen

Wählen Sie einen geeigneten Einbauort.

Wenn der Einbauort folgende Bedingungen erfüllt, ist er geeignet:

- Die Montagefläche muss eben sein.
- Die Montagefläche darf maximal 5 mm dick sein.
- Der Einbauort muss Luftzirkulation erlauben.
- Der Einbauort muss für den Servicefall zugänglich sein.
- Der Einbauort muss ausreichend groß sein.

Ungeeignete Einbauorte meiden

Meiden Sie ungeeignete Einbauorte.

Folgende Einbauorte sind für die Montage des Bediengeräts ungeeignet:

Ungeeigneter Einbauort	Grund
Einbauort im Freien	Das Bediengerät darf nicht Regen oder einem Wasserstrahl ausgesetzt sein. Reinigen Sie das Bediengerät nicht mit einem Dampfstrahler oder ähnlichem.
Unbelüfteter Einbauort	Das Bediengerät kann bei Wärmestau überhitzen.
Einbauort in der Nähe hitze- empfindlicher Materialien	Die Materialien können sich durch die Wärmeentwicklung des Bediengeräts verformen.
Unebene Montagefläche mit Sicken und Erhebungen	Die Montagefläche kann sich beim Festschrauben des Bediengeräts verformen. Die Befestigung ist instabil und unsicher.

Ergonomische Grundsätze beachten

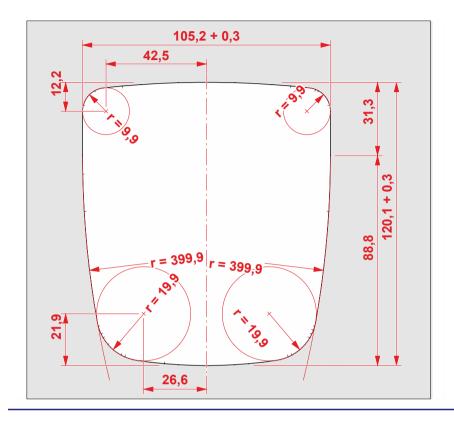
Beachten Sie ergonomische Grundsätze.

Wählen Sie einen benutzerfreundlichen Einbauort:

- Die Bedienelemente müssen leicht erreichbar sein.
- Das Bediengerät muss leicht ablesbar sein.

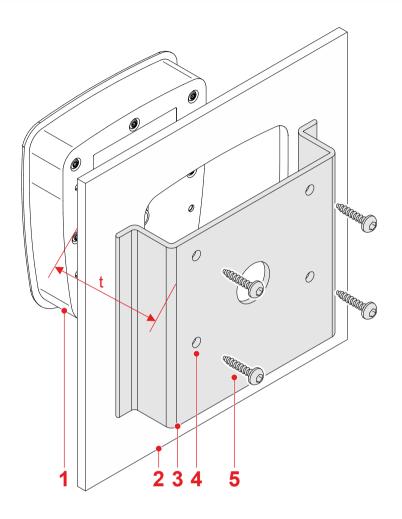
Vermeiden Sie ergonomisch ungünstige Einbauorte:

- Extreme Winkel, die das Ablesen des Bediengeräts erschweren
- Ungünstige Lichtverhältnisse mit Spiegelung und Blendwirkung
- Verdeckte Einbauorte, die dem Benutzer schwer zugänglich sind


Zubehör

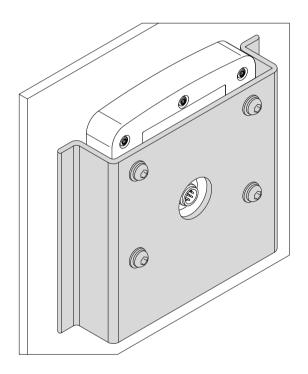
Als Zubehör können Sie ein Montage-Kit bestellen. Es besteht aus einem Haltebügel, Dichtungsring und passenden Schrauben und Muttern.

Artikel-Nr.	Anzahl	Beschreibung
60880138	1	Montage-Kit

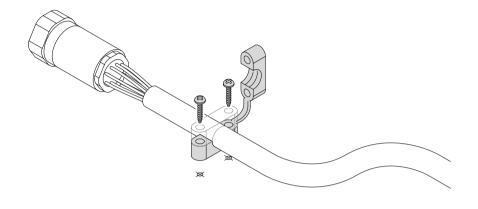

Montage vorbereiten

Stellen Sie eine passende Öffnung in der Montageplatte her. Die Abbildung zeigt die Form der Öffnung und die Maße in Millimeter.

Bediengerät montieren


Die Abbildung zeigt die Montage.

Nummer	Beschreibung	
1	JVM-104	
2	Montageplatte mit Öffnung für das Bediengerät	
3	Winkel zur Befestigung mit Öffnung für die Stecker	
4	4 x Bohrung zur Befestigung des JVM-104	
5	4 x selbstfurchende Schraube	
	Schraubenmaß: 4 x 9 + t	
	Anzugsmoment: 1,6 Nm ± 10 %	
	Maximale Schraubtiefe: 12 mm	


Schritt	Vorgehen	
1	Stecken Sie das Bediengerät von vorn in die Öffnung der Montageplatte.	
2	Halten Sie den Befestigungswinkel von hinten an die Montageplatte. Dabei müssen die Stecker durch die Öffnung des Befestigungswinkels schauen.	
3	Schrauben Sie das Bediengerät zusammen mit dem Befestigungswinkel auf die Montageplatte. Das Anzugsmoment sollte 1,6 Nm ± 10 % betragen.	

Die Abbildung zeigt das montierte Bediengerät JVM-104.

Zugentlastung montieren

Montieren Sie Zugentlastungen für die Anschlusskabel. Achten Sie auf ausreichenden Abstand zu den Steckern. Die Stecker müssen sich im Servicefall ungehindert abziehen lassen.

5 Erstinbetriebnahme

Zweck des Kapitels

Dieses Kapitel beschreibt die Erstinbetriebnahme des Geräts JVM-104 anhand der folgenden Schritte:

- Erstinbetriebnahme in JetViewSoft
- Erstinbetriebnahme in JetSym

JetViewSoft ist ein Scada-System und JetSym ein Programmiertool, beides von der Jetter AG entwickelt.

Für weitere Details nutzen Sie die Online-Hilfe von JetSym und JetViewSoft.

Mindestanforderungen

Die Anleitung zur Erstinbetriebnahme bezieht sich auf JetSym ab der Version 5.1.2 und JetViewSoft ab der Version 4.0.2.

Inhalt

Thema	Seite
Vorbereitung und Einstieg in die Programmierung mit JetSym STX	40
Konfiguration bei der Plattform ER-STX-CE	44
Programmierung bei der Plattform ER-STX-CE	58

5.1 Vorbereitung und Einstieg in die Programmierung mit JetSym STX

Einleitung

Dieses Kapitel stellt die Vorbereitungen zur Erstinbetriebnahme vor. Es gibt auch einen ersten Einblick in die Programmiersprache JetSym STX.

Inhalt

Thema	Seite
Vorbereitungen zur Erstinbetriebnahme	41
Programmierung in der Sprache JetSym STX	43

Vorbereitungen zur Erstinbetriebnahme

CAN-Verbindung herstellen

Zur Erstinbetriebnahme und Programmierung des Geräts JVM-104 sind folgende Vorbereitungen erforderlich:

- Verdrahtung der Spannungsversorgungen, der Zündung und der CAN-Schnittstelle
- Anschluss eines USB-CAN-Adapters zwischen Steuerung und PC
- Installation der entsprechenden Adaptertreibersoftware

Für eine Erstinbetriebnahme müssen Sie an die JVM-104 noch keine Peripherie angeschlossen haben.

Default-Werte am CANopen®-Bus

Das Gerät JVM-104 besitzt folgende Default-Werte:

CAN-Baudrate: 250 kBaudCANopen®-Node-ID: 0x7F

Hinweis

Das Gerät JVM-104 besitzt keinen internen (zuschaltbaren) CAN-Bus-Abschlusswiderstand.

Achten Sie darauf, dass am Anfang und Ende des CAN-Busses jeweils ein Abschlusswiderstand mit je 120 Ω angeschlossen ist.

Unterstützte USB-CAN-Adapter

Die Programmierumgebung JetSym unterstützt die folgenden USB-CAN-Adapter:

IXXAT Automation GmbH (http://www.ixxat.de http://www.ixxat.de): Die Liste der aktuell unterstützten Hardware entnehmen Sie der Website von IXXAT Automation GmbH.

Die unterstützten Treiberversionen sind: VCI-Version 3.3 und VCI-Version 2.18

■ PEAK-System Technik GmbH (http://www.peak-system.com http://www.peak-system.com): Die Liste der aktuell unterstützten Hardware entnehmen Sie der Website von PEAK-System Technik GmbH. Die unterstützten Treiberversionen sind: Ab der Version 3.5.4.9547

Installieren des USB-CAN-Adapters

Voraussetzungen:

Damit die Treibersoftware des USB-CAN-Adapters installiert werden kann, muss auf dem verwendeten PC **JetSym 4.3** oder höher installiert sein. So installieren Sie den Adapter:

Schritt	Vorgehen
1	Schließen Sie den USB-CAN-Adapter an eine USB-Schnittstelle des verwendeten PCs an.
2	Wenn sich der Hardwareinstallationsassistent sich öffnet, beenden Sie diesen.
3	Installieren Sie den Treiber des USB-CAN-Adapters.
4	Je nach verwendetem USB-CAN-Adapter müssen Sie noch einen Treiber für JetSym installieren.

Schritt	Vorgehen		
	Wenn	dann	
	Sie einen Adapter von PEAK-Systems verwenden,	gehen Sie zu Schritt 5.	
	Sie keinen Adapter von PEAK-Systems verwenden,	gehen Sie zu Schritt 7.	
5	Wechseln Sie im Windows Explorer in den Ordner PcanDrv der JetSym-Installation. Standardmäßiger Pfad: C:\Programme\Jetter\JetSym\Tools\PcanDrv		
6	Führen Sie die Datei PcanDrv.exe aus. Folgen Sie den Installationsschritten.		
7	Stecken Sie den Sub-D-Stecker des Adapters in die Sub-D-Buchse der IN_CAN-Schnittstelle des JVM-104.		

Ergebnis: Wenn die Installation fehlerfrei funktioniert hat, ist die CANopen®-Verbindung zwischen dem PC und der Steuerung eingerichtet.

Voraussetzung für das Einschalten

Nur wenn an der Zündung (+) die Versorgungsspannung +UB anliegt, schaltet das JVM-104 ein.

Start ohne Anwendungsprogramm

Wenn Sie beim Einschalten die Tasten ▼ und **OK** gleichzeitig drücken, startet das Anwendungsprogramm nicht.

Wenn das Gerät nach dem Booten nicht mehr reagiert, wie es während der Softwareentwicklungsphase passieren kann, ermöglicht dieser Zustand den Zugriff über FTP und über JetSym.

Darstellung bei Auslieferung

Das Anwendungsprogramm, das bei der Auslieferung nach dem Einschalten auf dem JVM-104 startet, stellt die folgende Eingabemaske auf dem Display des JVM-104 dar.

Die dargestellte Node-ID ist die im JVM-104 eingestellte Adresse des Busses CANopen® 1. Diese Adresse ist über die Tasten ▲ und ▼ einstellbar.

Über die Taste ▲ wird die Adresse in Einerschritten erhöht.

Über die Taste ▼ wird die Adresse in Einerschritten verringert.

Zusätzlich wird noch die IP-Adresse, MAC-Adresse und OS-Version dargestellt.

Programmierung in der Sprache JetSym STX

Einleitung

Mit JetViewSoft erstellen Sie Visualisierungsapplikationen für folgende Zielplattformen:

- PC-Systeme
- Bediengeräte für den Industriebereich
- Bediengeräte für den Mobilbereich

Sie greifen mit JetSym STX auf Visualisierungsobjekte zu und steuern die Darstellung auf dem Bediengerät. Sie programmieren das Bediengerät mit der Sprache JetSym STX wie eine Steuerung. Die kompilierten Programme können Sie dann ohne eine externe Steuerung im Bediengerät abarbeiten lassen. Der STX-Interpreter und die JVER (JetView Embedded Runtime) als grafische Laufzeitumgebung ermöglichen das. Beide sind Betriebssystembestandteile des Bediengeräts.

JetSym-STX-Programm

Das untenstehende Programm führt nichts Sinnvolleres aus, als eine interne Variable in einer Schleife bis zum Wert 20 zu verdoppeln. Das Beispiel zeigt exemplarisch, wie Sie JetSym STX nutzen können.

```
Task MiniBeispiel AutoRun
Var
    i, j : Int;
End_Var;
    j := 1;
    // j wird in einer Schleife bis zu dem Wert 1024 durchlaufen
    For i := 1 To 10 Do
        j := j * 2;
    End_For;
End_Task;
```

Speicherort des Programms

Wenn Sie das kompilierte Programm auf das Bediengerät laden, legt JetSym im Verzeichnis *Vapp* einen Ordner mit dem Projektnamen an. In diesen Ordner speichert JetSym das Anwendungsprogramm. Der Dateiname des Anwendungsprogramms besteht aus dem Projektnamen und der Dateierweiterung .es3. Pfad- und Dateinamen werden dabei immer in Kleinbuchstaben konvertiert.

Die Datei **start.ini** definiert, welches Anwendungsprogramm geladen werden soll, und wird automatisch beim Programmdownload erstellt.

5.2 Konfiguration bei der Plattform ER-STX-CE

Einleitung

Dieses Kapitel beschreibt, wie Sie ein Visualisierungsprojekt der Plattform ER-STX-CE in JetViewSoft und JetSym anlegen und konfigurieren.

Inhalt

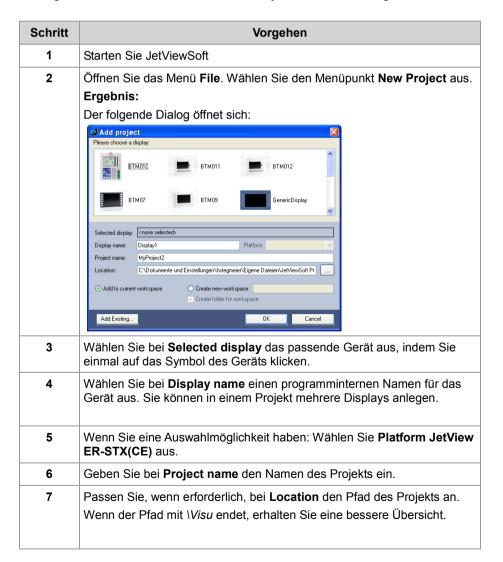
Thema	Seite
Erstinbetriebnahme in JetViewSoft	45
Visualisierungsprojekt in JetSym anlegen und konfigurieren	50

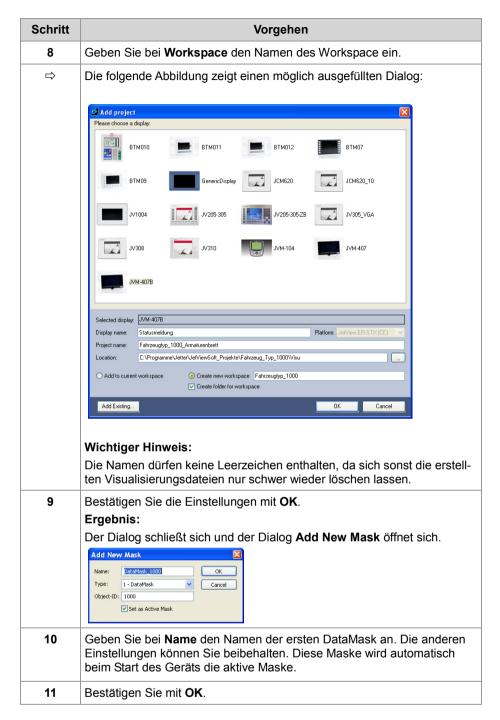
Erstinbetriebnahme in JetViewSoft

Einleitung

Mit JetViewSoft werden die Visualisierungsdateien für das Gerät JVM-104 erstellt und auf das Gerät übertragen. An dieser Stelle ist Folgendes beschrieben:

- Ein Projekt in JetViewSoft anlegen
- Die Projekteinstellungen t\u00e4tigen
- Visualisierungsdateien erstellen und auf das Gerät übertragen

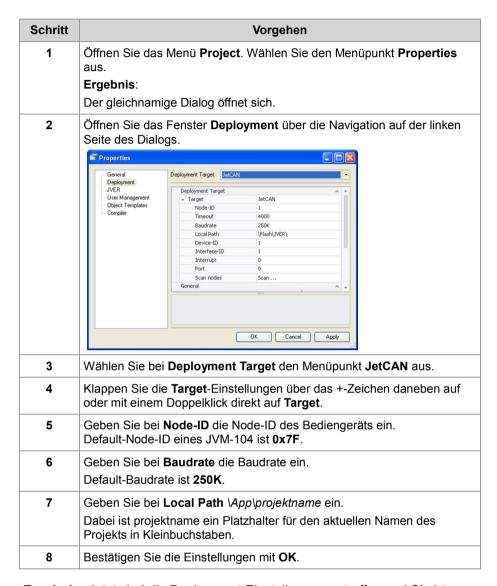

Voraussetzungen


Erfüllen Sie folgende Voraussetzungen:

- Sie haben JetViewSoft auf dem verwendeten PC installiert.
- Sie haben JetViewSoft lizenziert (siehe Online-Hilfe in JetViewSoft).
- Eine aktive CAN-Verbindung zwischen dem PC und dem Gerät ist eingestellt.

Projekt anlegen

So legen Sie in JetViewSoft ein neues Projekt für das Bediengerät an:



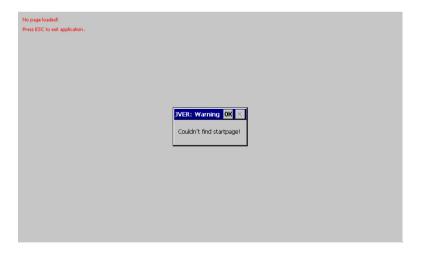
Ergebnis: Ein Projekt ist angelegt.

Deployment konfigurieren

Um die mit JetViewSoft erstellten Dateien auf das Gerät zu übertragen, müssen Sie noch die nötigen Deployment-Einstellungen treffen.

Ergebnis: Jetzt sind die Deployment-Einstellungen getroffen und Sie können die Dateien auf das Gerät übertragen.

Dateien für das Gerät


Um ein JetViewSoft-Projekt zu erzeugen und die Daten auf das Gerät zu übertragen, gehen Sie wie folgt vor:

Schritt	Vorgehen
1	Gestalten Sie die Maske mit den zur Verfügung stehenden Objekten (Rechtecke, Ellipsen usw.).
	Sie sehen die Objekte nach der Übertragung auf dem Bediengerät.
2	Öffnen Sie das Menü File. Wählen Sie den Menüpunkt Save all aus.
3	Drücken Sie die Taste [F7] für einen Projekt-Build. Ergebnis: JetViewSoft erstellt Projektdateien, sofern kein Fehler auftritt.
4	Öffnen Sie das Menü Build . Wählen Sie den Menüpunkt Deploy aus. Eine andere Möglichkeit ist, die Tastenkombination [CTRL] + [F5] einzugeben. Ergebnis: JetViewSoft überträgt die Dateien auf das Gerät.
	det viewoort abertragt die Dateien auf das Gerat.
5	Damit das Gerät die Dateien einliest, starten Sie das Gerät neu.

Ergebnis: Jetzt sehen Sie die JetViewSoft-Dateien des Projekts auf dem Gerät im Verzeichnis \(\lambda pp\\)projektname. Das Gerät zeigt jetzt die Startmaske an.

Keine Visualisierungsapplikation auf dem Gerät

Wenn keine Visualisierungsapplikation auf dem Gerät ist, zeigt das Display Folgendes an:

Der Ordner **Data** enthält keine Dateien. Somit ist keine Visualisierungsapplikation und keine JVER (JetView Embedded Runtime) auf dem Gerät. Eine Kommunikation zu JetSym ist bei angehaltener Runtime (Desktophintergrund ist sichtbar) nicht möglich.

Abhilfe: Übertragen Sie mit JetViewSoft eine Visualisierungsapplikation auf das Gerät.

IOP-Datei als Visualisierungsapplikation auf dem Gerät

Bei der Auslieferung ist es möglich, dass als Visualisierungsapplikation eine Datei mit der Dateiendung **.iop** im Ordner **Data** gespeichert ist.

Bei der Applikation, bei der die Node-ID des CAN-Busses eingestellt wird, ist das dann auch der Fall.

In diesem Fall: Das Gerät stellt Ihre erstellte Visualisierungsapplikation nicht dar.

Abhilfe:

Schritt	Vorgehen	
1	Wenn	dann
	die Datei \App\visual.iop oder \Data\visual.iop vorhanden ist,	löschen Sie die Datei oder benennen sie diese um.
2	Wenn dann	
	die Datei \App\JetViewERS.cfg vorhanden ist,	löschen Sie die Datei oder benennen sie diese um.
⇒	Die Visualisierungsapplikation entwickelt auf der Plattform ER-STX-CE wird dargestellt.	

Verwandte Themen

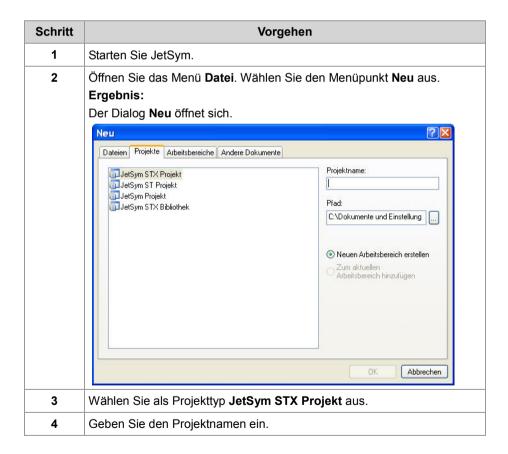
■ Erstinbetriebnahme in JetSym (siehe Seite 50)

Visualisierungsprojekt in JetSym anlegen und konfigurieren

Einleitung

Sie erstellen mit JetSym das STX-Programm für die Visualisierung des Bediengeräts JVM-104. An dieser Stelle ist Folgendes beschrieben:

- Projekt in JetSym STX anlegen
- Hardware der Steuerung konfigurieren
- Einbinden der Visualisierungsbibliothek JVER-STX
- Kompilierfähiges Programm erstellen und auf das Bediengerät übertragen

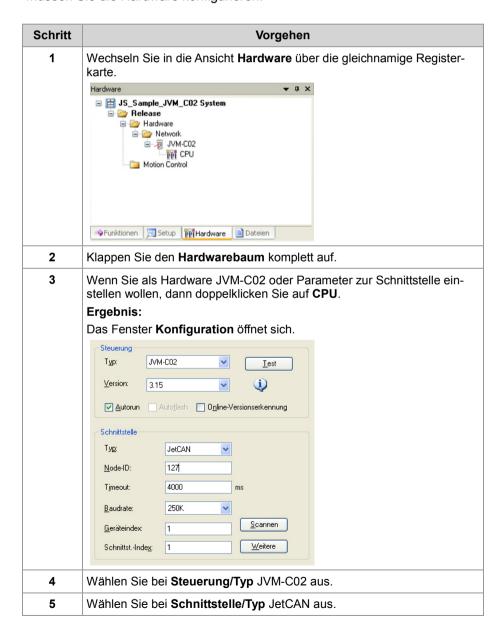

Voraussetzungen

Folgende Voraussetzungen müssen gegeben sein:

- JetSym ist auf dem verwendeten PC installiert.
- JetSym wurde lizenziert (siehe Online-Hilfe in JetSym).
- Sie haben eine Steuerung an das Netzwerk des PCs angeschlossen.
- Eine aktive CAN-Verbindung zwischen PC, Bediengerät und Steuerung ist eingerichtet.
- Die Erstinbetriebnahme in JetViewSoft wurde durchgeführt.

Projekt anlegen

So legen Sie in JetSym ein neues Projekt für die Programmierung an:



Schritt	Vorgehen
5	Wählen Sie den Pfad aus. Es ist empfehlenswert, die Projektdateien innerhalb des JetViewSoft-Projekts im Ordner STX abzuspeichern.
	Beispiel eines Pfads: C:\Programme\Jetter\JetViewSoft_Projekte\Fahrzeugtyp_1000\Visu\Fahrzeugtyp_1000\Fahrzeugtyp_1000_Armaturenbrett\STX Vorteil:
	Die JetSym-Projektdaten sind in demselben Ordner abgespeichert wie die von JetViewSoft erzeugte Datei VisualInterface.stxp .
6	Bestätigen Sie die Einstellungen mit OK .

Ergebnis: Ein Projekt ist angelegt.

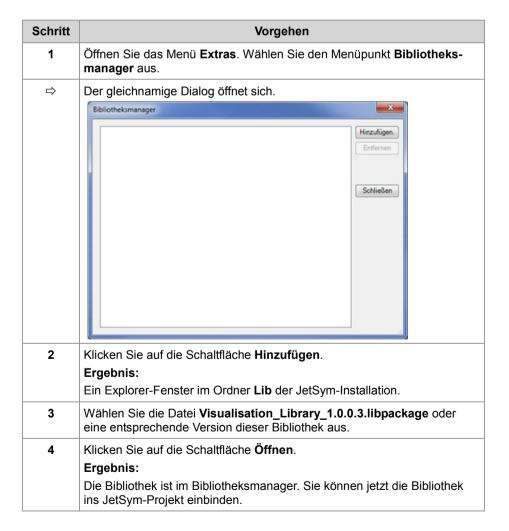
Hardware konfigurieren

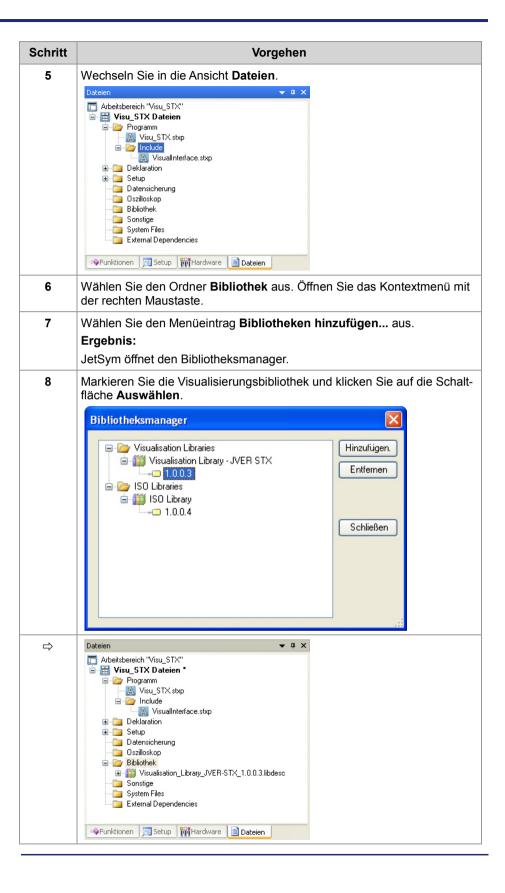
Um eine Verbindung zwischen JetSym und dem Bediengerät aufzubauen, müssen Sie die Hardware konfigurieren.

Ergebnis: Die Hardwareeinstellungen in JetSym sind konfiguriert.

VisualInterface.stxp - In das Projekt einbinden

Damit die Bezeichnung der Objekte und Masken der Visualisierungsapplikation bei der Programmierung zur Verfügung stehen, müssen Sie die Datei **Visualinterface.stxp** folgendermaßen einbinden:





Ergebnis: Die Datei **VisualInterface.stxp** ist in das JetSym-Projekt eingebunden.

Bibliothek einbinden


Damit die Bibliothek mit den Visualisierungsfunktionen in JetSym zur Verfügung steht, müssen Sie die Bibliothek wie folgt einbinden:

Kompilierfähiges Programm erstellen

So erstellen und kompilieren Sie ein lauffähiges Programm:

Ergebnis:

Sie können das Programm jetzt erweitern. Im **IntelliSense** (**Strg- + Space-Taste**) stehen die Visualisierungsfunktionen und die Informationen aus der VisualInterface-Header-Datei zur Verfügung. Sie übertragen das Programm durch die Tastenkombination **[Strg] + [F5]** auf das Bediengerät. Das Programm hat momentan noch keine Funktion.

Funktionen OnKeyDown und OnKeyUp

Die Funktionen OnKeyDown und OnKeyUp können bei Taste drücken oder bei Taste loslassen z. B. Visualisierungskommandos aufrufen. Abhängig davon, welche Taste Sie drücken, übermittelt das Betriebssystem einen bestimmten Keycode an die Funktionen.

Die Tasten [UP], [DOWN], [OK] und [ESC] z. B. haben die folgenden Keycodes:

Taste	Keycode	Konstante
A	0x26	KEY_UP
▼	0x28	KEY_DOWN
OK	0x0D	KEY_RETURN
ESC	0x1B	KEY_ESCAPE

Die Konstanten von allen möglichen Tasten sind in der Datei **VISU_Defines.stxp** als Keycode definiert. Sie können also im Programm die Konstanten angeben.

Ein mögliches STX-Programm dazu:

```
#include "VisualInterface.stxp"

Function OnKeyDown(KeyCode:LONG, Flags:Long)
Case KeyCode Of
KEY_UP: VisuCmdAttribute(Ellipse_4000,
ELLIPSE_ATTR_FILLATTRIBUTE, FillAttribute_26000);
Break;
KEY_DOWN: VisuCmdAttribute(Ellipse_4000,
ELLIPSE_ATTR_FILLATTRIBUTE, FillAttribute_26001);
Break;
KEY_RETURN: VisuCmdAttribute(Ellipse_4000,
ELLIPSE_ATTR_FILLATTRIBUTE, FillAttribute_26002);
Break;
KEY_ESC: VisuCmdAttribute(Ellipse_4000,
ELLIPSE_ATTR_FILLATTRIBUTE, FillAttribute_26003);
Break;
KEY_ESC: VisuCmdAttribute(Ellipse_4000,
ELLIPSE_ATTR_FILLATTRIBUTE, FillAttribute_26003);
Break;
End_Case;
End_Function;
```

Empfehlenswertes

Empfehlenswert ist es, wenn Sie auch für **Ellipse_4000** und **FillAttribute_26000** aussagekräftigere Objektnamen verwenden. Damit Sie die Objekte wieder finden und ordentlich zuordnen können, ist diese Vorgehensweise sehr ratsam. Statt *FillAttribute_26000* können Sie z. B. *FillAttribute_Weiss* schreiben.

Verwenden Sie in den Objektnamen keine Leer- oder Sonderzeichen (ä, ö, ü, ß, -, ...).

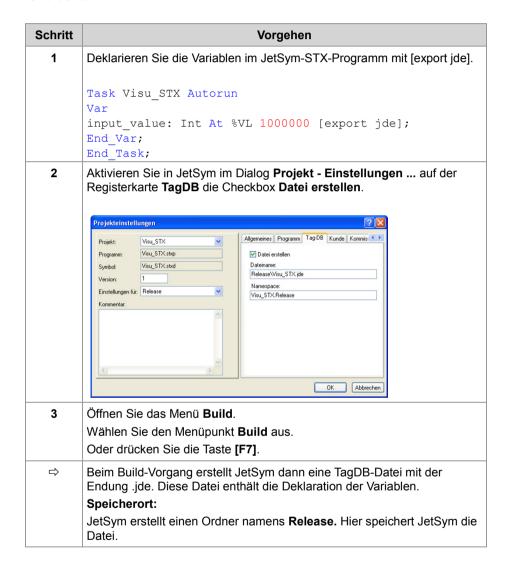
Sie vergeben den Objektnamen in JetViewSoft im Properties-Fenster des jeweiligen Objekts. JetViewSoft trägt diesen Objektnamen und die Objekt-ID in die Datei **VisualInterface.stxp** ein und Sie können den Objektnamen und die Objekt-ID im Programm verwenden.

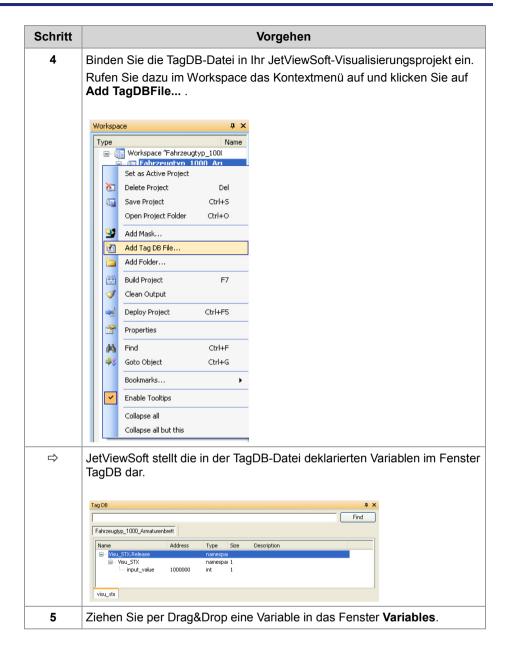
Verwandte Themen

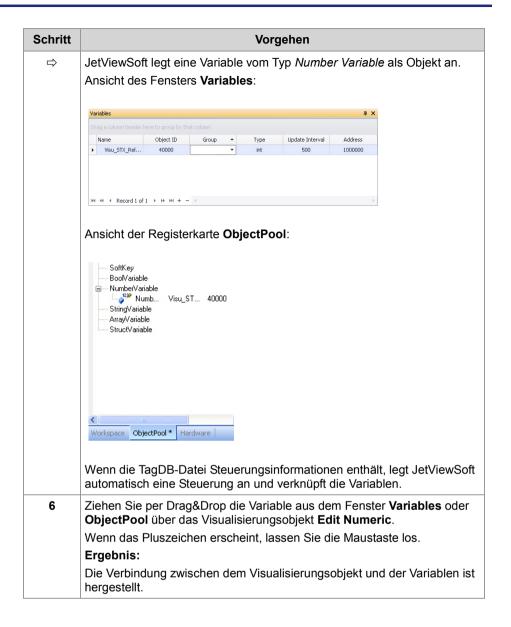
■ Erstinbetriebnahme in JetViewSoft (siehe Seite 45)

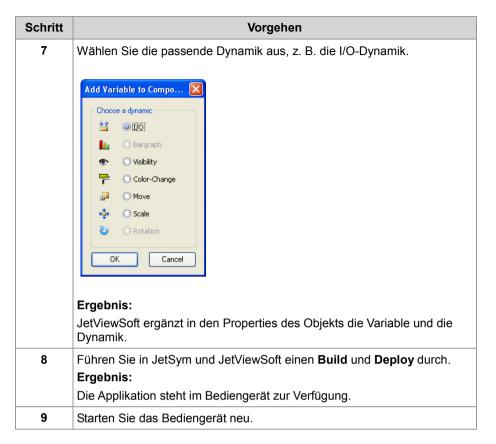
5.3 Programmierung bei der Plattform ER-STX-CE

Einleitung	Dieses Kapitel ist gegliedert in die folgenden zwei Bereiche: • Werteingabe über das Digipot am Bediengerät		
	 Visualisierungsobjekte ändern über die Visualisierungskommar (VisuCommands) vom Anwendungsprogramm aus 	ndos	
Voraussetzung	Diese Beschreibung trifft für die Plattform JetView ER-STX-CE/PC	zu.	
Ergänzende Literatur	Ergänzende Literatur finden Sie in den Online-Hilfen der Programmund JetViewSoft.	ne JetSym	
Inhalt			
	Thema	Seite	
	Werteingabe über das Digipot	59	
	Visualisierungsobjekt ändern über die Visualisierungskommandos	63	


Werteingabe über das Digipot


Einleitung


Mit nur wenig Programmcode ist es möglich, mit Hilfe des Digipots am Bediengerät Zahlenwerte einzugeben. Diese Zahlen stehen dann in einem JetSym-STX-Programm zyklisch zur Verfügung.


Werteingabe über das Digipot

Um einen Wert über das Digipot einzustellen, sind die folgenden Schritte erforderlich:

Ergebnis:

Das Bediengerät zeigt die Startmaske an. Sie können über den Digipot einen Wert im Objekt **Edit Numeric** einstellen.

Wenn Sie im Setup-Fenster von JetSym das R 1000000 eingeben, stellt JetSym den eingestellten Wert dar.

Visualisierungsobjekt ändern über die Visualisierungskommandos

Einleitung

Die Visualisierungskommandos sind Funktionen aus der Visualisierungsbibliothek von JetSym. Diese Funktionen können im JetSym-STX-Programm aufgerufen werden. Mit den Visualisierungskommandos manipulieren Sie Visualisierungsobjekte direkt aus dem JetSym-STX-Programm. Im Folgenden wird gezeigt, wie Sie z. B. die Füllfarbe einer Ellipse über das Visualisierungskommando ändern.

Bestandteile der Visualisierungsbibliothek

Alle verfügbaren Kommandos sind in der Datei **VISU_Functions.stxp** deklariert. Vordefinierte Datentypen, wie Farbe als RGB-Wert, Attribute und Tastencodes, sind in der Datei **VISU_Defines.stxp** deklariert. Beide Dateien sind Bestandteil der Visualisierungsbibliothek.

Voraussetzung

Damit der Compiler das folgende Programm ohne Fehler kompiliert, müssen Sie die folgenden Beispiele um den folgenden Programmcode ergänzen:

```
#Include "VisualInterface.stxp";
Function OnKeyDown (KeyCode:long, Flags:long)
End_Function;
Function OnKeyUp (KeyCode:long, Flags:long)
End Function;
```

Aufgabe 1

Vom Anwendungsprogramm gesteuert soll das Attribut Füllfarbe einer Ellipse geändert werden. Die Füllfarbe soll nach 5 s von rot nach blau und nach weiteren 5 s von blau wieder nach rot wechseln.

Lösung der Aufgabe 1

Das Anwendungsprogramm ruft zyklisch die Funktion **VisuCmdAttribute()** auf.

JetSym-STX-Programm der Aufgabe 1

```
Var
             Bool At %MX 1;
    Flag:
End Var;
Task Visu STX Autorun
Flag := FALSE;
gool
    If Flag = FALSE Then
        Flag := TRUE;
    ELSE
        Flag := FALSE;
    End If;
Case Flag Of
    TRUE: VisuCmdAttribute (Ellipse 4000,
ELLIPSE ATTR FILLATTRIBUTE, FillAttribute Blue);
    Break:
    FALSE: VisuCmdAttribute (Ellipse 4000,
ELLIPSE ATTR FILLATTRIBUTE, FillAttribute Red);
    Break;
```

```
End_Case;
Delay(T#5s);
End_Loop;
End_Task;
```

Aufgabe 2

Beim Betätigen der einen Schaltfläche (Button_10000) soll das Attribut Füllfarbe eines Rechteckobjekts rot sein.

Beim Betätigen der zweiten Schaltfläche (Button_10001) soll die Füllfarbe desselben Rechteckobjekts blau sein. Sie betätigen die Schaltfläche über das Digipot.

Lösung der Aufgabe 2

Weisen Sie in JetViewSoft beiden Schaltflächen das Event **OnButtonDown** zu. Wenn das Event eintritt, wird die Makrofunktion **CallSTXFunctionEx()** aufgerufen.

Im Anwendungsprogramm ist eine Funktion deklariert, die wiederum ein Visualisierungskommando ausführt. In diesem Fall ist es die Funktion **VisuSTXFunction()**.

Welche Schaltfläche gerade betätigt ist, wird über die SenderID übermittelt und in einem Case-Befehl abgefragt.

JetSym-STX-Programm der Aufgabe 2

```
Function VisuSTXFunction (SenderID : long)

Case SenderID Of
    Button_10000: VisuCmdAttribute (Rectangle_3000;
RECTANGLE_ATTR_FILLATTRIBUTE, FillAttribute_Red);
    Break;
    Button_10001: VisuCmdAttribute (Rectangle_3000;
RECTANGLE_ATTR_FILLATTRIBUTE, FillAttribute_Blue);
    Break;
End_Case;
End_Function;

Task Visu_STX Autorun

End_Task;
```

Hinweis

Sobald Sie in einem Makroobjekt die Makrofunktion **CallSTXFunctionEx()** ausgewählt haben, ist diese Funktion mit ihrem Namen in der Datei **VisualInterface.stxp** als **forward** deklariert.

6 CANopen®-STX-API

Einleitung

Dieses Kapitel beschreibt die STX-Funktionen der CANopen®-STX-API.

Der CANopen®-Standard

CANopen® ist ein offener Standard für die Vernetzung und Kommunikation z. B. im Kraftfahrzeugbereich.

Das CANopen®-Protokoll wird von der CiA e.V. (CAN in Automation) weiterentwickelt und arbeitet auf dem Physical Layer mit CAN-Highspeed nach ISO 11898.

Dokumente

Die CANopen®-Spezifikationen können von der Homepage des CiA e.V. http://www.can-cia.org bezogen werden. Die wichtigsten Spezifikations-dokumente sind dabei:

- CiA DS 301 Dieses Dokument ist auch als Kommunikationsprofil bekannt und beschreibt die grundlegenden Dienste und Protokolle, die unter CANopen® verwendet werden.
- CiA DS 302 Framework für programmierbare Geräte (CANopen®-Manager, SDO-Manager)
- CiA DR 303 Informationen zu Kabeln und Steckverbindern
- CiA DS 4xx Diese Dokumente beschreiben das Verhalten vieler Geräteklassen über sogenannte Geräteprofile.

Anwendung

Diese STX-Funktionen werden in der Kommunikation zwischen dem Gerät JVM-104 und anderen CANopen®-Teilnehmern angewendet.

Hinweis: Perspektive beachten!

Dieses Kapitel ist aus Sicht der übergeordneten Steuerung beschrieben, während im Dokument CiA DS 301 aus Gerätesicht dokumentiert ist.

Deshalb benötigen Sie z. B. zum Aufrufen der Funktion CanOpenAddPDORx() ein PDO_RX-Makro.

Begriffe und Abkürzungen

Folgende Begriffe und Abkürzungen kommen in diesem Kapitel vor:

Begriff	Beschreibung
Node-ID	Knotennummer des Teilnehmers: Über diese ID wird das Gerät angesprochen.
NMT	Network management - Netzwerkmanagement
ro	Read Only - Nur Lesezugriff
rw	Read/Write - Lese und Schreibzugriff

Inhalt

Thema	Seite
STX-Funktion CanOpenInit()	67
STX-Funktion CanOpenSetCommand()	69
STX-Funktion CanOpenUploadSDO()	71
STX-Funktion CanOpenDownloadSDO()	76
STX-Funktion CanOpenAddPDORx()	81
STX-Funktion CanOpenAddPDOTx()	88
Heartbeat-Überwachung	94
CANopen®-Objektverzeichnis des JVM-104	98

STX-Funktion CanOpenInit()

Einleitung

Mit dem Aufruf der Funktion CanOpenInit () wird einer der vorhandenen CAN-Busse initialisiert. Die JVM-104 sendet dann automatisch jede Sekunde die Heartbeat-Nachricht mit dem folgenden Kommunikationsobjekt-Identifier (COB-ID): Node-ID + 0x700.

Funktionsdeklaration

```
Function CanOpenInit(
          CANNo:Int,
          NodeID:Int,
          const ref SWVersion:String,
) :Int;
```

Funktionsparameter

Die Funktion CanOpenInit () hat die folgenden Parameter.

Parameter	Beschreibung	Wert
CANNo	CAN-Nummer der Busleitung	0 CANMAX
NodelD	Eigene Node-ID	1 127
SWVersion	Referenz auf die eigene Softwareversion	String bis zu 255 Zeichen
	Diese Softwareversion wird unter dem Index 0x100A in das Objektverzeichnis eingetragen.	

Rückgabewert

Die Funktion übergibt die folgenden Rückgabewerte an das übergeordnete Programm.

Rückgabewert	
0	ok
-1	Fehler bei der Parameterüberprüfung
-3	Die Initialisierung hat nicht funktioniert
-4	Der JX2-Systembus-Treiber ist aktiviert

CANNo-Parameter

Dieser Parameter gibt die Nummer der CAN-Schnittstelle an. Die erste Schnittstelle wird mit CANNo = 0 ausgewählt. Die Anzahl der CAN-Schnittstellen ist geräteabhängig. Die mögliche Anzahl der CAN-Schnittstellen CANMAX ist in den *technischen Daten* und der *Kurzreferenz* der jeweiligen Betriebsanleitung erwähnt.

Verwenden der Funktion

Initialisieren des CAN-Busses 0. Die JVM-104 hat die Node-ID 20 (0x14).

Result := CanOpenInit(0, 20, 'Version: 01.00.0.00');

Funktionsweise

Während der Initialisierung durchläuft die JVM-104 folgende Prozessstufen:

Stufe	Beschreibung
1	Zuerst wird die Bootup-Meldung als Heartbeat-Nachricht gesendet.
2	Sobald die JVM-104 in den Zustand Pre-Operational geht, sendet es die Heartbeat-Nachricht Pre-Operational .

Zugriff auf das Objektverzeichnis

Wenn das Gerät JVM-104 sich im Zustand **Pre-Operational** befindet, dann können Sie über SDO auf das Objektverzeichnis zugreifen.

NMT-Nachrichten

Nach der Initialisierung können NMT-Nachrichten gesendet und empfangen werden. Der eigene Heartbeat-Zustand kann mit der Funktion CanOpenSetCommand() geändert werden.

Verwandte Themen

■ STX-Funktion CanOpenSetCommand (siehe Seite 69)

STX-Funktion CanOpenSetCommand()

Einleitung

Mit dem Aufruf der Funktion CanOpenSetCommand () kann der eigene Heartbeat-Zustand und der Heartbeat-Zustand aller anderen Geräte (NMT-Slaves) am CAN-Bus geändert werden.

Funktionsdeklaration

```
Function CanOpenSetCommand(
          CANNo:Int,
           iType:Int,
           Value:Int,
) :Int;
```

Funktionsparameter

Die Funktion CanOpenSetCommand() hat die folgenden Parameter.

Parameter	Beschreibung	Wert
CANNo	CAN-Nummer der Busleitung	0 CANMAX
iТуре	Auswahl des Kommandos	Siehe nächste Tabelle.

iType	Beschreibung: Value	
CAN_CMD_HEARTBEAT	Nur der eigene Heartbeat-Zustand wird geändert. Auswahl der Heartbeat-Zustände:	
	CAN_HEARTBEAT_STOPPED (0x04)	
	CAN_HEARTBEAT_OPERATIONAL (0x05)	
	CAN_HEARTBEAT_PREOPERATIONAL (0x7F)	
CAN_CMD_NMT	Bei allen Geräten oder bei einem speziellen Gerät am CAN-Bus wird der Heartbeat-Zustand geändert. Auswahl der Heartbeat-Zustände (NMT-Master):	
	CAN_NMT_OPERATIONAL (0x01) oder CAN_NMT_START (0x01)	
	CAN_NMT_STOP (0x02)	
	CAN_NMT_PREOPERATIONAL (0x80)	
	CAN_NMT_RESET (0x81)	
	CAN_NMT_RESETCOMMUNICATION (0x82)	
CAN_CMD_TIME_CONS UMER	Dieses Kommando macht das Gerät empfangsbereit für die Synchronisierung der Uhrzeit über den CAN-Bus (CAN-ID 0x100). Siehe Dokument der CiA.e.V DS301 V402 Seite 59. Auswahl der Synchronisierung:	
	CAN_TIME_CONSUMER_DISABLE = 0 (Abschalten der Synchronisierung)	
	CAN_TIME_CONSUMER_ENABLE = 1 (Einschalten der Synchronisierung)	
CAN_CMD_TIME_PROD UCER	Die Uhrzeit wird auf dem CAN-Bus veröffentlicht. Struktur siehe Dokument der CiA.e.V DS301 CAN-ID 0x100:	
	CAN_TIME_PRODUCER_SEND = 1 (Sendet bei Aufruf einmalig TIME_OF_DAY)	

Hinweis

Die Auswahl des Kommandos CAN_CMD_NMT erfolgt über die Makrofunktion CAN CMD NMT Value (NodeID, CAN CMD NMT).

Für den Parameter Node-ID sind Werte von 0 bis 127 zulässig. 1 bis 127 ist die Node-ID für ein bestimmtes Gerät. Soll das Kommando an alle Geräte am CAN-Bus gesendet werden, wird der Parameter

CAN CMD NMT ALLNODES (0) verwendet.

CANNo-Parameter

Dieser Parameter gibt die Nummer der CAN-Schnittstelle an. Die erste Schnittstelle wird mit CANNo = 0 ausgewählt. Die Anzahl der CAN-Schnittstellen ist geräteabhängig. Die mögliche Anzahl der CAN-Schnittstellen CANMAX ist in den *technischen Daten* und der *Kurzreferenz* der jeweiligen Betriebsanleitung erwähnt.

Rückgabewert

Die Funktion übergibt die folgenden Rückgabewerte an das übergeordnete Programm.

Rückgabewert	
0	ok
-1	Fehler bei der Parameterüberprüfung
	Kommando nicht bekannt

Verwenden der Funktion (Beispiel 1)

Der eigene Heartbeat-Zustand soll auf **Operational** gesetzt werden.

Result := CanOpenSetCommand(0, CAN_CMD_HEARTBEAT,
CAN HEARTBEAT OPERATIONAL);

Verwenden der Funktion (Beispiel 2)

Der eigene Heartbeat-Zustand und der Zustand von allen anderen Geräten am CAN-Bus soll auf **Operational** gesetzt werden.

Result := CanOpenSetCommand(0, CAN_CMD_NMT,
CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES, CAN_NMT_OPERATIONAL));

Verwenden der Funktion (Beispiel 3)

Der Heartbeat-Zustand von dem Gerät mit der Node-ID 60 (0x3C) soll auf **Operational** gesetzt werden.

Result := CanOpenSetCommand(0, CAN_CMD_NMT, CAN_CMD_NMT_Value(60, CAN_NMT_OPERATIONAL));

Verwenden der Funktion (Beispiel 4)

Die Synchronisierung der Uhrzeit über den CAN-Bus (CAN-ID 0x100) soll eingeschaltet werden.

Result := CanOpenSetCommand(0, CAN_CMD_TIME_CONSUMER,
CAN TIME CONSUMER ENABLE);

Verwenden der Funktion (Beispiel 5)

Die Uhrzeit soll auf dem CAN-Bus veröffentlicht werden.

Result := CanOpenSetCommand(0, CAN_CMD_TIME_PRODUCER,
CAN TIME PRODUCER SEND);

STX-Funktion CanOpenUploadSDO()

Einleitung

Mit dem Aufruf der Funktion CanOpenUploadSDO() wird gezielt auf ein bestimmtes Objekt im Objektverzeichnis des Nachrichtenempfängers zugegriffen und der Wert des Objekts ausgelesen.

Der Datenaustausch erfolgt entsprechend dem SDO-Upload-Protokoll. Als Transfertyp wird **segmented** (mehr als 4 Datenbytes) und **expedited** (bis 4 Datenbytes) unterstützt.

Funktionsdeklaration

```
Function CanOpenUploadSDO(
                          // Nummer der Busleitung
    CANNo: Int,
                          // Geräte-ID
    NodeID:Int,
    wIndex:Word,
    SubIndex:Byte,
    DataType:Int,
                        // Typ der zu empfangenden Daten
    // Datengröße der globalen Variablen DataAddr
    DataLength:Int,
    // Globale Variable, in der der empfangene Wert steht
    const ref DataAddr,
                        // Zustand der SDO-Übertragung
    ref Busy: Int,
) :Int;
```

Funktionsparameter

Die Funktion CanOpenUploadSDO () hat die folgenden Parameter.

Parameter	Beschreibung	Wert
CANNo	CAN-Nummer der Busleitung	0 CANMAX
NodelD	Node-ID des Nachrichten- empfängers	1 127
wIndex	Index-Nummer des Objekts	0 0xFFFF
SubIndex	Subindex-Nummer des Objekts	0 255
DataType	Typ der zu empfangenden Daten	2 27
DataLength	Datengröße der globalen Variablen DataAddr	
DataAddr	Globale Variable, in die der empfangene Wert eingetragen werden soll	
Busy	Zustand der SDO-Übertragung	

Rückgabewert

Die Funktion übergibt die folgenden Rückgabewerte an das übergeordnete Programm.

Rückgabewert	
0	Ok
-1	Fehler bei der Parameterprüfung
-2	Gerät im Stoppzustand
-3	DataType ist größer als DataLength
-4	Nicht genug Speicher vorhanden

CANNo-Parameter

Dieser Parameter gibt die Nummer der CAN-Schnittstelle an. Die erste Schnittstelle wird mit CANNo = 0 ausgewählt. Die Anzahl der CAN-Schnittstellen ist geräteabhängig. Die mögliche Anzahl der CAN-Schnittstellen CANMAX ist in den technischen Daten und der Kurzreferenz der jeweiligen Betriebsanleitung erwähnt.

DataType-Parameter

Folgende Datentypen können empfangen werden.

Byte-Typen	CANopen®-Format	Jetter-Format
1	CANOPEN_INTEGER8 CANOPEN_UNSIGNED8	Byte
2	CANOPEN_INTEGER16 CANOPEN_UNSIGNED16	Word
3	CANOPEN_INTEGER24 CANOPEN_UNSIGNED24	-
4	CANOPEN_INTEGER32 CANOPEN_UNSIGNED32 CANOPEN_REAL	Int
5	CANOPEN_INTEGER40 CANOPEN_UNSIGNED40	-
6	CANOPEN_INTEGER48 CANOPEN_UNSIGNED48 CANOPEN_TIME_OF_DAY CANOPEN_TIME_DIFFERENCE	-
7	CANOPEN_INTEGER56 CANOPEN_UNSIGNED46	-
8	CANOPEN_INTEGER64 CANOPEN_UNSIGNED64 CANOPEN_REAL64	-
n	CANOPEN_VISIBLE_STRING CANOPEN_OCTET_STRING CANOPEN_UNICODE_STRING CANOPEN_DOMAIN	String

Busy-Parameter

Nach erfolgreichem Aufruf der Funktion wird der Parameter **Busy** auf SDOACCESS_INUSE gesetzt. Bei fehlerhafter Übertragung wird **Busy** auf SDOACCESS_ERROR gesetzt. Bei erfolgreicher Übertragung liefert die Funktion die Anzahl der übertragenen Bytes zurück.

Busy - Fehlercodes

Bei fehlerhafter Übertragung liefert **Busy** einen Fehlercode zurück. Die folgenden Fehlercodes gibt es:

SDOACCESS STILLUSED

Ein anderer Task kommuniziert mit derselben Node-ID.

SDOACCESS_TIMEOUT

Es ist ein Timeout erfolgt, weil das Gerät mit der angegebenen Node-ID keine Antwort gibt.

Antwortet das Gerät nicht innerhalb 1 Sekunde wird der Timeout gesetzt.

SDOACCESS_ILLCMD

Die Antwort auf die Anfrage ist ungültig.

SDOACCESS_ABORT

Ein Abbruch des Geräts mit der Node-ID ist erfolgt.

SDOACCESS_SYSERROR

Allgemeiner interner Fehler

Makrodefinitionen

Folgende Makros wurden im Zusammenhang mit dieser Funktion definiert:

SDOACCESS_FINISHED (busy)

Dieses Makro prüft, ob die Kommunikation beendet wurde.

SDOACCESS_ERROR (busy)

Dieses Makro prüft, ob ein Fehler aufgetreten ist.

Verwenden der Funktion

```
Result := CanOpenUploadSDO(
                                 // CANNo
    0,
                                  // NodeID
    66,
   0x100A,
                                 // wIndex
                                 // SubIndex
   0,
   CANOPEN STRING,
                                 // DataType
    sizeof(var Versionstring),
                                // DataLength
   var Versionstring,
                                  // DataAddr
   busy);
                                  // Busy
```

JetSym-STX-Programm

Im folgenden Beispiel wird die Softwareversion des Herstellers aus dem CANopen®-Objektverzeichnis vom Gerät mit der adressierten Node-ID ausgelesen.

```
Const
   CANNO = 0;
                        // Nummer der Busleitung
   NodeID_Node_0 = 10; // Geräte-ID von Node 1
   NodeID Node 1 = 66; // Geräte-ID von Node 2
End Const;
Var
   busy: Int;
   Versionstring: String;
   Objektindex: Word;
   Subindex: Byte;
   Result: Int;
End Var;
Task Example UploadSDO autorun
   SW Version: String;
End Var;
SW Version := 'v4.3.0.2004';
// Initialisierung CAN 0
                            // Nummer der Busleitung
CanOpenInit(CANNo,
           SW Version);
                            // Softwareversion des Herstellers
// Alle Geräte am CAN-Bus sind im Status PREOPERATIONAL
// Softwareversion des Herstellers per SDO anfordern
Objektindex := 0x100A;
Subindex := 0;
```

```
// Nummer der Busleitung
Result:= CanOpenUploadSDO(CANNo,
                NodeID Node 1,
                                      // Geräte-ID
                Objektindex,
                                      // wIndex
                Subindex,
                                      // SubIndex
                CANOPEN STRING,
                                      // DataType
                sizeof(Versionstring), // DataLength
                                      // DataAddr
                Versionstring,
                                       // Busy
                busy);
// Prüfen ob Befehl erfolgreich ausgeführt wurde.
If (Result == 0) Then
    // Warten bis die Kommunikation beendet ist.
   When SDOACCESS FINISHED (busy) Continue;
    // Prüfen, ob ein Fehler aufgetreten ist.
   If (SDOACCESS ERROR(busy)) Then
        // Fehlerbehandlung
   End_If;
End If;
//
       . . .
//
//
End_Task;
```

STX-Funktion CanOpenDownloadSDO()

Einleitung

Mit dem Aufruf der Funktion CanOpenDownloadSDO() wird gezielt auf ein bestimmtes Objekt im Objektverzeichnis des Nachrichtenempfängers zugegriffen und der Wert des Objekts beschrieben. Der Datenaustausch erfolgt entsprechend dem SDO-Downloadprotokoll. Als Transfertyp wird segmented oder block (mehr als 4 Datenbytes) und expedited (bis 4 Datenbytes) unterstützt.

Funktionsdeklaration

```
Function CanOpenDownloadSDO(
    CANNo: Int,
                         // Nummer der Busleitung
   NodeID:Int,
                          // Geräte-ID
    wIndex:Word,
    SubIndex:Byte,
    DataType:Int,
                          // Typ der zusendenden Daten
    // Datengröße der globalen Variablen DataAddr
   DataLength: Int,
    // Globale Variable, in der der zu sendende Wert steht
    const ref DataAddr,
    ref Busy: Int,
                        // Zustand der SDO-Übertragung
) :Int;
```

Funktionsparameter

Die Funktion CanOpenDownloadSDO() hat die folgenden Parameter.

Parameter	Beschreibung	Wert
CANNo	CAN-Nummer der Busleitung	0 CANMAX
NodelD	Node-ID des Nachrichtenempfängers	1 127
wIndex	Index-Nummer des Objekts	0 0xFFFF
SubIndex	Subindex-Nummer des Objekts	0 255
DataType	Typ der zu sendenden Daten	2 27
DataLength	Datengröße der globalen Variablen DataAddr	
DataAddr	Globale Variable, in die der zu sendende Wert eingetragen werden soll	
Busy	Zustand der SDO-Übertragung	

Rückgabewert

Die Funktion übergibt die folgenden Rückgabewerte an das übergeordnete Programm.

Rückgabewert	
0	Ok
-1	Fehler bei der Parameterüberprüfung
-2	Gerät im Zustand Stopp (eigener Heartbeat-Zustand)
-3	DataType ist größer als DataLength
-4	Nicht genug Speicher vorhanden

CANNo-Parameter

Dieser Parameter gibt die Nummer der CAN-Schnittstelle an. Die erste Schnittstelle wird mit CANNo = 0 ausgewählt. Die Anzahl der CAN-Schnittstellen ist geräteabhängig. Die mögliche Anzahl der CAN-Schnittstellen CANMAX ist in den *technischen Daten* und der *Kurzreferenz* der jeweiligen Betriebsanleitung erwähnt.

DataType-Parameter

Folgende Datentypen können empfangen werden.

Byte-Typen	CANopen®-Format Jetter-Forma		
1	CANOPEN_INTEGER8 CANOPEN_UNSIGNED8	Byte	
2	CANOPEN_INTEGER16 CANOPEN_UNSIGNED16	Word	
3	CANOPEN_INTEGER24 CANOPEN_UNSIGNED24	-	
4	CANOPEN_INTEGER32 CANOPEN_UNSIGNED32 CANOPEN_REAL	Int	
5	CANOPEN_INTEGER40 CANOPEN_UNSIGNED40	-	
6	CANOPEN_INTEGER48 CANOPEN_UNSIGNED48 CANOPEN_TIME_OF_DAY CANOPEN_TIME_DIFFERENCE	-	
7	CANOPEN_INTEGER56 CANOPEN_UNSIGNED46	-	
8	CANOPEN_INTEGER64 CANOPEN_UNSIGNED64 CANOPEN_REAL64	-	
n	CANOPEN_VISIBLE_STRING CANOPEN_OCTET_STRING CANOPEN_UNICODE_STRING CANOPEN_DOMAIN	String	

Busy-Parameter

Nach erfolgreichem Aufruf der Funktion wird der Parameter Busy auf SDOACCESS INUSE gesetzt. Bei fehlerhafter Übertragung wird Busy auf SDOACCESS ERROR gesetzt. Bei erfolgreicher Übertragung liefert die Funktion die Anzahl der übertragenen Bytes zurück.

Busy-Fehlercodes

Bei fehlerhafter Übertragung liefert Busy einen Fehlercode zurück. Die folgenden Fehlercodes gibt es:

SDOACCESS STILLUSED

Ein anderer Task kommuniziert mit derselben Node-ID.

SDOACCESS_TIMEOUT

Es ist ein Timeout erfolgt, weil das Gerät mit der Node-ID keine Antwort gibt. Antwortet die angegebene Node-ID nicht innerhalb 1 Sekunde, wird der Timeout gesetzt.

SDOACCESS ILLCMD

Die Antwort auf die Anfrage ist ungültig.

SDOACCESS_ABORT

Ein Abbruch des Geräts mit der Node-ID ist erfolgt.

SDOACCESS BLKSIZEINV

Kommunikationsfehler bei Block Download

SDOACCESS_SYSERROR

Allgemeiner interner Fehler

Makrodefinitionen

Folgende Makros wurden im Zusammenhang mit dieser Funktion definiert:

SDOACCESS_FINISHED (busy)

Dieses Makro prüft, ob die Kommunikation beendet wurde.

SDOACCESS_ERROR (busy)

Dieses Makro prüft, ob ein Fehler aufgetreten ist.

Verwenden der Funktion

```
Result := CanOpenDownloadSDO(
    0,
                                   // CANNo
    68,
                                  // NodeID
    0 \times 1017,
                                  // wIndex
                                 // SubIndex
    0,
    CANOPEN WORD,
                                 // DataType
    sizeof(var_Heartbeat_time), // DataLength
    var Heartbeat time,
                                  // DataAddr
                                  // Busy
    busy);
```

JetSym-STX-Programm

Im folgenden Beispiel wird die Heartbeat-Zeit in das CANopen®-Objektverzeichnis des Geräts mit der adressierten Node-ID eingetragen.

```
Const
    CANNo = 0;
                          // Nummer der Busleitung
    NodeID_Node_0 = 10;  // Node-ID Node 1
    NodeID Node 1 = 68; // Node-ID Node 2
End Const;
Var
    busy: Int;
    Heartbeat time: Int;
    Objektindex: Word;
    Subindex: Byte;
    Result: Int;
End Var;
Task Example DownloadSDO autorun
Var
    SW_Version: String;
End Var;
SW Version := 'v4.3.0.2004';
// Initialisierung CAN 0
CanOpenInit(CANNo,
                             // Nummer der Busleitung
           NodeID_Node_0,
                             // Geräte-ID
            SW Version);
                             // Softwareversion des Herstellers
// Das Gerät mit der Geräte-ID NodeID Node 1 am CAN-Bus in den Status
// PREOPERATIONAL setzen.
CanOpenSetCommand(CANNo, CAN CMD NMT Value(NodeID Node 1,
CAN CMD NMT), CAN NMT PREOPERATIONAL);
// Heartbeat-Zeit des adressierten Geräts per SDO ändern.
Objektindex := 0 \times 1017;
Subindex := 0;
Result:= CanOpenDownloadSDO(CANNo, // Nummer der Busleitung
                  NodeID Node 1,
                                     // Geräte-ID
                                         // wIndex
                  Objektindex,
                  Subindex,
                                         // SubIndex
                  CANOPEN WORD,
                                         // DataType
                   sizeof(Heartbeat time), // DataLength
                   Heartbeat time, // DataAddr
                  busy);
                                         // Busy
// Prüfen ob Befehl erfolgreich ausgeführt wurde.
If (Result == 0) Then
```

```
// Warten bis die Kommunikation beendet ist.
    When SDOACCESS FINISHED (busy) Continue;
    // Prüfen, ob ein Fehler aufgetreten ist.
    If (SDOACCESS_ERROR(busy)) Then
    // Fehlerbehandlung
    End If;
End If;
// Alle Geräte am CAN-Bus wieder in den Status OPERATIONAL setzen.
CanOpenSetCommand(CANNo, CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES,
CAN_CMD_NMT), CAN_NMT_OPERATIONAL);
11
        . . .
//
        . . .
11
End_Task;
```

STX-Funktion CanOpenAddPDORx()

Einleitung

Mit dem Aufruf der Funktion CanOpenAddPDORx () können Prozessdaten, die andere CANopen®-Geräte senden, zum Empfang eingetragen werden. Wenn ein CANopen®-Gerät Prozessdaten sendet, nur dann werden diese Prozessdaten empfangen.

Hinweise

- Wenn die CANopen®-Geräte am Bus sich im Zustand Operational befinden, erst dann wird das PDO-Telegramm übertragen.
- Die kleinste Zeiteinheit der Event-Time ist 1 ms.
- Die kleinste Zeiteinheit der Inhibit-Time ist 1 ms.

Funktionsdeklaration

```
Function CanOpenAddPDORx(
    CANNo: Int,
                         // Nummer der Busleitung
   CANID: Int,
                        // CAN-Identifier
    // Startposition der zu empfangenden Daten
    BytePos:Int,
                         // Datentyp der zu empfangenden Daten
    DataType:Int,
    // Datengröße der globalen Variablen VarAddr
    DataLength: Int,
    // Globale Variable, in der der empfangene Wert steht
    const ref VarAddr,
    // Zykluszeit, in der ein Telegramm empfangen werden soll
    // Event-Zeit
   EventTime: Int,
    // Mindesabstand zwischen zwei empfangenen Telegrammen
    // Inhibit-Zeit
    InhibitTime: Int,
    Paramset: Int,
                         // Bitkodierter Parameter
```

Funktionsparameter

Die Funktion CanOpenAddPDORx () hat die folgenden Parameter.

Parameter	Beschreibung	Wert
CANNo	CAN-Nummer der Busleitung	0 CANMAX
CANID	CAN-Identifier 11 Bit CAN-Identifier 29 Bit	0 0x7FF 0 0x1FFFFFFF
BytePos	Startposition der zu empfangenden Daten	0 7
DataType	Datentyp der zu empfangenden Daten	2 13, 15 27
DataLength	Datengröße der globalen Variablen VarAddr	
VarAddr	Globale Variable, in die der empfangene Wert eingetragen wird	
EventTime	Zeitlicher Abstand zwischen zwei Telegrammen (> InhibitTime)	

Parameter	Beschreibung	Wert
InhibitTime	Mindestabstand zwischen zwei empfangenen Telegrammen (< EventTime)	
Paramset	Bitkodierter Parameter	

Rückgabewert

Die Funktion übergibt die folgenden Rückgabewerte an das übergeordnete Programm.

Rückgabewert	
0	Ok
-1	Fehler bei der Parameterüberprüfung
-3	DataType ist größer als DataLength
-4	Nicht genug Speicher vorhanden

CANNo-Parameter

Dieser Parameter gibt die Nummer der CAN-Schnittstelle an. Die erste Schnittstelle wird mit CANNo = 0 ausgewählt. Die Anzahl der CAN-Schnittstellen ist geräteabhängig. Die mögliche Anzahl der CAN-Schnittstellen CANMAX ist in den technischen Daten und der Kurzreferenz der jeweiligen Betriebsanleitung erwähnt.

Hinweis: Perspektive beachten!

Dieser Abschnitt ist aus Sicht der übergeordneten Steuerung beschrieben, während die Beschreibung im Dokument CiA DS 301 von der Geräteseite ausgeht.

Deshalb benötigen Sie zum Aufrufen der Funktion CanOpenAddPDORx () von der Steuerung aus ein PDO RX-Makro.

CANID-Parameter

Mit dem Parameter **CANID** wird der CAN-Identifier übergeben. Der CAN-Identifier wird mit einem Makro erstellt. Der CAN-Identifier ist abhängig von der Node-ID des anderen Kommunikationsteilnehmers und abhängig davon, ob es sich um eine PDO1-, PDO2-, PDO3- oder PDO4-Nachricht handelt.

Makrodefinitionen:

```
#Define CANOPEN PDO1 RX (NodeID)
                                      ((NodelD) + 0x180)
#Define CANOPEN_PDO2_RX (NodeID)
                                      ((NodelD) + 0x280)
#Define CANOPEN_PDO3_RX (NodeID)
                                      ((NodelD) + 0x380)
#Define CANOPEN_PDO4_RX (NodeID)
                                      ((NodelD) + 0x480)
#Define CANOPEN PDO1 TX (NodeID)
                                     ((NodelD) + 0x200)
#Define CANOPEN PDO2 TX (NodeID)
                                     ((NodelD) + 0x300)
#Define CANOPEN_PDO3_TX (NodeID)
                                     ((NodelD) + 0x400)
#Define CANOPEN PDO4 TX (NodeID)
                                     ((NodelD) + 0x500)
```

Beispiel für den Aufruf des Makros:

CANOPEN_PDO2_RX (64)

Default-CAN-Identifier-Verteilung

Bei CANopen® ist die folgende CAN-Identifier-Verteilung vordefiniert. Dabei wird die Knotennummer in den Identifier eingebettet.

Identifier 11-Bit	Identifier	Identifier	Funktion
(binär)	(dezimal)	(hexadezimal)	
00000000000	0	0	Netzwerkmanagement
000100000000	128	80h	Synchronisation
0001xxxxxxxx	129 - 255	81h - FFh	Emergency
0011xxxxxxxx	385 - 511	181h - 1FFh	PDO1 (tx)
0100xxxxxxxx	513 - 639	201h - 27Fh	PDO1 (rx)
0101xxxxxxxx	641 - 767	281h - 2FFh	PDO2 (tx)
0110xxxxxxxx	769 - 895	301h - 37Fh	PDO2 (rx)
0111xxxxxxxx	897 - 1023	381h - 3FFh	PDO3 (tx)
1000xxxxxxxx	1025 - 1151	401h -47Fh	PDO3 (rx)
1001xxxxxxxx	1153 - 1279	481h - 4FFh	PDO4 (tx)
1010xxxxxxxx	1281 - 1407	501h - 57Fh	PDO4 (rx)
1011xxxxxxxx	1409 - 1535	581h - 5FFh	SDO senden
1100xxxxxxxx	1537 - 1663	601h - 67Fh	SDO empfangen
1110xxxxxxxx	1793 - 1919	701h - 77Fh	NMT Error Control
xxxxxxx = Knotennummer 1 - 127			

[⇒] Der daraus resultierende CAN-Identifier ist: 2C0h = 40h + 280h

DataType-Parameter

Folgende Datentypen können empfangen werden.

Byte-Typen	CANopen®-Format	Jetter-Format
1	CANOPEN_INTEGER8 CANOPEN_UNSIGNED8	Byte
2	CANOPEN_INTEGER16 CANOPEN_UNSIGNED16	Word
3	CANOPEN_INTEGER24 CANOPEN_UNSIGNED24	-
4	CANOPEN_INTEGER32 CANOPEN_UNSIGNED32 CANOPEN_REAL	Int
5	CANOPEN_INTEGER40 CANOPEN_UNSIGNED40	-
6	CANOPEN_INTEGER48 CANOPEN_UNSIGNED48 CANOPEN_TIME_OF_DAY CANOPEN_TIME_DIFFERENCE	-
7	CANOPEN_INTEGER56 CANOPEN_UNSIGNED46	-
8	CANOPEN_INTEGER64 CANOPEN_UNSIGNED64 CANOPEN_REAL64	-
n	CANOPEN_VISIBLE_STRING CANOPEN_OCTET_STRING CANOPEN_UNICODE_STRING CANOPEN_DOMAIN	String

Paramset-Parameter

Folgende Parameter können an die Funktion übergeben werden. Mehrere Parameter können miteinander über die Oder-Funktion verknüpft werden.

CANOPEN_ASYNCPDORTRONLY

Empfange asynchrone PDOs durch das Senden eines RTR-Frames (nach jeder abgelaufener EventTime) an den Sender. Wenn auf die RTR-Frames nicht geantwortet wird, dann erhöht sich die Anfragezeit auf das Fünffache der EventTime.

CANOPEN_ASYNCPDO

Empfange asynchrone PDO.

CANOPEN_PDOINVALID

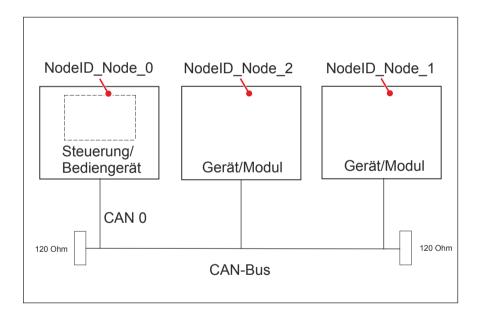
PDO wird nicht empfangen. Speicherplatz wird reserviert.

CANOPEN_NORTR

PDO kann nicht per RTR (Remote Request) angefordert werden.

Nur wenn ein CANOPEN_ASYNCPDORTROnly gesetzt ist, wird ein RTR gesendet.

CANOPEN_29BIT


Verwende 29 Bit-Identifier Default: 11 Bit-Identifier

Verwenden der Funktion

```
Result := CanOpenAddPDORx(
                                            // CANNo
    0,
    662,
                                            // CANID
    0,
                                            // BytePos
    CANOPEN_DWORD,
                                            // DataType
    sizeof(var Data 1 of Node 1),
                                            // DataLength
                                            // VarAddr
    var Data 1 of Node 1,
    1000,
                                            // Event-Zeit
                                            // Inhibit-Zeit
    10,
    CANOPEN ASYNCPDO | CANOPEN NORTR);
                                            // Paramset
```

JetSym-STX-Programm

JVM-104 mit der Node-ID 10 möchte von zwei CANopen®-Geräten mit der Node-ID 64 und 102 ein PDO empfangen. Dazu wird die Funktion CanOpenAddPDORx () aufgerufen. Nach Ablauf des Programms empfängt das Gerät JVM-104 die zyklischen PDO-Telegramme.


```
Var
   Data 1 of Node 1: Int;
   Data 2 of Node 1: Int;
   Data 1 of Node 2: Int;
End Var;
Task main autorun
    SW_Version: String;
End Var;
SW Version := 'v4.3.0.2004';
// Initialisierung CAN 0
CanOpenInit(CANNo,
                             // Nummer der Busleitung
                             // Geräte-ID
           NodeID Node 0,
           SW Version);
                             // Softwareversion des Herstellers
// Prozessdaten zum Empfang eintragen
CanOpenAddPDORx (
                                     // Nummer der Busleitung
   CANNo,
   CANOPEN PDO2 RX(NodeID Node 1),
                                     // CANID
                                     // BytePos
   CANOPEN DWORD,
                                     // DataType
    sizeof(Data_1_of_Node_1),
                                  // DataLength
   Data_1_of_Node_1,
                                     // VarAddr
   Event Time,
                                    // Event-Zeit
    Inhibit Time,
                                     // Inhibit-Zeit
   CANOPEN ASYNCPDORTRONLY);
                                     // Paramset
CanOpenAddPDORx (
   CANNo,
                                     // Nummer der Busleitung
   CANOPEN_PD02_RX(NodeID_Node_1),
                                     // CANID
                                     // BytePos
   CANOPEN_DWORD,
                                     // DataType
   sizeof(Data_2_of_Node_1),
                                    // DataLength
                                     // VarAddr
   Data_2_of_Node_1,
                                    // Event-Zeit
   Event Time,
                                    // Inhibit-Zeit
   Inhibit_Time,
                                     // Paramset
    CANOPEN ASYNCPDORTRONLY);
```

```
CanOpenAddPDORx (
                                       // Nummer der Busleitung
   CANNo,
    CANOPEN PDO3 RX(NodeID Node 2),
                                       // CANID
    Ο,
                                       // BytePos
    CANOPEN BYTE,
                                       // DataType
    sizeof(Data_1_of_Node_2),
                                       // DataLength
                                       // VarAddr
    Data 1 of Node 2,
    Event_Time,
                                       // Event-Zeit
    Inhibit_Time,
                                       // Inhibit-Zeit
    CANOPEN ASYNCPDO | CANOPEN NORTR); // Paramset
// Alle Geräte am CAN-Bus sind im Status PREOPERATIONAL.
// Alle Geräte am CAN-Bus in den Status OPERATIONAL setzen.
CanOpenSetCommand (CANNo, CAN CMD NMT Value (CAN CMD NMT ALLNODES,
CAN CMD NMT), CAN NMT START);
// Ab jetzt werden PDO-Telegramme von der übergeordneten Steuerung
// angefordert oder empfangen.
//
       . . .
11
       . . .
End Task;
```

STX-Funktion CanOpenAddPDOTx()

Einleitung

Mit dem Aufruf der Funktion CanOpenAddPDOTx() können Prozessdaten auf den Bus gelegt werden.

Das muss aber nicht heißen, dass andere CANopen®-Geräte am Bus diese Prozessdaten auch lesen.

Hinweise

- Wenn die CANopen®-Geräte am Bus sich im Zustand Operational befinden, erst dann wird das PDO-Telegramm übertragen.
- Sobald sich die Prozessdaten ändern, wird sofort wieder ein PDO-Telegramm übertragen.
- Die kleinste Zeiteinheit der Event-Zeit ist 1 ms.
- Die kleinste Zeiteinheit der Inhibit-Zeit ist 1 ms.
- Alle nicht belegten Bytes eines Telegramms werden mit Null gesendet.

Funktionsdeklaration

```
Function CanOpenAddPDOTx(
    CANNo: Int,
                         // Nummer der Busleitung
   CANID: Int,
                        // CAN-Identifier
                        // Startposition der zu sendenden Daten
   BytePos:Int,
    DataType:Int,
                        // Datentyp der zu sendenden Daten
    // Datengröße der globalen Variablen VarAddr
    DataLength: Int,
    // Globale Variable, in der der zu sendende Wert steht
    const ref VarAddr,
    // Zykluszeit, in der ein Telegramm gesendet werden soll
    // Event-Zeit
    EventTime: Int,
    // Mindestabstand zwischen zwei zu sendenden Telegrammen
    // Inhibit-Zeit
    InhibitTime: Int,
    Paramset: Int,
                        // Bitkodierter Parameter
) :Int;
```

Funktionsparameter

Die Funktion CanOpenAddPDOTx() hat die folgenden Parameter.

Parameter	Beschreibung	Wert
CANNo	CAN-Nummer der Busleitung	0 CANMAX
CANID	CAN-Identifier 11 Bit CAN-Identifier 29 Bit	0 0x7FF 0 0x1FFFFFFF
BytePos	Startposition der zu sendenden Daten	0 7
DataType	Datentyp der zu sendenden Daten	2 13, 15 27
DataLength	Datengröße der globalen Variablen VarAddr	
VarAddr	Globale Variable, in die der zu sendende Wert eingetragen wird	

Parameter	Beschreibung	Wert
EventTime	Zeitlicher Abstand zwischen zwei Telegrammen (> InhibitTime)	
InhibitTime	Mindestabstand zwischen zwei zu sendenden Telegrammen (< EventTime)	
Paramset	Bitkodierter Parameter	

Rückgabewert

Die Funktion übergibt die folgenden Rückgabewerte an das übergeordnete Programm.

Rückgabewert	
0	Ok
-1	Fehler bei der Parameterüberprüfung
-3	DataType ist größer als DataLength
-4	Nicht genug Speicher vorhanden

CANNo-Parameter

Dieser Parameter gibt die Nummer der CAN-Schnittstelle an. Die erste Schnittstelle wird mit CANNo = 0 ausgewählt. Die Anzahl der CAN-Schnittstellen ist geräteabhängig. Die mögliche Anzahl der CAN-Schnittstellen CANMAX ist in den *technischen Daten* und der *Kurzreferenz* der jeweiligen Betriebsanleitung erwähnt.

CANID-Parameter

Mit dem Parameter **CANID** wird der CAN-Identifier übergeben. Der CAN-Identifier wird mit einem Makro erstellt. Der CAN-Identifier ist abhängig von der Node-ID des anderen Kommunikationsteilnehmers und abhängig davon, ob es sich um eine PDO1-, PDO2-, PDO3- oder PDO4-Nachricht handelt.

Makrodefinitionen:

```
#Define CANOPEN_PDO1_RX (NodeID)
                                      ((NodelD) + 0x180)
#Define CANOPEN_PDO2_RX (NodeID)
                                      ((NodelD) + 0x280)
#Define CANOPEN PDO3 RX (NodeID)
                                      ((NodelD) + 0x380)
                                      ((NodelD) + 0x480)
#Define CANOPEN_PDO4_RX (NodeID)
#Define CANOPEN_PDO1_TX (NodeID)
                                     ((NodelD) + 0x200)
#Define CANOPEN_PDO2_TX (NodeID)
                                     ((NodelD) + 0x300)
#Define CANOPEN_PDO3_TX (NodeID)
                                     ((NodelD) + 0x400)
#Define CANOPEN_PDO4_TX (NodeID)
                                     ((NodelD) + 0x500)
```

Beispiel für den Aufruf des Makros:

CANOPEN_PDO2_RX (64)

⇒ Der daraus resultierende CAN-Identifier ist: 2C0h = 40h + 280h

Default-CAN-Identifier-Verteilung

Bei CANopen® ist die folgende CAN-Identifier-Verteilung vordefiniert. Dabei wird die Knotennummer in den Identifier eingebettet.

Identifier 11-Bit (binär)	Identifier (dezimal)	Identifier (hexadezimal)	Funktion
00000000000	0	0	Netzwerkmanagement
000100000000	128	80h	Synchronisation
0001xxxxxxxx	129 - 255	81h - FFh	Emergency
0011xxxxxxxx	385 - 511	181h - 1FFh	PDO1 (tx)
0100xxxxxxxx	513 - 639	201h - 27Fh	PDO1 (rx)
0101xxxxxxxx	641 - 767	281h - 2FFh	PDO2 (tx)
0110xxxxxxxx	769 - 895	301h - 37Fh	PDO2 (rx)
0111xxxxxxxx	897 - 1023	381h - 3FFh	PDO3 (tx)
1000xxxxxxxx	1025 - 1151	401h -47Fh	PDO3 (rx)
1001xxxxxxxx	1153 - 1279	481h - 4FFh	PDO4 (tx)
1010xxxxxxxx	1281 - 1407	501h - 57Fh	PDO4 (rx)
1011xxxxxxxx	1409 - 1535	581h - 5FFh	SDO senden
1100xxxxxxxx	1537 - 1663	601h - 67Fh	SDO empfangen
1110xxxxxxxx	1793 - 1919	701h - 77Fh	NMT Error Control
xxxxxxxx = Knotennummer 1 - 127			

DataType-Parameter

Folgende Datentypen können empfangen werden.

Byte-Typen	CANopen®-Format	Jetter-Format
1	CANOPEN_INTEGER8 CANOPEN_UNSIGNED8	Byte
2	CANOPEN_INTEGER16 CANOPEN_UNSIGNED16	Word
3	CANOPEN_INTEGER24 CANOPEN_UNSIGNED24	-
4	CANOPEN_INTEGER32 CANOPEN_UNSIGNED32 CANOPEN_REAL	Int
5	CANOPEN_INTEGER40 CANOPEN_UNSIGNED40	-
6	CANOPEN_INTEGER48 CANOPEN_UNSIGNED48 CANOPEN_TIME_OF_DAY CANOPEN_TIME_DIFFERENCE	-
7	CANOPEN_INTEGER56 - CANOPEN_UNSIGNED46	
8	CANOPEN_INTEGER64 - CANOPEN_UNSIGNED64 CANOPEN_REAL64	

Byte-Typen	CANopen®-Format	Jetter-Format
n	CANOPEN_VISIBLE_STRING	String
	CANOPEN_OCTET_STRING	
	CANOPEN_UNICODE_STRING	
	CANOPEN_DOMAIN	

Paramset-Parameter

Folgende Parameter können an die Funktion übergeben werden. Mehrere Parameter können miteinander über die Oder-Funktion verknüpft werden.

CANOPEN ASYNCPDORTRONLY

Sende asynchrone PDOs durch das Empfangen eines RTR-Frames. Diese Funktion wird derzeit noch nicht unterstützt.

CANOPEN ASYNCPDO

Sende asynchrone PDO.

CANOPEN PDOINVALID

PDO wird nicht gesendet. Der benötigte Speicherplatz wird reserviert.

CANOPEN NORTR

PDO kann nicht per RTR (Remote Request) angefordert werden.

CANOPEN 29BIT

Verwende 29 Bit-Identifier Default: 11 Bit-Identifier

Verwenden der Funktion

```
Result := CanOpenAddPDOTx(
    0,
                                            // CANNo
    842,
                                            // CANID
    0,
                                            // BytePos
    CANOPEN DWORD,
                                            // DataType
    sizeof(var_Data_1_of_Node_3),
                                           // DataLength
    var_Data_1_of_Node_3,
                                            // VarAddr
    1000,
                                            // Event-Zeit
                                            // Inhibit-Zeit
    100,
    CANOPEN ASYNCPDO | CANOPEN NORTR);
                                            // Paramset
```

JetSym-STX-Programm

JVM-104 sendet an zwei CANopen®-Geräte mit der Node-ID 74 und 112 Prozessdaten. Nach Ablauf des Programms und bei Änderungen sendet das Gerät JVM-104 zyklisch alle 3.000 ms (Event-Zeit) die PDO-Telegramme. Maximal wird alle 10 ms (Inhibit-Zeit) das PDO-Telegramm gesendet.

```
Const
   CANNo = 0;
                         // Nummer der Busleitung
   NodeID Node 0 = 10; // Geräte-ID von Node 1
   NodeID Node 1 = 74; // Geräte-ID von Node 2
   NodeID Node 2 = 112; // Geräte-ID von Node 3
   Event Time = 3000;  // Event-Zeit in ms
   Inhibit_Time = 100;  // Inhibit-Zeit in ms
End Const;
Var
   Data 1 of Node 1: Int;
   Data 2 of Node 1: Int;
   Data_1_of_Node_2: Byte;
End_Var;
Task main autorun
   SW_Version: String;
End Var;
SW_Version := 'v4.3.0.2004';
// Initialisierung CAN 0
                            // Nummer der Busleitung
CanOpenInit(CANNo,
           NodeID_Node_0,
                            // Geräte-ID
           SW Version);
                            // Softwareversion des Herstellers
```

```
// Daten per PDO senden
CanOpenAddPDOTx(
    CANNo,
                                      // Nummer der Busleitung
    CANOPEN PDO2 TX(NodeID Node 1),
                                      // CANID
                                      // BytePos
    CANOPEN DWORD,
                                      // DataType
    sizeof(Data_1_of_Node_1),
                                      // DataLength
    Data 1 of Node 1,
                                      // VarAddr
    Event Time,
                                     // Event-Zeit
                                      // Inhibit-Zeit
    Inhibit_Time,
    CANOPEN ASYNCPDORTRONLY);
                                      // Paramset
CanOpenAddPDOTx(
                                      // Nummer der Busleitung
    CANOPEN PDO2 TX(NodeID Node 1),
                                      // CANID
    4,
                                      // BytePos
    CANOPEN DWORD,
                                      // DataType
    sizeof(Data 2 of Node 1),
                                      // DataLength
                                     // VarAddr
    Data 2 of Node 1,
                                     // Event-Zeit
    Event Time,
                                      // Inhibit-Zeit
    Inhibit Time,
    CANOPEN ASYNCPDORTRONLY);
                                    // Paramset
CanOpenAddPDOTx (
                                         // Nummer der Busleitung
    CANNo,
    CANOPEN PDO3 TX(NodeID Node 2),
                                         // CANID
                                         // BytePos
    0,
    CANOPEN BYTE,
                                         // DataType
                                         // DataLength
    sizeof(Data_1_of_Node_2),
    Data_1_of_Node_2,
                                         // VarAddr
    Event Time,
                                         // Event-Zeit
                                         // Inhibit-Zeit
    Inhibit Time,
    CANOPEN ASYNCPDO | CANOPEN NORTR); // Paramset
// Alle Geräte am CAN-Bus sind im Status PREOPERATIONAL.
// Alle Geräte am CAN-Bus in den Status OPERATIONAL setzen.
CanOpenSetCommand(CANNo, CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES,
CAN_CMD_NMT), CAN_NMT_START);
// Ab jetzt werden PDO-Telegramme von den Geräten mit der NodeID 74
// und 112 übertragen.
//
End Task;
```

Heartbeat-Überwachung

Einleitung

Das Heartbeat-Protokoll dient zur Überwachung der Kommunikationspartner. Nach einer einstellbaren Zeit (Heartbeat consumer time), wird der Status auf **offline** gesetzt.

Im Anwendungsprogramm definieren Sie z. B.:

- Eine Information dem Benutzer anzeigen.
- Das Gerät neu starten.
- Die Prozessdaten ignorieren.

Voraussetzung

Die Funktion **Heartbeat-Überwachung** steht nur bei bestimmten Geräten zur Verfügung und ist abhängig von den OS-Versionen.

Gerät	OS-Version	
FMC-01	Ab Version 1.18.1.00	
JVM-C02	Ab Version 4.00.0.00	
JCM-350	Ab Version 1.09.0.215	
JCM-620	Ab JVER-Version 3.2.2.645 und JetVM-Version 3.04.0.00	

Register der Heartbeat-Überwachung

Die Heartbeat-Überwachung belegt folgende Register.

Register	Registerbeschreibung	Datentyp	Attribute
40x001	Eigener Geräte-Heartbeat-Status; Wertebereich: 0 = Bootup 4 = Stopped 5 = Operational 127 = Preoperational 255 = Offline (Default-Wert)	Int	ro (read only)
40x100	Der Geräte-Heartbeat-Status aller überwachten Node-IDs hat sich geändert. Wertebereich: 0 = False 1 = True	Bool	rw (read and write)
40x101 40x227	Geräte-Heartbeat-Status der Busteil- nehmer Node-ID 1 127; Wertebereich: 0 = Bootup 4 = Stopped 5 = Operational 127 = Preoperational 255 = Offline (Default-Wert)	Byte	ro
40x229 40x355	Geräte-Heartbeat-Timeout der Busteilnehmer Node-ID 1 127; Wertebereich: 0 65535 [ms]	Word	rw

Das \mathbf{x} in der Registernummer ist die Nummer von der verwendeten CAN-Busleitung: $\mathbf{x} = 0$... CANMAX.

Starten der Heartbeat-Überwachung

Um die Heartbeat-Überwachung zu starten, gehen Sie wie folgt vor:

Schritt	Vorgehen
1	Schalten Sie die Heartbeat-Überwachung ein:
	Tragen Sie dafür den gewünschten Wert ins Timeout-Register ein. Der Wert muss zwischen 1 und 65535 [ms] liegen, z. B.:
	Für CAN 0 und Node-ID 1: Register 400229 auf den Wert 3000 [ms] setzen.
2	Legen Sie in Ihrem Anwendungsprogramm fest, wie das Gerät auf die einzelnen Werte aus dem Register (Geräte-Heartbeat-Status) reagieren soll.
	Wenn sich im Register 40x101 40x227 der Status geändert hat, dann hat das Register 40x100 den Wert 1 (True).
3	Setzen Sie den Wert im Register 40x100 auf 0 (False) zurück.
	Dieser Schritt ist notwendig, damit nachfolgende Änderungen vom Register 40x101 40x227 angezeigt werden.

Die Heartbeat-Überwachung startet mit dem Empfang des ersten Heartbeats (inclusive Bootup message). Der DLC (Data Length Code) von der Heartbeat-Nachricht muss 1 sein.

Beenden der Heartbeat-Überwachung

Um die Heartbeat-Überwachung zu beenden, gehen Sie wie folgt vor:

Schritt	Vorgehen	
1	Schalten Sie die Heartbeat-Überwachung aus:	
	Tragen Sie dafür ins Timeout-Register den Wert 0 [ms] ein.	

Emergency-Nachricht

Wenn ein Heartbeat-Timeout erkannt wird, dann wird automatisch eine Emergency-Nachricht gesendet.

Wenn die nächste Heartbeat-Nachricht erfolgreich empfangen wird, dann wird die Emergency-Nachricht zurückgesetzt.

Beispiel:

Folgender Emergency-Nachricht wird ausgelöst:

Bezug	Wert
Error Code	0x8130
Error Register	0x81
Manufacturer Error	0x00,NodeID,0x00,0x00,0x00

Die Nachricht auf dem CAN-Bus sieht dann wie folgt aus:

- Eigene NodeID 5
- Überwachte NodeID 1
- ID: 0x85 DLC = 8 Data: 0x30 0x81 0x81 0x00 0x01 0x00 0x00 0x00

Emergency-Nachricht Rx

Die Deklaration der Emergency-Nachricht Rx ist wie folgt aufgebaut:

```
CanOpenAddEmergencyRx(
   CANNo:int, // Nummer der Busleitung
   NodeID:int,
                    // Geräte-ID
   // Status, Anzahl gültiger Nachrichten
   ref stCanOpenEmergencyStat:CanOpenEmergencyStat,
    // Array mit den Emergency-Nachrichten
   ref CanOpenEmergencyMSG:CanOpenEmergencyArray,
    ):int
```

Beispiel:

Die einzelnen Programmzeilen müssen in den entsprechenden Task Ihres Anwendungsprogramms eingebunden werden. Das folgende Beispiel zeigt eine Emergency-Nachricht von einem Gerät mit der NodelD 21.

```
// Den CAN-Bus einmalig initialisieren.
// Globale Variablen definieren.
    stCanOpenEmergencyMsg : ARRAY[5] of CanOpenEmergencyMsg;
    stCanOpenEmergencyStat : CanOpenEmergencyStat;
End Var;
stCanOpenEmergencyStat.lBuffer := sizeof(stCanOpenEmergencyMsg);
iRet:= CanOpenAddEmergencyRx(0,
                                                       // CANNo.
                                                       // NodeID
                             stCanOpenEmergencyStat, // Status
                             stCanOpenEmergencyMsg);
                                                       // Array
```

Ergebnis der Programmzeilen:

. . .

Wenn im Register 400100 statt dem Wert 0 jetzt der Wert 1 (True) steht, dann hat das Gerät mit der NodelD 21 eine neue Emergency-Nachricht empfangen. Setzen Sie diesen Wert immer wieder auf 0 (False), damit Sie den Empfang von weiteren Emergency-Nachrichten angezeigt bekommen.

Emergency-Nachricht Tx Die Deklaration der Emergency-Nachricht Tx ist wie folgt aufgebaut:

```
CanOpenAddEmergencyTx(
    // Nummer der Busleitung
    CANNo:int,
    // Error Code siehe CiA DS 301 V4.02 Seite 60
    // oder CiA DS 4xx (Geräteprofil)
    ErrorCode:word,
    // Error Register (Object 0x1001)
    ErrorRegister:byte,
    // 5 Byte zur freien Verfügung
    ManufacturerArray:ByteArray5,
    // True = Fehler ist aufgetreten
    // False = Fehler ist nicht mehr vorhanden (Fehler quittiert)
    bSet:bool
    ):Int;
```

CANopen®-Objektverzeichnis des JVM-104

Unterstützte Objekte

Das Betriebssystem des Geräts JVM-104 unterstützt folgende Objekte:

Index (hex)	Objekt (Kürzel)	Objektname	Тур	Attribute
1000	VAR	Device Type	Unsigned32	ro (read only)
1001	VAR	Error Register	Unsigned8	ro
1002	VAR	Manufacturer Status	Unsigned32	ro
1003	ARRAY	Pre-defined Error Field	Unsigned32	ro
1008	VAR	Manufacturer Device Name	String	const
1009	VAR	Manufacturer Hardware Version	String	const
100A	VAR	Manufacturer Software Version	String	const
100B	VAR	Node-ID	Unsigned32	ro
1017	VAR	Producer Heartbeat Time	Unsigned16	rw (read & write)
1018	RECORD	Identity	Identity	ro
1200	RECORD	Server 1 - SDO-Parameter	SDO-Param eter	ro
1201	RECORD	Server 2 - SDO-Parameter	SDO-Param eter	rw
1203	RECORD	Server 3 - SDO-Parameter	SDO-Param eter	rw
1203	RECORD	Server 4 - SDO-Parameter	SDO-Param eter	rw

Device Type Object (Index 0x1000)

In der folgenden Tabelle ist die Struktur des **Device Type Object** dargestellt.

Index	Sub-Index	Default	Beschreibung
0x1000	0	0x0000012D	Geräteart (schreibgeschützt)

Error Register Object (Index 0x1001)

Die Bits in diesem Register werden über die STX-Funktion

CanOpenAddEmergencyTx() gesetzt.

In der folgenden Tabelle ist die Struktur des Error Register Object dargestellt.

Index	Sub-Index	Default	Beschreibung
0x1001	0	0	Fehlerregister (schreibgeschützt)

Dieses Objekt übernimmt die Fehlerregisterfunktion von CANopen®.

Folgende Fehlermeldungen sind möglich:

- Bit 0 = nicht näher spezifizierter Fehler
- Bit 1 = Stromfehler aufgetreten
- Bit 2 = Spannungsfehler aufgetreten
- Bit 3 = Temperaturfehler aufgetreten
- Bit 4 = Kommunikationsfehler aufgetreten (overrun, error state)
- Bit 5 = spezifischer Geräteprofil-Fehler aufgetreten
- Bit 6 = Reserviert (Always 0)
- Bit 7 = Herstellerspezifischer Fehler aufgetreten

Pre-defined Error Field Object (Index 0x1003)

In der folgenden Tabelle ist die Struktur des **Pre-defined Error Field Object** dargestellt.

Index	Sub-Index	Default	Beschreibung
0x1003	0	0	Anzahl Fehler, die in das Standardfehlerfeld des Arrays eingetragen wurden
	1	0	Aktuellster Fehler
			0 gibt an, dass kein Fehler vorliegt
	2 254	-	Ältere Fehler

Dieses Objekt zeigt die Liste mit der Historie der vom JVM-104 erkannten Fehler. Die maximale Länge der Liste beträgt 254 Fehler. Bei einem Neustart wird der Inhalt der Liste gelöscht.

Aufbau des Standardfehlerfelds

2-Byte LSB: Fehlercode

2-Byte MSB: Ergänzende Informationen

Manufacturer Device Name Object (Index 0x1008)

In der folgenden Tabelle ist die Struktur des **Manufacturer Device Name Object** dargestellt.

Index	Sub-Index	Default	Beschreibung
0x1008	0	JVM-104	Name der Hardware

Manufacturer Hardware Version Object (Index 0x1009)

In der folgenden Tabelle ist die Struktur des Manufacturer Hardware Version Object dargestellt.

Index	Sub-Index	Default	Beschreibung
0x1009	0		OS-Version des Geräts

Manufacturer Software Version Object (Index 0x100A)

In der folgenden Tabelle ist die Struktur des Manufacturer Software Version Object dargestellt.

Index	Sub-Index	Default	Beschreibung
0x100A	0		Software-Version des Anwendungsprogramms, das auf dem JVM-104 läuft

Der Eintrag unter diesem Index erfolgt über den Parameter SWVersion der STX-Funktion CanOpenInit().

Node-ID Object (Index 0x100B)

In der folgenden Tabelle ist die Struktur des Node-ID Object dargestellt.

Index	Sub-Index	Default	Beschreibung
0x100B	0		Eigene Node-ID

Producer Heartbeat Time Object (Index 0x1017)

In der folgenden Tabelle ist die Struktur des Producer Heartbeat Time Object dargestellt.

Index	Sub-Index	Default	Beschreibung
0x1017	0	1.000 [ms]	Heartbeat-Zeit

CANopen®-Register des Geräts JVM-104

In der folgenden Tabelle sind die Register des Geräts JVM-104 dargestellt, die in Bezug zum CANopen®-Objektverzeichnis stehen.

Der Buchstabe x in der Registernummer steht für die CAN-Busleitung im Bereich 0 ... CANMAX.

Register- nummer	Beschreibung	Wertebereich	Attribute	Datentyp
40x000	Eigene Node-ID	1 127	rw (read & write)	Int
40x001	Eigener Heart- beat-Status	0 = Bootup 4 = Stopped 5 = Operational 127 = Pre-Operational 255 = Offline	ro (read only)	Int
40x002		siehe Objekt 0x1001	ro	Int
40x019			ro	Int (IP-Format)

Register- nummer	Beschreibung	Wertebereich	Attribute	Datentyp
40x020			rw	Int
40x021			rw	Int
40x022			rw	Int
40x023			rw	Int
40x030			rw	Int
40x100			rw	bool
40x400			rw	bool
40x101 40x227	Node-ID 1 127 Status	0 = Bootup 4 = Stopped 5 = Operational 127 = Pre-Operational 255 = Offline (Default)	го	byte
40x229 40x355	Node-ID 1 127 Timeout	0 65535 ms	rw	word

7 SAE J1939-STX-API

Einleitung

Dieses Kapitel beschreibt die STX-Funktionen der SAE J1939-STX-API.

Der SAE J1939-Standard

SAE J1939 ist ein offener Standard für die Vernetzung und Kommunikation im Nutzfahrzeugbereich. Schwerpunkt der Anwendung ist die Vernetzung von Antriebsstrang und Chassis. Das Protokoll J1939 stammt von der internationalen Society of Automotive Engineers (SAE) und arbeitet auf dem Physical Layer mit CAN-Highspeed nach ISO 11898.

Anwendung

Diese STX-Funktionen werden in der Kommunikation zwischen der Steuerung JVM-104 und anderen Steuergeräten im Fahrzeug angewendet. Es werden in der Regel Motordaten, z. B. Motordrehzahl, Geschwindigkeit oder Kühlwassertemperatur, ausgelesen und auf dem Display angezeigt.

Dokumente

Die wichtigsten SAE J1939-Spezifikationen sind:

- J1939-11 Informationen zum Physical Layer
- J1939-21 Informationen zum Data Link Layer
- J1939-71 Informationen zum Application Layer Fahrzeuge
- J1939-73 Informationen zum Application Layer Bereich Diagnose
- J1939-81 Netzwerkmanagement

Inhalt

Thema	Seite
Aufbau einer J1939-Nachricht	104
STX-Funktion SAEJ1939Init()	106
STX-Funktion SAEJ1939SetSA()	107
STX-Funktion SAEJ1939GetSA()	108
STX-Funktion SAEJ1939AddRx()	109
STX-Funktion SAEJ1939AddTx()	112
STX-Funktion SAEJ1939RequestPGN()	115
STX-Funktion SAEJ1939GetDM1()	
STX-Funktion SAEJ1939GetDM2()	121
STX-Funktion SAEJ1939SetSPNConversion()	
STX-Funktion SAEJ1939GetSPNConversion()	

Aufbau einer J1939-Nachricht

Aufbau einer J1939-Nachricht

Die folgende Abbildung zeigt den Aufbau einer J1939-Nachricht:

29bit CAN-Identifier			Data
2826	258	70	08 Byte
Priority	PGN	SA	PDU

Parameter Group Number (PGN)			
25	24	2316	158
Extended Data Page	Data Page	PDU Format	DA / GE

PDU Forn	nat 1 (specific)
2316	158
00hEFh	DA
PDU Fori	nat 2 (global)
2316	158
F0hFFh	GE

Abkürzung	Bezeichnung (Bedeutung)
DA	Destination Address (Zieladresse)
GE	Group Extensions (Gruppenerweiterungen)
PDU	Protocol Data Unit (Protokolldateneinheit)
PGN	Parameter Group Number (Parametergruppennummer)
SA	Source Address (Quelladresse)

Bedeutung der PGN -Parameter Group Number Die PGN ist eine in der SAE J1939-Norm definierte Nummer, die mehrere SPNs zu einer sinnvollen Gruppe zusammenfügt. Die PGN ist Teil des CAN-Identifiers. Die 8-Byte-Daten (PDU) beinhalten die Werte der einzelnen SPN.

Es folgt ein Beispiel für die PGN 65262 (0xFEEE):

PGN 65262 Engine Temperature 1 - ET1

Teil der PGN	Wert	Bemerkung
Transmission Repetition Rate	1 s	
Data Length	8	
Extended Data Page	0	
Data Page	0	
PDU Format	254	
PDU Specific	238	PGN Supporting Information
Default Priority	6	
Parameter Group Number	65262	in Hex: 0xFEEE

Startposition	Länge	Parametername	SPN
1	1 Byte	Engine Coolant Temperature	110
2	1 Byte	Engine Fuel Temperature 1	174
3 - 4	2 Bytes	Engine Oil Temperature 1	175
5 - 6	2 Bytes	Engine Turbocharger Oil Temperature	176
7	1 Byte	Engine Intercooler Temperature	52
8	1 Byte	Engine Intercooler Thermostat Opening	1134

STX-Funktion SAEJ1939Init()

Einleitung

Mit dem Aufruf der Funktion SAEJ1939Init () wird einer der vorhandenen CAN-Busse (nicht CAN 0, weil reserviert für CANopen®) für das J1939-Protokoll initialisiert. Die JVM-104 hat ab dann die durch den Funktionsparameter mySA zugeteilte SA (Source Address). Es handelt sich dabei um die eigene Geräteadresse am Bus.

Funktionsdeklaration

```
Function SAEJ1939Init(
    CANNo: Int,
    mySA:Byte,
) :Int;
```

Funktionsparameter

Die Funktion SAEJ1939Init () hat die folgenden Parameter.

Parameter	Beschreibung	Wert
CANNo	CAN-Kanalnummer	1 CANMAX
mySA	Eigene Source-Adresse	0 253

Rückgabewert

Die Funktion übergibt die folgenden Rückgabewerte an das übergeordnete Programm.

Rückgabewert	
0	ok
-1	Fehler bei der Parameterüberprüfung
-3	Nicht genug Speicher für SAE J1939

CANNo-Parameter

Dieser Parameter gibt die Nummer der SAEJ1939-Schnittstelle an. Die erste Schnittstelle wird mit CANNo = 1 ausgewählt. Die Anzahl der SAEJ1939-Schnittstellen ist geräteabhängig. Die mögliche Anzahl der SAEJ1939-Schnittstellen CANMAX ist in den technischen Daten und der Kurzreferenz der jeweiligen Betriebsanleitung erwähnt.

Verwenden der Funktion

Initialisieren des CAN-Busses 1. Das Gerät JVM-104 hat die SA 20 (0x14). Das Gerät JVM-104 kann jetzt Nachrichten mit der eingestellten SA (und nur diese Nachrichten) senden.

Result := SAEJ1939Init(1, 20);

Address Claiming

Address Claiming ist nicht implementiert.

STX-Funktion SAEJ1939SetSA()

Einleitung

Mit dem Aufruf der Funktion SAEJ1939SetSA() ändern Sie die eigene SA (Source Address) zur Laufzeit.

Funktionsdeklaration

Funktionsparameter

Die Funktion SAEJ1939SetSA() hat die folgenden Parameter.

Parameter	Beschreibung	Wert
CANNo	CAN-Kanalnummer	1 CANMAX
mySA	Neue SA	0 253

Rückgabewert

Die Funktion übergibt die folgenden Rückgabewerte an das übergeordnete Programm.

Rückgabewert	
0	ok
-1	Fehler bei der Parameterüberprüfung

CANNo-Parameter

Dieser Parameter gibt die Nummer der SAEJ1939-Schnittstelle an. Die erste Schnittstelle wird mit CANNo = 1 ausgewählt. Die Anzahl der SAEJ1939-Schnittstellen ist geräteabhängig. Die mögliche Anzahl der SAEJ1939-Schnittstellen CANMAX ist in den *technischen Daten* und der *Kurzreferenz* der jeweiligen Betriebsanleitung erwähnt.

Verwenden der Funktion

Die SA zur Laufzeit ändern.

Result := SAEJ1939SetSA(1, 20);

Wichtiger Hinweis

Nachrichten werden sofort mit der neuen SA gesendet oder empfangen.

STX-Funktion SAEJ1939GetSA()

Einleitung

Mit dem Aufruf der Funktion SAEJ1939GetSA() kann die eigene SA (Source Address) festgestellt werden.

Funktionsdeklaration

```
Function SAEJ1939GetSA(
    CANNo: Int,
    ref mySA:Byte,
) :Int;
```

Funktionsparameter

Die Funktion SAEJ1939GetSA() hat die folgenden Parameter.

Parameter	Beschreibung	Wert
CANNo	CAN-Kanalnummer	1 CANMAX
mySA	Aktuell eingestellte SA	0 253

Rückgabewert

Die Funktion übergibt die folgenden Rückgabewerte an das übergeordnete Programm.

Rückgabewert	
0	ok
-1	Fehler bei der Parameterüberprüfung

CANNo-Parameter

Dieser Parameter gibt die Nummer der SAEJ1939-Schnittstelle an. Die erste Schnittstelle wird mit CANNo = 1 ausgewählt. Die Anzahl der SAEJ1939-Schnittstellen ist geräteabhängig. Die mögliche Anzahl der SAEJ1939-Schnittstellen CANMAX ist in den technischen Daten und der Kurzreferenz der jeweiligen Betriebsanleitung erwähnt.

Verwenden der Funktion

Es wird die aktuell eingestellte SA zurückgegeben.

Result := SAEJ1939SetSA(1, actual_SA);

STX-Funktion SAEJ1939AddRx()

Einleitung

Mit dem Aufruf der Funktion SAEJ1939AddRx () wird das JVM-104 aufgefordert, eine bestimmte Nachricht zu empfangen. Diese Nachricht wird von einem anderen Busteilnehmer gesendet. Die Adresse dieses Busteilnehmers wird als Parameter bySA dieser Funktion übergeben. Wenn die Nachricht nicht gesendet wird, bleibt der zuletzt empfangene Wert bestehen. Das zyklische Lesen erfolgt solange, bis die Funktion SAEJ1939Init() erneut aufgerufen wird.

Funktionsdeklaration

Funktionsparameter

Die Funktion SAEJ1939AddRx () hat die folgenden Parameter.

Parameter	Beschreibung	Wert	
CANNo	CAN-Kanalnummer	1 CANMAX	
IPGN	PGN	0 0x3FFFF	
	Parameter Group Number		
bySA	Source Address vom Sender der Nachricht	0 253	
BytePos	Startposition des Bytes der zu empfangenden Daten	1 n	
BitPos	Startposition des Bits der zu empfangenden Daten	1 8	
DataType	Datentyp der zu empfangenden 1 3, 10 16 Daten		
DataLength	Datengröße der globalen Variablen VarAddr		
VarAddr	Globale Variable, in die der empfangene Wert eingetragen wird		
TJ1939Rx	Kontrollstruktur		
EventTime	Zeitlicher Abstand zw. zwei Telegrammen (> InhibitTime)		

Parameter	Beschreibung	Wert
InhibitTime	Mindestabstand zwischen zwei empfangenen Telegrammen (< EventTime)	Default-Wert: 100 ms

Rückgabewert

Die Funktion übergibt die folgenden Rückgabewerte an das übergeordnete Programm.

Rückgabewert	
0	ok
-1	Fehler bei der Parameterüberprüfung

CANNo-Parameter

Dieser Parameter gibt die Nummer der SAEJ1939-Schnittstelle an. Die erste Schnittstelle wird mit CANNo = 1 ausgewählt. Die Anzahl der SAEJ1939-Schnittstellen ist geräteabhängig. Die mögliche Anzahl der SAEJ1939-Schnittstellen CANMAX ist in den *technischen Daten* und der *Kurzreferenz* der jeweiligen Betriebsanleitung erwähnt.

DataType-Parameter

Die folgenden Datentypen sind möglich.

Byte-Typen	Bit-Typen	SAEJ1939
1	-	SAEJ1939_UNSIGNED8 SAEJ1939_BYTE
2	-	SAEJ1939_UNSIGNED16 SAEJ1939_WORD
4	-	SAEJ1939_UNSIGNED32 SAEJ1939_DWORD
n	-	SAEJ1939_STRING
-	1	SAEJ1939_1BIT
-	2	SAEJ1939_2BIT
-	3	SAEJ1939_3BIT
-	4	SAEJ1939_4BIT
-	5	SAEJ1939_5BIT
-	6	SAEJ1939_6BIT
-	7	SAEJ1939_7BIT

Kontrollstruktur TJ1939Rx

Verwenden der Funktion

```
Result := SAEJ1939AddRx (
    1,
    0xFEEE,
    0x00,
    2
    0
    SAEJ1939_BYTE,
    sizeof(var_Fueltemp),
    var_Fueltemp,
    struct_TJ1939Rx_EngineTemperatureTbl,
    1500,
    120);
```

JetSym-STX-Programm

Das Gerät JVM-104 mit der eigenen SA von 20 möchte die aktuelle Treibstofftemperatur empfangen und anzeigen. Die Parameter **InhibitTime** und **EventTime** werden beim Funktionsaufruf nicht explizit aufgeführt. In diesem Fall werden die Default-Werte verwendet. Die Steuerung, die die Treibstofftemperatur erfasst, hat die SA von 0. In der Praxis ist die Adresse der Steuerung aus der Dokumentation des Motorherstellers zu erfahren.

Die Treibstofftemperatur hat die SPN 174 und ist Bestandteil (2. Byte) der PGN 65262 Motortemperatur 1.

```
#Include "SAEJ1939.stxp"
Var
    bySAEJ1939Channel : Byte;
    own Source Address : Byte;
// PGN 65262 Engine Temperature 1
    Fueltemp : Byte;
    EngineTemperatureTbl : TJ1939Rx;
End Var;
Task main autorun
// Initialisierung CAN 1
bySAEJ1939Channel := 1;
own_Source_Address := 20;
SAEJ1939Init (bySAEJ1939Channel, own_Source_Address);
// Treibstofftemperatur empfangen
SAEJ1939Addrx (bySAEJ1939Channel, 65262, 0x00, 2, 1, SAEJ1939 BYTE,
sizeof(Fueltemp), Fueltemp, EngineTemperatureTbl);
End Task;
```

Anleitung des Motorherstellers

Der Kunde erfährt die Daten (Priorität, PGN, SA und den Aufbau der Datenbytes) aus der Anleitung des Motorherstellers.

STX-Funktion SAEJ1939AddTx()

Einleitung

Mit dem Aufruf der Funktion SAEJ1939AddTx () wird das Gerät JVM-104 aufgefordert, eine bestimmte Nachricht zyklisch über den Bus zu senden.

Das zyklische Senden erfolgt solange, bis die Funktion SAEJ1939Init() erneut aufgerufen wird.

Die Daten werden nach Ablauf der Event-Time oder bei Änderung der abgegebenen Variablen und Ablauf der Inhibit-Time gesendet.

Funktionsdeklaration

```
Function SAEJ1939AddTx(
    CANNo: Int,
    IPGN:Long,
    BytePos:Int,
    BitPos:Int,
    dataType:Int,
    DataLength: Int,
    const ref VarAddr,
    ref stJ1939:TJ1939Tx
    EventTime: Int,
    InhibitTime: Int,
) :Int;
```

Funktionsparameter

Die Funktion SAEJ1939AddTx () hat die folgenden Parameter.

Parameter	Beschreibung	Wert	
CANNo	CAN-Kanalnummer	1 CANMAX	
IPGN	PGN	0 0x3FFFF	
	Parameter Group Number		
BytePos	Startposition des Bytes der zu sendenden Daten	1 n	
BitPos	Startposition des Bits der zu sendenden Daten	1 8	
dataType	Datentyp der zu sendenden Daten	1 3, 10 16	
DataLength	Datengröße der globalen Variablen VarAddr		
VarAddr	Globale Variable, in die der sendende Wert eingetragen wird		
TJ1939Tx	Kontrollstruktur		
EventTime	Zeitlicher Abstand zw. zwei Telegrammen (> InhibitTime) Default-Wert: 1.000 m		
InhibitTime	Mindestabstand zwischen zwei empfangenen Telegrammen (< EventTime)		

Rückgabewert

Die Funktion übergibt die folgenden Rückgabewerte an das übergeordnete Programm.

Rückgabewert	
0	ok
-1	Fehler bei der Parameterüberprüfung

CANNo-Parameter

Dieser Parameter gibt die Nummer der SAEJ1939-Schnittstelle an. Die erste Schnittstelle wird mit CANNo = 1 ausgewählt. Die Anzahl der SAEJ1939-Schnittstellen ist geräteabhängig. Die mögliche Anzahl der SAEJ1939-Schnittstellen CANMAX ist in den *technischen Daten* und der *Kurzreferenz* der jeweiligen Betriebsanleitung erwähnt.

DataType-Parameter

Die folgenden Datentypen sind möglich.

Byte-Typen	Bit-Typen	SAEJ1939
1	-	SAEJ1939_UNSIGNED8 SAEJ1939_BYTE
2	-	SAEJ1939_UNSIGNED16 SAEJ1939_WORD
4	-	SAEJ1939_UNSIGNED32 SAEJ1939_DWORD
n	-	SAEJ1939_STRING
-	1	SAEJ1939_1BIT
-	2	SAEJ1939_2BIT
-	3	SAEJ1939_3BIT
-	4	SAEJ1939_4BIT
-	5	SAEJ1939_5BIT
-	6	SAEJ1939_6BIT
-	7	SAEJ1939_7BIT

Kontrollstruktur TJ1939Tx

Verwenden der Funktion

```
Result := SAEJ1939AddTx (
    1,
    0xFEEE,
    0x00,
    2
    0
    SAEJ1939_BYTE,
```

```
sizeof(var_Fueltemp),
var_Fueltemp,
struct_TJ1939Tx_EngineTemperatureTbl,
1500,
120);
```

JetSym-STX-Programm

Festlegung einer neuen Priorität:

Der Prioritätswert 0 hat die höchste Priorität, der Prioritätswert 7 die niedrigste Priorität. Die Nachricht mit der Priorität 6 kann von einer Nachricht der Priorität 4 verdrängt werden (wenn die Nachrichten gleichzeitig gesendet werden). Die Parameter **InhibitTime** und **EventTime** werden beim Funktionsaufruf nicht explizit aufgeführt. In diesem Fall werden die Default-Werte verwendet.

```
#Include "SAEJ1939.stxp"
Var
   bySAEJ1939Channel : Byte;
    own Source Address : Byte;
// PGN 65262 Engine Temperature 1
   Fueltemp : Byte;
   EngineTemperatureTbl : TJ1939Tx;
End Var;
Task main autorun
// Initialisierung CAN 1
bySAEJ1939Channel := 1;
own Source Address := 20;
SAEJ1939Init (bySAEJ1939Channel, own_Source_Address);
// PGN 65262 Engine Temperature
// Eine neue Priorität der festlegen
EngineTemperatureTbl.byPriority := 6;
SAEJ1939AddTx (bySAEJ1939Channel, 65262, 0x00, 2, 1, SAEJ1939 BYTE,
sizeof(Fueltemp), Fueltemp, EngineTemperatureTbl);
End Task;
```

Anleitung des Motorherstellers

Der Kunde erfährt die Daten (Priorität, PGN, SA und den Aufbau der Datenbytes) aus der Anleitung des Motorherstellers.

STX-Funktion SAEJ1939RequestPGN()

Einleitung

Mit dem Aufruf der Funktion SAEJ1939RequestPGN () wird nach einer PGN eine Anfrage an die DA (Destination Address) gesendet.

Wenn ein gültiger Wert empfangen oder der Timeout von 1.250 ms abgelaufen ist, erst dann wird die Funktion beendet.

Um den Wert der angefragten Nachricht zu erhalten, muss diese mit der Funktion SAEJ1939AddRx () für den Empfang angemeldet sein.

Diese Funktion muss zyklisch immer wieder neu aufgerufen werden.

Funktionsdeklaration

```
Function SAEJ1939RequestPGN(
    CANNo:Int,
    byDA:Byte,
    ulPGN:Long,
    byPriority:Byte,
) :Int;
```

Funktionsparameter

Die Funktion SAEJ1939RequestPGN() hat die folgenden Parameter.

Parameter	Beschreibung	Wert
CANNo	CAN-Kanalnummer	1 CANMAX
byDA	Destination Address Adresse, von der die Nachricht angefordert wird 0 253 Die eigene SA kann verwendet werden.	
uIPGN	PGN Parameter Group Number	0 0x3FFFF
byPriority	Priorität	0 7 Default-Wert: 6

Rückgabewert

Die Funktion übergibt die folgenden Rückgabewerte an das übergeordnete Programm.

Rückgabewert	
0	Nachricht wurde empfangen
-1	Timeout, weil keine Antwort erhalten

CANNo-Parameter

Dieser Parameter gibt die Nummer der SAEJ1939-Schnittstelle an. Die erste Schnittstelle wird mit CANNo = 1 ausgewählt. Die Anzahl der SAEJ1939-Schnittstellen ist geräteabhängig. Die mögliche Anzahl der SAEJ1939-Schnittstellen CANMAX ist in den *technischen Daten* und der *Kurzreferenz* der jeweiligen Betriebsanleitung erwähnt.

DataType-Parameter

Die folgenden Datentypen sind möglich.

Byte-Typen	Bit-Typen	SAEJ1939
1	-	SAEJ1939_UNSIGNED8
		SAEJ1939_BYTE
2	-	SAEJ1939_UNSIGNED16
		SAEJ1939_WORD
4	-	SAEJ1939_UNSIGNED32
		SAEJ1939_DWORD
n	-	SAEJ1939_STRING
-	1	SAEJ1939_1BIT
-	2	SAEJ1939_2BIT
-	3	SAEJ1939_3BIT
-	4	SAEJ1939_4BIT
-	5	SAEJ1939_5BIT
-	6	SAEJ1939_6BIT
-	7	SAEJ1939_7BIT

Verwenden der Funktion

```
Result := SAEJ1939RequestPGN (
    1,
    0x00,
    0xFEE5,
    5);
```

JetSym-STX-Programm

JVM-104 mit der eigenen SA von 20 möchte die PGN 65253 Engine Hours von einer Motorsteuerung mit der SA 0 anfordern. Aus dieser PGN soll die SPN 247 Engine Total Hours of Operation ausgelesen werden. Deshalb ist es notwendig durch Aufruf der Funktion SAEJ1939AddRx () den Empfang der SPN 247 anzumelden.

Der Parameter **byPriority** wird beim Funktionsaufruf nicht explizit aufgeführt. In diesem Fall wird der Default-Wert verwendet.

```
#Include "SAEJ1939.stxp"

Var
    bySAEJ1939Channel : Byte;
    own_Source_Address : Byte;

// PGN 65253 Engine Hours, Revolutions
    EngineTotalHours : Int;
    EngineHoursTbl : TJ1939Rx;
End Var;
```

```
Task main autorun
// Initialisierung CAN 1
bySAEJ1939Channel := 1;
own Source Address := 20;
SAEJ1939Init (bySAEJ1939Channel, own Source Address);
// Engine Hours, Revolutions -- on Request
SAEJ1939AddRx (bySAEJ1939Channel, 65253, 0x00, 1, 0,
SAEJ1939_DWORD, sizeof(EngineTotalHours), EngineTotalHours, EngineHoursTbl, 5000, 150);
// Wird benötigt für einen zyklischen Task
TaskAllEnableCycle ();
EnableEvents;
End Task;
Task t RequestPGN 5000 cycle 5000
Var
    Return value : Int;
End_Var;
// Gesamte Betriebsstunden der Maschine anfordern
Return value := SAEJ1939RequestPGN (by SAEJ1939Channel, 0x00,
65253);
If Return value Then
      Trace ('PGN Request failed');
End_If;
End Task;
```

STX-Funktion SAEJ1939GetDM1()

Einleitung

Mit dem Aufruf der Funktion SAEJ1939GetDM1 () werden die aktuellen Diagnosefehlercodes angefordert (siehe SAE J1939-73 Nr. 5.7.1). Die entsprechende PGN-Nummer ist 65226. Diese Funktion muss zyklisch immer wieder neu aufgerufen werden.

Funktionsdeklaration

```
Function SAEJ1939GetDM1(
    CANNo: Int,
    bySA:Byte,
    ref stJ1939DM1stat:TJ1939DM1STAT
    ref stJ1939DM1msg:TJ1939DM1MSG
) :Int;
```

Funktionsparameter

Die Funktion SAEJ1939GetDM1 () hat die folgenden Parameter.

Parameter	Beschreibung	Wert
CANNo	CAN-Kanalnummer	1 CANMAX
bySA	Source Address vom Sender der Nachricht	0 253 Die eigene SA kann nicht verwendet werden
stJ1939DM1stat	IStatus IMsgCnt IBuffer	Lamp Status Anzahl der empfangenen Nachrichten Größe von Variable stJ1939DM1msg
stJ1939DM1msg	ISPN byOC byFMI	Fehlercode Fehlerzähler Fehlertyp

Rückgabewert

Die Funktion übergibt die folgenden Rückgabewerte an das übergeordnete Programm.

Rückgabewert	
0	ok
-1	Fehler bei der Parameterüberprüfung

CANNo-Parameter

Dieser Parameter gibt die Nummer der SAEJ1939-Schnittstelle an. Die erste Schnittstelle wird mit CANNo = 1 ausgewählt. Die Anzahl der SAEJ1939-Schnittstellen ist geräteabhängig. Die mögliche Anzahl der SAEJ1939-Schnittstellen CANMAX ist in den technischen Daten und der Kurzreferenz der jeweiligen Betriebsanleitung erwähnt.

stJ1939DM1stat.IStatus Default: 0xFF00

Тур	Byte	Bitgruppe	Beschreibung
Status	1	8 - 7	Malfunction Indicator Lamp Status
		6 - 5	Red Stop Lamp Status
		4 - 3	Amber Warning Lamp Status
		2 - 1	Protect Lamp Status
Flash	2	8 - 7	Flash Malfunction Indicator Lamp
		6 - 5	Flash Red Stop Lamp
		4 - 3	Flash Amber Warning Lamp
		2 - 1	Flash Protect Lamp

Тур	Byte	Bitgruppe Wert	Beschreibung
Status	1	00	Lamps off
		01	Lamps on
Flash	2	00	Slow Flash (1 Hz, 50 % duty cycle)
		01	Fast Flash (2 Hz or faster, 50 % duty cycle)
		10	Reserved
		11	Unavailable / Do not Flash

stJ1939DM1msg

Default-Wert:

ISPN = 0

byOC = 0

byFMI = 0

Bei älteren Controllern (Grandfathered Setting):

ISPN = 524287 (0x7FFFF)

byOC = 31 (0x1F)

byFMI = 127 (0x7F)

Verwenden der Funktion

```
Result := SAEJ1939GetDM1(
    1,
    0x00,
    stdmlstat_pow,
    stdmlmsg_pow,);
```

JetSym-STX-Programm

JVM-104 fordert mit dem Aufruf der Funktion SAEJ1939GetDM1 () die aktuellen Diagnosefehlercodes an (PGN 65226).

```
#Include "SAEJ1939.stxp"
Var
   bySAEJ1939Channel : Byte;
   own_Source_Address : Byte;
   stdm1stat pow : TJ1939DM1STAT;
   stdmlmsg_pow : Array[10] of STJ1939DM1MSG;
   MyTimer : TTimer;
End Var;
Task main autorun
// Initialisierung CAN 1
bySAEJ1939Channel := 1;
own_Source_Address := 20;
SAEJ1939Init (bySAEJ1939Channel, own Source Address);
TimerStart (MyTimer, T#2s);
Loop
When (TimerEnd (MyTimer)) Continue;
// Die Diagnose-Fehlercodes DM1 POW anfordern
stdm1stat pow.lBuffer := sizeof (stdm1msg pow);
SAEJ1939GetDM1 (bySAEJ1939Channel, 0x00, stdm1stat_pow,
stdm1msg_pow);
TimerStart (MyTimer, T#2s);
End Loop;
End_Task;
```

STX-Funktion SAEJ1939GetDM2()

Einleitung

Mit dem Aufruf der Funktion SAEJ1939GetDM2 () werden die Diagnosefehlercodes, die den Aktuellen vorausgingen, angefordert (siehe SAE J1939-73 Nr. 5.7.2). Die entsprechende PGN-Nummer ist 65227.

Funktionsdeklaration

```
Function SAEJ1939GetDM2(
    CANNo:Int,
    bySA:Byte,
    ref stJ1939DM2stat:TJ1939DM2STAT
    ref stJ1939DM2msg:TJ1939DM2MSG
) :Int;
```

Funktionsparameter

Die Funktion SAEJ1939GetDM2 () hat die folgenden Parameter.

Parameter	Beschreibung	Wert
CANNo	CAN-Kanalnummer	1 CANMAX
bySA	Source Address vom Sender der Nachricht	0 253 Die eigene SA kann nicht verwendet werden
stJ1939DM2stat	IStatus IMsgCnt IBuffer	Lamp-Status Anzahl der empfangenen Nachrichten Größe von Variable stJ1939DM2msg
stJ1939DM2msg	ISPN byOC byFMI	Fehlercode Fehlerzähler Fehlertyp

Rückgabewert

Die Funktion übergibt die folgenden Rückgabewerte an das übergeordnete Programm.

Rückgabewert		
0	ok	
-1	Fehler bei der Parameterüberprüfung	

CANNo-Parameter

Dieser Parameter gibt die Nummer der SAEJ1939-Schnittstelle an. Die erste Schnittstelle wird mit CANNo = 1 ausgewählt. Die Anzahl der SAEJ1939-Schnittstellen ist geräteabhängig. Die mögliche Anzahl der SAEJ1939-Schnittstellen CANMAX ist in den *technischen Daten* und der *Kurzreferenz* der jeweiligen Betriebsanleitung erwähnt.

stJ1939DM2stat.IStatus

Default: 0xFF00

Тур	Byte	Bitgruppe	Beschreibung
Status	1	8 - 7	Malfunction Indicator Lamp Status
		6 - 5	Red Stop Lamp Status
		4 - 3	Amber Warning Lamp Status
		2 - 1	Protect Lamp Status
Flash	2	8 - 7	Flash Malfunction Indicator Lamp
		6 - 5	Flash Red Stop Lamp
		4 - 3	Flash Amber Warning Lamp
		2 - 1	Flash Protect Lamp

Тур	Byte	Bitgruppe Wert	Beschreibung
Status	1	00	Lamps off
		01	Lamps on
Flash	2	00	Slow Flash (1 Hz, 50 % duty cycle)
		01	Fast Flash (2 Hz or faster, 50 % duty cycle)
		10	Reserved
		11	Unavailable / Do not Flash

stJ1939DM2msg

Default-Wert:

ISPN = 0

byOC = 0

byFMI = 0

Bei älteren Controllern (Grandfathered Setting):

ISPN = 524287 (0x7FFFF)

byOC = 31 (0x1F)

byFMI = 127 (0x7F)

Verwenden der Funktion

```
Result := SAEJ1939GetDM2(
    1,
    0x00,
    stdm2stat_pow,
    stdm2msg_pow,);
```

JetSym-STX-Programm

JVM-104 fordert mit dem Aufruf der Funktion SAEJ1939GetDM2 () die aktuellen Diagnosefehlercodes an (PGN 65227).

```
#Include "SAEJ1939.stxp"
Var
    bySAEJ1939Channel : Byte;
    own Source Address : Byte;
    stdm2stat pow : TJ1939DM2STAT;
    stdm2msg pow : Array[10] of STJ1939DM2MSG;
End Var;
Task main autorun
// Initialisierung CAN 1
bySAEJ1939Channel := 1;
own Source Address := 20;
SAEJ1939Init (bySAEJ1939Channel, own Source Address);
// Wird benötigt für einen zyklischen Task
TaskAllEnableCycle ();
EnableEvents;
End Task;
Task t RequestPGN 5000 cycle 5000
    Return value : Int;
End_Var;
// Die Diagnosefehlercodes DM2 POW anfordern
stdm2stat pow.lBuffer := sizeof (stdm2msg pow);
Return value := SAEJ1939GetDM2 (bySAEJ1939Channel, 0x00,
stdm2stat_pow, stdm2msg_pow);
If Return value Then
   Trace ('DM2 Request failed');
End If;
End_Task;
```

STX-Funktion SAEJ1939SetSPNConversion()

Einleitung

Mit dem Aufruf der Funktion SAEJ1939SetSPNConversion() wird die Anordnung der Bytes der Nachricht, die mit der Funktion SAEJ1939GetDM1() oder SAEJ1939GetDM2() angefordert wird, festgelegt. Anders ausgedrückt, es wird die Konvertierungsmethode festgelegt.

Funktionsdeklaration

```
Function SAEJ1939SetSPNConversion(
        CANNo:Int,
        bySA:Byte,
        iConversionMethod:Int,
) :Int;
```

Funktionsparameter

Die Funktion SAEJ1939SetSPNConversion() hat die folgenden Parameter.

Parameter	Beschreibung	Wert	
CANNo	CAN-Kanalnummer	1 CANMAX	
bySA	Source Address vom Sender der Nachricht	0 253	
iConversionMethod	Konvertierungsmethode	1 4 4: Automatisch erkannt 2: Default	

Rückgabewert

Die Funktion übergibt die folgenden Rückgabewerte an das übergeordnete Programm.

Rückgabewert		
0	ok	
-1	Fehler bei der Parameterüberprüfung	

CANNo-Parameter

Dieser Parameter gibt die Nummer der SAEJ1939-Schnittstelle an. Die erste Schnittstelle wird mit CANNo = 1 ausgewählt. Die Anzahl der SAEJ1939-Schnittstellen ist geräteabhängig. Die mögliche Anzahl der SAEJ1939-Schnittstellen CANMAX ist in den *technischen Daten* und der *Kurzreferenz* der jeweiligen Betriebsanleitung erwähnt.

Verwenden der Funktion

```
Result := SAEJ1939SetSPNConversion(
    1,
    0xAE,
    4);
```

STX-Funktion SAEJ1939GetSPNConversion()

Einleitung

Mit dem Aufruf der Funktion SAEJ1939GetSPNConversion() wird die aktuell eingestellte Konvertierungsmethode festgestellt.

Funktionsdeklaration

Funktionsparameter

Die Funktion SAEJ1939GetSPNConversion() hat die folgenden Parameter.

Parameter	Beschreibung	Wert
CANNo	CAN-Kanalnummer	1 CANMAX
bySA	Source Address vom Sender der Nachricht	0 253
iConversionMethod	Konvertierungsmethode	1 4 4: Automatisch erkannt 2: Default

Rückgabewert

Die Funktion übergibt die folgenden Rückgabewerte an das übergeordnete Programm.

Rückgabewert		
0	ok	
-1	Fehler bei der Parameterüberprüfung	

CANNo-Parameter

Dieser Parameter gibt die Nummer der SAEJ1939-Schnittstelle an. Die erste Schnittstelle wird mit CANNo = 1 ausgewählt. Die Anzahl der SAEJ1939-Schnittstellen ist geräteabhängig. Die mögliche Anzahl der SAEJ1939-Schnittstellen CANMAX ist in den *technischen Daten* und der *Kurzreferenz* der jeweiligen Betriebsanleitung erwähnt.

Verwenden der Funktion

```
Result := SAEJ1939GetSPNConversion(
    1,
    0xAE,
    actual conversion method);
```

JVM-104 Dateisystem

8 Dateisystem

Einleitung

Dieses Kapitel beschreibt das Dateisystem des Geräts JVM-104. Das Dateisystem ermöglicht den Zugriff auf die Dateien der internen Flash-Disk. Wenn zu lösende Probleme auftreten, ist es hilfreich, das Dateisystem zu verstehen.

Hinweis

Arbeiten Sie vorsichtig im Umgang mit dem Dateisystem, zumindest mit den Systemdateien. Das kann zu einem Gerät führen, das nicht mehr bootet. Nicht alle Dateien sind lesbar, schreibbar oder löschbar. Dieses Verhalten ist normal. Einige dieser Dateien sind virtuelle Dateien, z. B. Firmware Images, oder geschützte Dateien, z. B. EDS-Dateien.

Aufteilung

Das Dateisystem unterscheidet zwischen folgenden Dateien:

- Vom Betriebssystem verwendete Systemverzeichnisse/-dateien
- Vom Anwender verwendete Dateien

Inhalt

Thema	Seite
Verzeichnisse	128
Figenschaften	132

8.1 Verzeichnisse

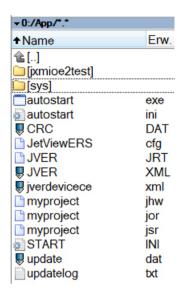
Systemverzeichnisse

Systemverzeichnisse sind nicht löschbar. Sie sind auch nach dem Formatieren noch vorhanden.

Verzeichnis	Beschreibung
\System	■ Systemkonfiguration
	■ Systeminformationen
	■ Begrüßungsbild (Boot-Image)
	■ Screenshot
∖App	■ Speicherbereich für die Applikation
\Data	■ Speicherbereich für die Daten
\Windows	■ Systemverzeichnis von Windows CE
\	■ RAM-Disk

Inhalt

Thema	Seite
Verzeichnisse	


JVM-104 Dateisystem

Verzeichnisse

Verzeichnis \App

\App

Dieses Verzeichnis enthält die Anwendung und die Visualisierung. In diesem Beispiel ist die STX-Anwendung in dem Ordner **jxmioe2test** gespeichert.

Die Daten basieren auf der neuen CE-Plattform. Da gibt es keine .iop-Datei. Stattdessen speichert JetViewSoft mehrere Visualisierungsdateien ab.

Hinweis:

Kopieren Sie alle Anwendungs- und Visualisierungsdateien in den Ordner **App** und nicht in den Ordner **Data**. Sonst verursacht das Verzögerungen beim Hochfahren, siehe Verzeichnis \Data.

start.ini

Der Inhalt dieser Textdatei legt fest, welche Anwendung gestartet wird.

Applsys

Dieses Verzeichnis enthält die Interpreter der STX-Programmiersprache und der Visualisierung. **Hier nichts verändern!**

autostart.xxx

Diese Anwendung lässt ein Betriebssystemupdate zu. Hier nichts verändern!

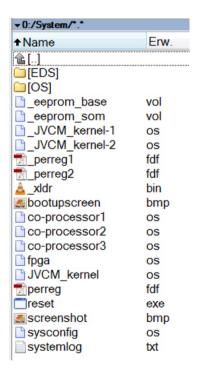
updatelog.txt

Das ist eine Log-Datei, die während des Betriebssystemupdates geschrieben wird.

Verzeichnis \Data

\Data

Dieses Verzeichnis ist der große Speicher des Bediengeräts. Sie können einige Parameter- oder Konfigurationsdateien hier speichern.


Wichtiger Hinweis!

Auf der Datenpartition können größere Datenmengen abgelegt werden. Um einen zügigen Systemstart sicherzustellen, wird diese Partition ggf. zeitversetzt nach dem Start der STX-Applikation eingebunden. Die Applikation kann nicht auf dieser Partition abgelegt werden.

Verzeichnis \System

\System

Dieses Verzeichnis enthält systemrelevante Dateien, wie den Kernel, die Co-Prozessor-Firmware, Konfigurationen, EDS usw.

JVM-104 Dateisystem

bootupscreen.bmp

Das ist eine 16-Bit-Bmp-Datei (r5, g6, b5), die als Bild direkt nach dem Einschalten sichtbar ist.

Sie können eine eigene Bilddatei erstellen und diese Datei ersetzen.

co-processor1

Diese virtuelle Datei enthält die Firmware eines versteckten Co-Prozessors, der die meisten Interaktionen (Schaltflächen, Summer, Hintergrundlicht usw.) mit dem Anwender steuert.

reset.exe

Wenn Sie diese Datei löschen, führt das Bediengerät sofort einen Neustart aus. Diese Funktion können Sie z. B. in Batch-Dateien anwenden, die nach der Abarbeitung einen automatischen Neustart erfordern.

Verzeichnis \Windows

\Windows

Dieses Verzeichnis enthält Dateien von Windows CE. Hier nichts verändern!

8.2 Eigenschaften

Einleitung

Dieses Kapitel beschreibt die Eigenschaften des Dateisystems auf der internen Flash-Disk.

Allgemeine Eigenschaften

Für die interne Flash-Disk gelten folgende Eigenschaften:

- Maximal 8 Dateien gleichzeitig öffnen.
- Wenn das Bediengerät eine Datei erstellt, erhält die Datei Datum und Uhrzeit des Bediengeräts.
- Datum, Uhrzeit und Dateigröße sind nicht bei allen Systemdateien verfüghar

Inhalt

Thema	Seite
Eigenschaften der Flash-Disk	133

JVM-104 Dateisystem

Eigenschaften der Flash-Disk

Größe

Dem Anwender steht folgende Größe zur freien Verfügung:

Parameter	Wert
Größe der Flash-Disk	512 MByte
Davon Ordner App	64 MByte
Davon Ordner Data	368 MByte

Eigenschaften

Die interne Flash-Disk hat folgende weitere Eigenschaften:

- 7 Verzeichnisebenen und 1 Dateiebene sind zulässig.
- Eine Unterscheidung zwischen Groß- und Kleinschreibung gibt es nicht.
- Für die Zeichenlänge von Verzeichnis- und Dateinamen sind gesamt 63 Zeichen zulässig.
- Für Verzeichnis- und Dateinamen sind alle Zeichen außer "/" und ".." erlaubt.
- Die Ordner App und Data liegen auf der Flash-Disk.

JVM-104 Programmierung

9 Programmierung

Zweck des Kapitels

Dieses Kapitel unterstützt die Programmierung des Bediengeräts JVM-104 in folgenden Punkten:

Programmierung der Zusatzfunktionen

Voraussetzungen

Zur Programmierung des Bediengeräts JVM-104 müssen folgende Voraussetzungen erfüllt sein:

- Das Bediengerät ist mit einem PC verbunden.
- Auf dem PC ist die Programmiersoftware JetSym installiert.

Inhalt

Thema	Seite
Abkürzungen, Modulregistereigenschaften und Formatierungen	136
Speicherübersicht	137
Bedienelemente und Zündung	148
Laufzeitregister	155

Abkürzungen, Modulregistereigenschaften und Formatierungen

Abkürzungen

In der folgenden Tabelle sind die in diesem Dokument benutzten Abkürzungen aufgelistet:

Abkürzung	Bedeutung
R 100	Register 100
MR 150	Modulregister 150

Modulregistereigenschaften

Jedes Modulregister ist durch bestimmte Eigenschaften gekennzeichnet. Die meisten Eigenschaften sind bei vielen Modulregistern identisch, z. B. dass der Wert nach einem Reset gleich Null ist. In der Beschreibung sind die Modulregistereigenschaften nur dann aufgeführt, wenn eine Eigenschaft von den folgenden Standardeigenschaften abweicht.

Modulregistereigenschaften	Standard für die meisten Modulregister
Zugriff	Lesen/schreiben
Wert nach einem Reset	0 oder undefiniert (z. B. die Versionsnummer)
Wird wirksam	Sofort
Schreibzugriff	Immer
Datentyp	Integer

Zahlenformate

In der folgenden Tabelle sind die in diesem Dokument benutzten Zahlenformate aufgelistet:

Darstellung	Zahlenformat
100	Dezimal
0x100	Hexadezimal
0b100	Binär

JetSym-Beispielprogramme

In der folgenden Tabelle ist die in diesem Dokument benutzte Darstellung für Beispielprogramme aufgelistet:

Darstellung	Bedeutung
Var, When, Task	Schlüsselwort
<pre>BitClear();</pre>	Befehle
100 0x100 0b100	Konstante Zahlenwerte
// dies ist ein Kommentar	Kommentar
//	Weitere Programmbearbeitung

JVM-104 Programmierung

9.1 Speicherübersicht

Einleitung

Das Gerät JVM-104 enthält verschiedene Arten von Programm- und Datenspeicher. Es gibt flüchtigen Speicher. Flüchtiger Speicher verliert beim Ausschalten seinen Inhalt. Nicht flüchtiger Speicher behält auch ohne Stromversorgung seinen Inhalt.

Dieses Kapitel gibt eine Übersicht über den zur Verfügung stehenden Speicher.

Inhalt

Thema	Seite
Speicher des Betriebssystems	138
Speicher des Dateisystems	139
Speicher des Anwendungsprogramms	140
Speicher für flüchtige Variablen des Anwendungsprogramms	141
Speicher für nichtflüchtige Register des Anwendungsprogramms	142
Speicher für nichtflüchtige Variablen des Anwendungsprogramms	143
Spezialregister	145
Merker	146

Speicher des Betriebssystems

Einleitung	Das Betriebssystem liegt im nichtflüchtigen Flash-Speicher der CPU. Das Betriebssystem ist nach dem Einschalten sofort ausführbar.
Eigenschaften	 Interner Flash-Speicher für das Betriebssystem
	 Interner flüchtiger RAM-Speicher für die Daten des Betriebssystems
Speicherzugriff	 Auf den Speicherbereich des Betriebssystems kann der Anwender nicht direkt zugreifen.
	 Das Betriebssystem wird über ein Update geändert.
Verwandte Themen	
	 Update des Betriebssystems (siehe Seite 162)

JVM-104 Programmierung

Speicher des Dateisystems

Einleitung	Im Speicher des Dateisystems werden Daten- und Programmdateien abgelegt.	
Eigenschaften	NichtflüchtigGröße der internen Flash-Disk: 368 MByte	
Speicherzugriff	 Durch das Betriebssystem Durch JetSym Über Dateibefehle aus dem Anwendungsprogramm 	

Speicher des Anwendungsprogramms

Einleitung	Das Anwendungsprogramm	(STX-Skript) wird	standardmäßig von	JetSym an

das Bediengerät übertragen und dort gespeichert.

Eigenschaften ■ Ablage als Datei im Dateisystem

■ Standardverzeichnis \App\Programmname

In anderen Verzeichnissen möglich

Speicherzugriff • Durch das Betriebssystem

Durch JetSym

Über Dateibefehle aus dem Anwendungsprogramm

Verwandte Themen

■ Anwendungsprogramm (siehe Seite 165)

JVM-104 Programmierung

Speicher für flüchtige Variablen des Anwendungsprogramms

Einleitung

In flüchtigen Variablen werden Daten abgelegt, die nach dem Ausschalten der JVM-104 nicht erhalten bleiben müssen.

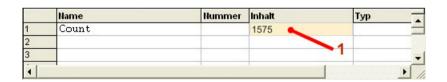
Eigenschaften

- Globale Variablen, die nicht fest Adressen zugeordnet sind (nicht %VL oder %RL)
- Lokale Variablen
- Variablen sind kompakt abgelegt
- Variablen sind beim Anlegen mit dem Wert 0 initialisiert

Speicherzugriff

- Durch JetSym
- Aus dem Anwendungsprogramm

JetSym-STX-Programm


Das folgende Programm inkrementiert den Inhalt einer globalen Variable alle 2 s um eins.

```
Var
    Count: Int;
End_Var;

Task Inkrement Autorun
    Loop
         Inc(Count);
         Delay(T#2s);
    End_Loop;
End Task;
```

Anzeige im Setup

Das Setup-Fenster von JetSym zeigt den Inhalt der Variablen an.

Nummer	Beschreibung	Funktion
1	Aktueller Inhalt der Variablen	Der Inhalt der Variablen wird alle 2 s um eins inkrementiert.

9

Speicher für nichtflüchtige Register des Anwendungsprogramms

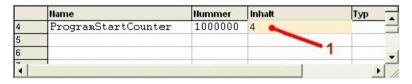
Einleitung

In nichtflüchtigen Registern werden Daten abgelegt, die nach dem Ausschalten des JVM-104 erhalten bleiben müssen.

Eigenschaften

- Globale Variablen, die fest Adressen zugeordnet sind (%VL)
- Registervariablen belegen immer 4 Byte
- Registervariablen werden vom Betriebssystem nicht initialisiert
- Anzahl Registervariablen: 30.000
- Registernummern: 1000000 ... 1029999

Speicherzugriff


- Durch JetSym
- Von Anzeige- und Bediengeräten
- Aus dem Anwendungsprogramm
- Von Steuerungen

JetSym-STX-Programm

Das folgende Programm inkrementiert den Inhalt einer Registervariable bei jedem Anwendungsprogrammstart um eins. Auf diese Weise wird die Anzahl der Programmstarts gezählt.

Anzeige im Setup

Das Setup-Fenster von JetSym zeigt den Inhalt der Registervariablen an.

Nummer	Beschreibung	Funktion
1	Aktueller Inhalt der Registervariablen	Der Inhalt der Registervariablen wird bei jedem Programmstart um eins erhöht.

JVM-104 Programmierung

Speicher für nichtflüchtige Variablen des Anwendungsprogramms

Einleitung

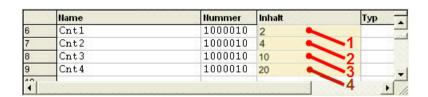
In nichtflüchtigen Variablen werden Daten abgelegt, die nach dem Ausschalten des JVM-104 erhalten bleiben müssen.

Eigenschaften

- Globale Variablen, die auf Register fest zugeordnet sind (%RL)
- Variablen werden kompakt abgelegt
- Größe: 120.000 Bytes
- Registernummern: 1000000 ... 1029999

Speicherzugriff

- Durch JetSym
- Von Anzeige- und Bediengeräten
- Aus dem Anwendungsprogramm


JetSym-STX-Programm

Das folgende Programm inkrementiert jede Sekunde den Inhalt von vier nichtflüchtigen Variablen.

Die Zähler nehmen jeweils Werte zwischen 0 und 255 (Variablentyp Byte) an. Als Speicher für die vier Variablen werden die vier Bytes des Registers mit der Nummer 1000010 verwendet.

Anzeige im Setup

Das Setup-Fenster von JetSym zeigt den Inhalt der Variablen an. Da die vier Zähler vom Typ Byte sind, ergeben sich schon nach relativ kurzer Zeit Zahlen-überläufe.

9 Programmierung

Nummer	Beschreibung	Funktion
1	Aktueller Inhalt der Variablen Cnt1	Der Inhalt der Variablen wird jede Sekunde um eins inkrementiert.
2	Aktueller Inhalt der Variablen Cnt2	Der Inhalt der Variablen wird jede Sekunde um zwei inkrementiert.
3	Aktueller Inhalt der Variablen Cnt3	Der Inhalt der Variablen wird jede Sekunde um fünf inkrementiert.
4	Aktueller Inhalt der Variablen Cnt4	Der Inhalt der Variablen wird jede Sekunde um zehn inkrementiert.

Spezialregister

Einleitung

Über Spezialregister können Funktionen im Betriebssystem gesteuert und Statusinformationen abgerufen werden.

Eigenschaften

- Globale Variablen, die fest Adressen zugeordnet sind (%VL)
- Spezialregister werden beim Start des Betriebssystems mit Standardwerten vorbesetzt
- Registernummern: 100000 ... 999999

Speicherzugriff

- Durch JetSym
- Browser (über den HTTP-Server)
- Von Anzeige- und Bediengeräten
- Aus dem Anwendungsprogramm
- Von anderen Steuerungen

JetSym-STX-Programm

Das folgende Programm verwendet das Spezialregister für den Digipot-Wert. Es dimmt die Hintergrundbeleuchtung des JVM-104 über den Digipot. Dabei ist ein unteres und oberes Limit für den Digipot vorgegeben. Wenn Sie die Betätigungstaste drücken, stellt sich die volle Hintergrundbeleuchtung ein.

```
Var
    Digipot Count
                   : Int At %VL 363000;
    Digipot Limit min: Int At %VL 363002;
    Digipot Limit max: Int At %VL 363003;
    Digipot Button : Int At %VL 363001;
    BackgroundLighting: Int At %VL 364000;
End Var;
Task Main Autorun
    Digipot Count := 0;
    Digipot Limit max := 17;
    Digipot Limit min := 0;
    qool
      If Digipot Button Then
                 BackgroundLighting := 255;
            Else BackgroundLighting := Digipot Count * 15;
      End If
    End Loop
End Task;
```

Merker

Einleitung

Merker belegen ein Bit im Speicher und können den Wert TRUE oder FALSE annehmen.

Eigenschaften Anwendungsmerker

- Globale Variablen, die fest Adressen zugeordnet sind (%MX)
- Nicht flüchtig
- Anzahl: 256
- Merkernummern: 0 ... 255

Eigenschaften überlagerter Anwendungsmerker

- Globale Variablen, die fest Adressen zugeordnet sind (%MX)
- Nicht flüchtig
- Überlagert mit den Registern 1000000 ... 1000055
- Anzahl: 1.792
- Merkernummern: 256 ... 2047

Eigenschaften Spezialmerker

- Globale Variablen, die fest Adressen zugeordnet sind (%MX)
- Spezialmerker werden beim Start des Betriebssystems mit Standardwerten vorbesetzt
- Anzahl: 256
- Merkernummern: 2048 ... 2303

Speicherzugriff

- Durch JetSym
- Von Anzeige- und Bediengeräten
- Aus dem Anwendungsprogramm

JetSym-STX-Programm

Das folgende Programm setzt beim Drücken der Taste KEY_UP einen Merker und mit Drücken der Taste KEY_DOWN den Merker wieder zurück. Solange der Merker gesetzt ist, wird das Spezialregister 364000 (Hintergrundbeleuchtung) hochgezählt. Erst wenn der Merker wieder zurückgesetzt wird, dann wird das Hochzählen des Spezialregisters gestoppt.

```
Var
   Merker1:
                        Bool At %MX 1;
   Key Up:
                        Bit At %XL 361000.3;
   Key_Down:
                        Bit At %XL 361000.2;
   Background Light: Int At %VL 364000;
End Var;
Task Main Autorun
   Merker1:= False;
   Loop
       If Key Up Then
           Merker1 := True;
       ElseIf Key Down Then
           Merker1 := False;
       End IF;
```

9.2 Bedienelemente und Zündung

Einleitung

Dieses Kapitel beschreibt die Programmierung der Bedienelemente und der Zündung und Ausschaltverzögerung des JVM-104.

Inhalt

Thema	Seite
Eingabetasten	149
Digipot	151
Zündung und Ausschaltverzögerung	153

Eingabetasten

Einleitung

Das Bediengerät JVM-104 verfügt über die vier Eingabetasten [UP], [DOWN], [OK] und [ESC]. Die Eingabetasten sind frei programmierbar.

Spezialregister

Im Register 361000 des JVM-104 ist ein bitkodiertes Abbild der Eingabetasten vorhanden. Sie können dieses Abbild zur Programmierung verwenden.

Folgende Register stehen für die Eingabetasten zur Verfügung:

Register	Beschreibung
361000	Bitkodiertes Abbild aller Eingabetasten
361000.0	Eingabetaste [OK] Bit 0 = 1: Taste [OK] ist gedrückt.
361000.1	Eingabetaste [ESC] Bit 1 = 1: Taste [ESC] ist gedrückt.
361000.2	Eingabetaste [DOWN] Bit 2 = 1: Taste DOWN ist gedrückt.
361000.3	Eingabetaste [UP] Bit 3 = 1: Taste [UP] ist gedrückt.

Softwareversionen

Das Beispielprogramm ist getestet mit den folgenden Softwareversionen:

- JetSym in der Version 5.2
- Bediengerät JVM-104 in der OS-Version 4.01

Sie finden weiterführende Informationen zum Thema STX-Programmierung in der Online-Hilfe von JetSym.

JetSym-STX-Programm

Beschreibung:

Das folgende Beispielprogramm fragt die Eingabetasten in einem Task permanent ab. Wenn Sie eine oder mehrere Tasten drücken, dann wird die Hintergrundbeleuchtung des Displays oder die Tastennachtbeleuchtung geändert.

```
Var
btnKey_Ok: Bit At %XL 361000.0;
btnKey_Esc: Bit At %XL 361000.1;
btnKey_Dwn: Bit At %XL 361000.2;
btnKey_Up: Bit At %XL 361000.3;

dispBackLed: Int At %VL 364000;
dispButtonBackLed: Int At %VL 364001;
End Var;
```

```
Task Main Autorun
   Loop
        If btnKey_Up Then
            // Halbe Helligkeit der Hintergrundbeleuchtung
           dispBackLed := 127;
       End If;
        If btnKey_Dwn Then
            // Volle Helligkeit der Hintergrundbeleuchtung
           dispBackLed := 255;
        End If;
        If btnKey_Esc Then
            // Tastennachtbeleuchtung volle Helligkeit
           dispButtonBackLed := 255;
        End If;
        If btnKey_Ok Then
            // Tastennachtbeleuchtung ausschalten
            dispButtonBackLed := 0;
       End If;
        Delay(T#100ms);
   End Loop;
End Task;
```

Digipot

Einleitung

Bei dem JVM-104 ist ein Digipot mit einer Bestätigungstaste vorhanden, der eine komfortable Eingabemöglichkeit darstellt. An dieser Stelle sind die Spezialregister des Digipot beschrieben, sowie ein entsprechendes Beispielprogramm.

Register des Digipot

Es gibt folgende Spezialregister für den Digipot:

Register	Beschreibung
363000	Dieses Register enthält den aktuellen Zählwert. Durch Drehen des Digipot erhöht oder verringert sich der Zählwert. Dabei gilt:
	■ Digipot im Uhrzeigersinn drehen = Register hochzählen
	■ Digipot gegen Uhrzeigersinn drehen = Register abwärts zählen
363001	Bit 0: 0 = Bestätigungstaste nicht gedrückt
	Bit 0: 1 = Bestätigungstaste gedrückt
363002	Dieses Register gibt das untere Limit für den Zählwert des Digipot vor. Wenn Sie den Digipot gegen den Uhrzeigersinn weiterdrehen, bleibt das Register 363000 bei diesem Minimumwert stehen.
363003	Dieses Register gibt das obere Limit für den Zählwert des Digipot vor. Wenn Sie den Digipot im Uhrzeigersinn weiterdrehen, bleibt das Register 363000 bei diesem Maximumwert stehen.

Softwareversionen

Das Beispielprogramm ist getestet mit den folgenden Softwareversionen:

- JetSym in der Version 5.2
- Bediengerät JVM-104 in der OS-Version 4.01

Sie finden weiterführende Informationen zum Thema STX-Programmierung in der Online-Hilfe von JetSym.

JetSym-STX-Programm

Das folgende Beispielprogramm dimmt die Hintergrundbeleuchtung des JVM-104 über den Digipot. Dabei ist ein unteres und oberes Limit für den Digipot vorgegeben. Wenn Sie die Bestätigungstaste drücken, stellt sich die volle Hintergrundbeleuchtung ein.

```
Var
   Digipot_Count : Int At %VL 363000;
   Digipot_Limit_min: Int At %VL 363002;
   Digipot_Limit_max: Int At %VL 363003;
   Digipot_Button : Int At %VL 363001;
   BackgroundLighting: Int At %VL 364000;
End_Var;

Task Main Autorun
   Digipot_Count := 0;
   Digipot_Limit_max := 17;
   Digipot_Limit_min := 0;
```

```
Loop

If Digipot_Button Then

BackgroundLighting := 255;

Else BackgroundLighting := Digipot_Count * 15;

End_If

End_Loop

End_Task;
```

Zündung und Ausschaltverzögerung

Einleitung

Dieses Kapitel beschreibt die Zündung und die Funktion Shutdown ().

Spezialregister

Das Spezialregister 361100 des JVM-104 ist für die Abfrage der Zündung zuständig. Dabei gilt Folgendes:

Wenn	dann
Bit 0 = 0,	Zündung ist eingeschaltet und Span- nung liegt an KL 15 Zündung (+) an.
Bit 0 = 1,	Zündung ist aus. Keine Spannung liegt an KL 15 Zündung (+) an.

Default-Zündungsfunktion

Das Bediengerät hat im Zusammenhang mit der Zündung folgende Default-Einstellungen:

Wenn	und	dann
das Bediengerät mit Spannung versorgt wird	die Zündung aus ist,	bootet das Bediengerät nicht.
das Bediengerät mit Spannung versorgt wird	die Zündung einge- schaltet ist,	bootet das Bediengerät.
das Bediengerät einge- schaltet ist	die Zündung ausge- schaltet wird (nicht die Spannungsversorgung),	dann bleibt das Bedien- gerät eingeschaltet.

Optionen Funktion Shutdown()

Abweichend von der Default-Zündungsfunktion bietet die Funktion Shutdown () folgende Optionen:

- Das Bediengerät kann definiert heruntergefahren werden.
- Ein Neustart des Bediengeräts kann durchgeführt werden.

Funktionsdeklaration

Function Shutdown(Reboot:Bool) :Bool;

Funktionsparameter

Die Funktion Shutdown () hat den folgenden Parameter.

Parameter	Beschreibung	Wert
Reboot	Neustart des Systems:	True
	Abschalten des Systems:	False

Rückgabewert

Die Funktion übergibt die folgenden Rückgabewerte an das übergeordnete Programm.

Rückgabewert	
0	ok
-1	Zündung ist noch eingeschaltet

Hinweis

Wenn die Zündung noch eingeschaltet ist, schaltet das Gerät nicht ab. Ein Neustart wird allerdings immer durchgeführt. Der Neustart ist unabhängig von der Zündung.

Softwareversionen

Das Beispielprogramm ist getestet mit den folgenden Softwareversionen:

- JetSym in der Version 5.2
- Bediengerät JVM-104 in der OS-Version 4.01

Sie finden weiterführende Informationen zum Thema STX-Programmierung in der Online-Hilfe von JetSym.

JetSym-STX-Programm

Wenn Sie die Zündung des Fahrzeugs ausschalten, führt das Beispielprogramm die Funktion Shutdown () nach 3 s aus. Der Parameter **Reboot** der Funktion Shutdown () hat den Wert false. Das bedeutet, dass das Gerät abschaltet.

```
Var
    Ignition: Int At %VL 361100;
End_Var;

Task Ign Autorun
    Loop
    When Ignition Continue;
         Delay(3000);
         Shutdown(False);
    End_Loop;
End_Task;
```

9.3 Laufzeitregister

Einleitung	Das Gerät JVM-104 hat mehrere Register, die das Be Zeitabständen hochzählt.	etriebssystem in festen
Verwendung	Mit Hilfe dieser Register lassen sich auf einfache Wei gramm Zeitmessungen durchführen.	se im Anwendungspro-
Inhalt		
	Thema	Seite
	Beschreibung der Laufzeitregister	156
	Beispielprogramm Laufzeitregister	158

Beschreibung der Laufzeitregister

Registerübersicht

Das Gerät hat die folgenden Laufzeitregister:

Register	Beschreibung
R 201000	Anwendungszeitbasis in Millisekunden
R 201001	Anwendungszeitbasis in Sekunden
R 201002	Anwendungszeitbasis in R 201003 * 10 ms
R 201003	Anwendungszeitbasis-Einheiten für R 201002
R 201004	Systemzeitbasis in Millisekunden
R 201005	Systemzeitbasis in Mikrosekunden

R 201000

Anwendungszeitbasis in Millisekunden

Dieses Register wird jede Millisekunde um eins inkrementiert.

Registereigenschaften

Werte -2.147.483.648 ... 2.147.483.647 (überlaufend)

R 201001

Anwendungszeitbasis in Sekunden

Dieses Register wird jede Sekunde um eins inkrementiert.

Registereigenschaften

Werte -2.147.483.648 ... 2.147.483.647 (überlaufend)

R 201002

Anwendungszeitbasis in Anwendungszeitbasis-Einheiten

Dieses Register wird alle [R 201003] * 10 ms um eins inkrementiert. Mit dem Reset-Wert 10 in Register 201003 wird dieses Register alle 100 ms inkrementiert.

Registereigenschaften

Werte -2.147.483.648 ... 2.147.483.647 (überlaufend)

R 201003

Anwendungszeitbasis-Einheiten für R 201002

Dieses Register enthält den Multiplikator für das Laufzeitregister R 201002.

Registereigenscha	ften
Werte	1 2.147.483.647 (* 10 ms)
Wert nach Reset	10 (> 100 ms)
Wirksamkeit	Nach min. 10 ms

R 201004

Systemzeitbasis in Millisekunden

Dieses Register wird jede Millisekunde um eins inkrementiert.

Registereigenscha	ften
Werte	-2.147.483.648 2.147.483.647 (überlaufend)
Zugriff	Lesen

R 201005

Systemzeitbasis in Mikrosekunden

Dieses Register wird jede Mikrosekunde um eins inkrementiert.

Registereigen	schaften
Werte	-2.147.483.648 2.147.483.647 (überlaufend)
Zugriff	Lesen

Aufgabe

Messen Sie, wie lange das Abspeichern von Variablenwerten in einer Datei dauert.

Lösung

Bevor Sie die Werte abspeichern, setzen Sie das Register 201000 auf 0. Wenn die Werte abgespeichert sind, lesen Sie aus diesem Register die benötigte Zeit in Millisekunden.

Softwareversionen

Das Beispielprogramm ist getestet mit den folgenden Softwareversionen:

- JetSym in der Version 5.2
- Bediengerät JVM-104 in der OS-Version 4.01

Sie finden weiterführende Informationen zum Thema STX-Programmierung in der Online-Hilfe von JetSym.

JetSym-STX-Programm

```
Var
                Array[2000] Of Int;
    DataArray:
    File1:
                 File;
   WriteTime:
                Int;
   WriteIt:
                 Bool;
   MilliSec:
                Int At %VL 201000;
End Var;
Task WriteToFile Autorun
        // Startmerker zurücksetzen
        WriteIt := False;
        // Warten bis Anwender den Startmerker gesetzt hat
        When WriteIt Continue;
        // Datei im Schreibmodus öffnen
        // Wenn keine Datei vorhanden ist, dann wird eine neue Datei
        // erstellt
        If FileOpen(File1, 'Test.dat', fWrite) Then
            // Anwendungszeitbasis-Register auf Null setzen
            MilliSec := 0;
            // Datenbereich in die Datei schreiben
            FileWrite(File1, DataArray, SizeOf(DataArray));
            // Laufzeit erfassen
            WriteTime := MilliSec;
            FileClose(File1);
            // Laufzeit anzeigen
            Trace(StrFormat('Time : %d [ms]$n', WriteTime));
```

10 Betriebssystemupdate

Einleitung

Die Betriebssysteme der Bediengeräte der Jetter AG werden laufend weiterentwickelt. Dabei kommen neue Funktionen hinzu, bestehende Funktionen werden erweitert und Fehler beseitigt.

Dieses Kapitel beschreibt die Durchführung eines Betriebssystemupdates.

Download eines Betriebssystems

Die Jetter AG stellt die Betriebssysteme auf ihrer **Homepage http://www.jetter.de** zur Verfügung. Sie finden die Betriebssystemdateien zum Download unter *Mobile Automation - Support - Downloads* und über den Link *Betriebssystemdownload* der *Quicklinks* auf den Seiten der jeweiligen Bediengeräte.

Inhalt

Thema	Seite
Betriebssystemupdate bei einem Bediengerät	162

10.1 Betriebssystemupdate bei einem Bediengerät

Einleitung

Dieses Kapitel beschreibt, wie das Betriebssystemupdate eines JVM-104 durchgeführt wird. Es gibt hierbei mehrere Möglichkeiten, die Betriebssystemdatei an das Gerät zu übertragen:

- Mit dem Programmiertool JetSym
- Über das Verzeichnis \App

Inhalt

Thema	Seite
Betriebssystemupdate mit JetSym	163
Betriebssystemupdate über \App	164

Betriebssystemupdate mit JetSym

Einleitung

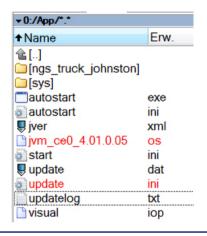
Mit Hilfe des Programmiertools JetSym ist es auf komfortable Weise möglich, eine Betriebssystemdatei auf das Gerät JVM-104 zu übertragen.

Voraussetzungen

- Eine Betriebssystemdatei für das Gerät JVM-104 ist vorhanden.
- Das Gerät ist per CAN mit dem PC verbunden.
- In JetSym ist eingestellt:
 - Gerätetyp
 - Schnittstellentyp
 - Node-ID
 - CAN-Baudrate
- Während des Betriebssystemupdates das Gerät eingeschaltet lassen.

Betriebssystem updaten

Führen Sie zum Betriebssystemupdate folgende Schritte aus:


Schritt	Vorgehen
1	Wählen Sie in JetSym im Menü Build den Punkt OS updaten aus. Ergebnis: Ein Dateiauswahlfenster öffnet sich.
2	Wählen Sie die gewünschte Betriebssystemdatei aus. Ergebnis: JetSym öffnet ein Bestätigungsfenster.
3	Starten Sie die Übertragung der Betriebssystemdatei durch Klicken auf die Schaltfläche Ja .
4	Warten Sie, bis das Update beendet ist.
5	Um das eingespielte Betriebssystem zu starten, booten Sie das Gerät neu.

Betriebssystemupdate über \App

Vorgehensweise

Durch das Kopieren von Dateien in das Verzeichnis \(\mathcal{App} \) ist ein einfaches Betriebssystemupdate möglich. Führen Sie dazu die folgenden Schritte aus:

Schritt	Vorgehen
1	Schreiben Sie den Namen der Filecollection in die Datei update.ini . Sonst funktioniert das Update nicht.
2	Kopieren Sie die Filecollection oder OS und die Datei update.ini in das Verzeichnis <i>Vapp</i> .
3	Starten Sie das Bediengerät neu.
₽	Autostart.exe findet das Update während dem Booten, installiert alle Dateien und führt einen Neustart aus. Wichtig! Unterbrechen Sie nicht diesen Vorgang.
4	Öffnen Sie die Datei updatelog.txt und schauen Sie, ob das Update erfolgreich war.

11 Anwendungsprogramm

Einleitung	Dieses Kapitel beschreibt, wie das Anwendungsprogramm in der JVM-104 abgelegt wird. Der Anwender legt fest, welches Programm ausgeführt werder soll.
Voraussetzungen an den Programmierer	Dieses Kapitel setzt Kenntnisse über das Erzeugen und Übertragen von Anwendungsprogrammen in JetSym und über das Dateisystem der JVM-104 voraus

Inhalt

Thema	Seite
Standardablage des Anwendungsprogramms	166
Anwendungsprogramm laden	167

Standardablage des Anwendungsprogramms

Einleitung

Beim Download des Anwendungsprogramms von JetSym auf die Steuerung wird dieses Programm als Datei auf der internen Flash-Disk abgespeichert. Das Gerät trägt den Pfad- und Dateinamen in der Datei \App\start.ini ein.

Pfad- und Dateiname

Standardmäßig legt JetSym im Verzeichnis \(\mathcal{App} \) ein Unterverzeichnis mit dem Projektnamen an und speichert dort das Anwendungsprogramm mit der Dateierweiterung .es3 ab. Pfad- und Dateinamen werden dabei immer in Kleinbuchstaben konvertiert.

\App\start.ini - Aufbau

Die Datei ist eine reine Textdatei mit einer Sektion mit zwei Einträgen:

Element	Beschreibung	
[Startup]	Sektionsname	
Project	Pfad zur Anwendungsprogrammdatei relativ zu VApp	
Program	Name der Anwendungsprogrammdatei	

Beispiel:

[Startup] Project = test program Program = test_program.es3

Ergebnis: Das Anwendungsprogramm wird aus der Datei \App\test_program\test_program.es3 geladen.

Anwendungsprogramm laden

Einleitung

Beim Neustart des Anwendungsprogramms über JetSym oder nach dem Booten des JVM-104 wird das Anwendungsprogramm über das Dateisystem geladen und ausgeführt.

Der Ladevorgang

So wird das Anwendungsprogramm vom Betriebssystem des JVM-104 geladen.

Stufe	Beschreibung
1	Das Betriebssystem liest die Datei \App\start.ini von der internen Flash-Disk.
2	Das Betriebssystem wertet den Eintrag Project aus. Er enthält den Pfad zur Anwendungsprogrammdatei.
3	Das Betriebssystem wertet den Eintrag Program aus. Er enthält den Programmnamen.
4	Das Betriebssystem lädt das Anwendungsprogramm aus der Datei < Project>\<program></program> .

12 Kurzreferenz JVM-104

Passende Betriebssystemversion

Diese Kurzreferenz beschreibt in stark zusammengefasster Form die Register und Merker des Bediengeräts JVM-104 in der OS-Version 4.01.

Default-Adresse am CANopen®-Bus

Die ausgelieferte Default-Adresse des JVM-104 ist:

Node-ID: 127 (0x7F)

Mögliche Anzahl an CANopen®-Schnittstellen

Mögliche Anzahl an CAN-Schnittstellen: 1 CANMAX: 0

Mögliche Anzahl an SAEJ1939-Schnittstellen

Mögliche Anzahl an CAN-Schnittstellen: 0 CANMAX: 0

Allgemeine Registerübersicht

108000 108999 CPU/Backplane	
200000 209999 Allg. Systemregister 210000 219999 Anwendungsprogramm 230000 239999 JetIP-Vernetzung 260000 269999 RemoteScan 270000 279999 Modbus/TCP 290000 299999 E-Mail 310000 319999 Dateisystem/Datendateien 350000 369999 Display	e

Allgemeine I/O-Übersicht

Eingabetasten

1000000 ... 1029999

361000 ... 361007 Bitkodiertes Abbild der Eingabetasten

Anwendungsregister (remanent)

Allgemeine Merkerübersicht

0 255	Anwendungsmerker (remanent)
256 2047	Überlagert mit R 1000000 bis 1000055
2048 2303	Snazialmarkar

Electronic Data Sheet

100500 Schnittstelle (0 = CPU, 4 = Baseboard)

Interne Versionsnummer

Identification 100600

100601 Modulkennung 100602 Modulname (Register-String) 100612

100613

Platinenrevision 100614 Platinenoptionen

Production

100700 Interne Versionsnummer 100701 ... Seriennummer (Register-String) 100707 100708 100709 Monat 100710 Jahr 100711 TestNum. 100712 TestRev.

Features

100800 Interne Versionsnummer 100801 MAC-Adresse (Jetter) 100802 MAC-Adresse (Gerät)

Electronic Name Plate (Gesamtgerät)

Production

100900 Interne Versionsnummer 100901 Seriennummer (Register-String) 100907

100708 Tag Monat 100709 100710 Jahr

Identification

100950 Interne Versionsnummer Modulkennung Modulname (Register-String) 100951 100952.

100962

Config-ID Vendor-ID 100965 100966 100967 Variant-ID 100968 Type-ID Navision-ID 100992 100993 FBG-Version

Konfiguration

	Aus Systemkonfiguration
101100	IP-Adresse (rw - remanent)
101101	Subnetzmaske (rw - remanent)
101102	Default Gateway (rw - remanent)

Vom System verwendet

101200	IP-Adresse
101201	Subnetzmaske
101202	Default Gateway

IP

Ethernet

	"
104531	Aktuelle IP-Adresse (rw - temporär)
104532	Aktuelle Subnetzmaske (rw - temporär)
104533	Aktuelles Default Gateway (rw - temporär)

CAN

106000	Baudrate CAN 1
106001	Node-ID CAN 1

Flash-Speicher

107501	Lese aktuelle Flash-Speicher-Statistik Lösche Flash-Speicher-Statistik
107510	Verfügbare Sektoren
107511	Verwendete Sektoren
107512	Blockierte Sektoren
107513	Freie Sektoren
107520	Größe Flash-Speicher in Byte
107521	Verwendeter Speicher in Byte
107522	Blockierter Speicher in Byte
107523	Freier Speicher in Byte
	The state of the s

CPU-Hardware			Bit 0 = 1: FTP-Server verfügbar
108015 Backup-Spannung (z. B. der Uhr)			Bit 1 = 1: HTTP-Server verfügbar
	0 = Daten ungültig		Bit 2 = 1: E-Mail verfügbar
	1 = Versorgung ok		Bit 3 = 1: Datendateifunktion verfügbar
	Wenn die Versorgung wieder hergestellt ist, quittieren Sie		Bit 4 = 1: Modbus/TCP lizenziert
	das Register durch das Beschreiben mit 1.		Bit 5 = 1: Modbus/TCP verfügbar
Systeminf	ormationen		Bit 6 = 1: Ethernet/IP verfügbar
108500 108509	JetVM-DII-Version-String	202960	Passwort für Systemkommandoregister (0x424f6f74)
108510	Versionsstring der Hostapplikation	202961	Systemkommandoregister
108519 108520	Dateiname der Hostapplikation	202980	Fehlerhistorie: Anzahl Einträge
108529	.,	202981	Fehlerhistorie: Index
108530 108539	OS-Version (String)	202982	Fehlerhistorie: Eintrag
108570	CPU-Typ		
108571 108573	Anzahl der CPUs Physikalischer Arbeitsspeicher	203100 203107	32-Bit-Überlagerung Flag 0 255
108574	Freier physikalischer Arbeitsspeicher	203108	16-Bit-Überlagerung Flag 0 255
108575 108581	Auslastung des Arbeitsspeichers in Prozent Bildschirmbreite in Pixel	203123 203124	32-Bit-Überlagerung Flag 2048 2303
108582	Bildschirmhöhe in Pixel	203124	32-bit-oberiagerung Flag 2046 2303
108590	HID-Version	203132	16-Bit-Überlagerung Flag 2048 2303
		203147	
USB-Date	nträger	200700	Systemicanov Clabala Fraincha
109000		209700 209701	Systemlogger: Globale Freigabe Freigabe Systemkomponenten
109000	Bit 0 = 1: Datenträger vorhanden Bit 1 = 1: Datenträger bereit	209739	
109001	1 = Datenträger schreibgeschützt	Anwendu	ngsprogramm
109002	(nur gültig wenn R 109000 = 3) Größe in MByte	210000	Anwendungsprogramm läuft (Bit 0 = 1)
	·	210001	JetVM-Version
Allgemein	e Systemregister	210004	Fehlerregister (bitkodiert) Bit 8: Ungültiger Sprung
200000 200001	OS-Version (Major * 100 + Minor) Anwendungsprogramm läuft (Bit 0 = 1)		Bit 9: Ungültiger Call
200001	Fehlerregister (identisch zu 210004)		Bit 10: Ungültiger Index
	Bit 8: Ungültiger Sprung		Bit 11: Ungültiger Opcode
	Bit 9: Ungültiger Call		Bit 12: Division durch Null
	Bit 10: Ungültiger Index		Bit 13: Stack-Überlauf
	Bit 11: Ungültiger Opcode		Bit 14: Stack-Unterlauf
	Bit 12: Division durch Null		Bit 15: Stack ungültig
	Bit 13: Stack-Überlauf		Bit 16: Fehler beim Laden des Anwendungspro-
	Bit 14: Stack-Unterlauf		gramms
	Bit 15: Stack ungültig		Bit 24: Zykluszeitüberschreitung
	Bit 16: Fehler beim Laden des Anwendungspro-		Bit 25: Tasklock Timeout
	gramms Bit 24: Zykluszeitüberschreitung		Bit 31: Unbekannter Fehler
	Bit 25: Tasklock Timeout	210006 210007	Höchste Task-Nummer Minimale Programmzykluszeit
	Bit 31: Unbekannter Fehler	210008	Maximale Programmzykluszeit
	Dit o 1. Chibotannio 1 child	210009	Aktuelle Programmzykluszeit
		210011 210050	Aktuelle Task-Nummer Aktuelle Programmstelle innerhalb einer Ausführungs-
200168	Bootloader-Version (IP-Format)		einheit
200169	OS-Version (IP-Format)	210051 210056	ID der gerade bearbeiteten Ausführungseinheit Gewünschte Gesamtzykluszeit in µs
201000	Laufzeitregister in Millisekunden (rw)	210057	Errechnete Gesamtzykluszeit in µs
201001	Laufzeitregister in Sekunden (rw)	210058	Maximale Zeitscheibe pro Task in µs
201001	Laufzeitregister in R 201003	210060	Task-ID (für R 210061)
	Einheiten (rw)	210061 210063	Priorität für die Task [R 210060] Länge der Scheduler-Tabelle
201003	* 10 ms Einheiten für R 201002 (rw)	210064	Index in Scheduler-Tabelle
201004	Laufzeitregister in Millisekunden (ro)	210065	Task-ID in Scheduler-Tabelle
201005	Laufzeitregister in Mikrosekunden (ro)	210070	Task-ID (für R 210071)
		210071	Timer-Nummer (0 31)
202930	Webstatus (bitkodiert)	210072 210073	Manuelles Auslösen eines Timer-Events (bitkodiert) Ende zyklischer Task (Task-ID)
			, (,

210074 210075 210076 210077	Kommando für zyklische Tasks Anzahl Timer Timer-Nummer (für R 210077) Timer-Wert in Millisekunden
210100 210199	Task-Zustand
210400 210499	Task-Programmadresse
210600 210601 210609	Task-ID eines zyklischen Tasks (für R 210601) Bearbeitungszeit eines zyklischen Tasks in Promille Tasklock Timeout in ms -1: Überwachung abgeschaltet
210610	Zeitüberschreitung (bitkodiert) Bit 0 -> Timer 0 usw.

Jet	IP-	Verne	etzung
-----	-----	-------	--------

230000 230001 230002	JetIP/TCP-Server: Anzahl offener Verbindungen JetIP/TCP-Server: Modus JetIP/TCP-Server: Zeit
232708 232709 232710 232711	Timeout in Millisekunden Reaktionszeit in Millisekunden Anzahl Netzwerkfehler Fehlercode des letzten Zugriffs 0 = kein Fehler
	1 = Timeout
	3 = Fehlermeldung von Gegenstation
	5 = ungültige Netzwerkadresse
	6 = ungültige Anzahl Register
	7 = ungültige Schnittstellennummer
232717 232718	Maximale Anzahl Wiederholungen Anzahl Wiederholungen

Modbus/TCP

272702	Registeroffset
272704	Eingangsoffset
272705	Ausgangsoffset
278000	16-Bit-I/O-Register überlagert mit virtuellen I/O 20001 bis
278999	36000

E-Mail

292932	IP-Adresse des SMTP-Servers
292933	IP-Adresse des POP3-Servers
292934	Port-Nummer des SMTP-Servers
292935	Port-Nummer des POP3-Servers
292937	Status der E-Mail-Bearbeitung
292938	E-Mail Task-ID

Dateisystem/Datendateifunktion

312977	Status der Dateioperation
312978	Task-ID

Freiprogrammierbare IP-Schnittstelle

Auslesen	der	Verbindungsliste
----------	-----	------------------

350000	Letztes Ergebnis (-1 = keine Verbindung ausgewählt)
350001	1 = Client; 2 = Server
350002	1 = UDP; 2 = TCP
350003	IP-Adresse
350004	Port-Nummer

350005	Zustand der Verbindung
350006	Anzahl gesendet Bytes
350007	Anzahl empfangener Bytes

Anwendungsregister

1000000	32-Bit-Ganzzahl (remanent)
1005999	

CAN-Prim-Register

200010500	Statusregister CAN-Prim
200010501	Kommandoregister CAN-Prim
200010502	Nummer der Nachrichtenbox
200010503	FIFO-Füllstand
200010504	FIFO-Daten
200010506	Globale Empfangsmaske
200010507	Globale Empfangs-ID
200010510	Boxstatusregister
200010511	Boxkonfigurationsregister
200010512	CAN-ID
200010513	Anzahl Datenbytes
200010514	Datenbytes

200010521

Display

Eingabetasten	
361000	Bitkodiertes Abbild der Eingabetasten
361007	z. B. Bit 0: 1 = Taste 1 gedrückt
361000.0	KEY_OK
361000.1	KEY_ESC
361000.2	KEY_DOWN
361000.3	KEY_UP

Zündung (IGN) 361100

0 = Zündung eingeschaltet 1 = Zündung ausgeschaltet

Digipot

Aktueller Zählwert
Bestätigungstaste Digipot
Minimaler Zählwert
Maximaler Zählwert

Display

Diopius	
364000	Hintergrundbeleuchtung
364001	Tastennachtbeleuchtung
364003	Helligkeitssensor

Visualisierung

365100 Sprachumschaltung nach ID

Netzwerkspezialmerker

2075 Fehler bei JetIP-Vernetzung

Spezialmerker Schnittstellenüberwachung

2088	OS-Flag JetIP
2089	User-Flag JetIP
2098	OS-Flag Debug-Server
2099	User-Flag Debug-Server

32 zusammengefasste Merker

203100	0 31
203101	32 63
203102	64 95
203103	96 127

12 Kurzreferenz JVM-104

203104	128 159
203105	160 191
203106	192 223
203107	224 255

16 zusammengefasste Merker

203108	0 15
203109	16 31
203110	32 47
203111	48 63
203112	64 79
203113	80 95
203114	96 111
203115	112 127
203116	128 143
203117	144 159
203118	160 175
203119	176 191
203120	192 207
203121	208 223
203122	224 239
203123	240 255

32 zusammengefasste Spezialmerker

203124	2048 2079
203125	2080 2111
203126	2112 2143
203127	2144 2175
203128	2176 2207
203129	2208 2239
203130	2240 2271
203131	2272 2303

16 zusammengefasste Spezialmerker

203132	2048 2063
203133	2064 2079
203134	2080 2095
203135	2096 2111
203136	2112 2127
203137	2128 2143
203138	2144 2159
203139	2160 2175
203140	2176 2191
203141	2192 2207
203142	2208 2223
203143	2224 2239
203144	2240 2255
203145	2256 2271
203146	2272 2287
203147	2288 2303

Anwendungsregister - Merker - Überlagerung

```
1000000
1000001
                  256 ... 287
                  288 ... 319
1000002
1000003
                  320 ... 351
                  352 ... 383
1000004
                  384 ... 415
1000005
                  416 ... 447
1000006
                  448 ... 479
1000007
                  480 ... 511
1000008
                  512 ... 543
1000009
                  544 ... 575
1000010
1000011
                  576 ... 607
                  608 ... 639
1000012
                  640 ... 671
1000013
                  672 ... 703
1000014
                  704 ... 735
1000015
                  736 ... 767
1000016
                  768 ... 799
1000017
                  800 ... 831
1000018
1000019
                  832 ... 863
                  864 ... 895
```

Systemfunktion

Aus Kompatibilitätsgründen sind die Systemfunktionen hier gelistet. Nutzen Sie in JetSym STX anstelle der Systemfunktionen die entsprechenden JetSym-STX-Funktionen.

4 5 20 21 22 23 24 25 26 27 28 29 30	Konvertierung von BCD zu HEX Konvertierung von HEX zu BCD Quadratwurzel Sinus Cosinus Tangens Arcus Sinus Arcus Cosinus Arcus Tangens Exponentialfunktion Natürlicher Logarithmus Absolutwert Trennung von Vor- und Nachkommastellen
50 60 61 65/67 66/68 80/85 81 82 90 91 92 96 110 150 151	Registerwerte sortieren CRC für Modbus RTU generieren CRC für Modbus RTU generieren CRC für Modbus RTU prüfen Registerblock über Modbus/TCP lesen Registerblock über Modbus/TCP schreiben RemoteScan initialisieren RemoteScan starten RemoteScan stoppen Datendatei schreiben Datendatei anfügen Datendatei lesen Datendatei löschen E-Mail versenden NetCopyList konfigurieren NetCopyList löschen NetCopyList senden

JetSym-STX-Funktionen

Systemfunktion	Entsprechende JetSym-STX-Funktion
4	Function Bcd2Hex(Bcd: Int): Int;
5	Function Hex2Bcd(Hex: Int): Int;
50	Function QSort(DataPtr: Int, ElementCnt: Int,
	ElementSize: Int, SortOffset: Int, SortType:
	STXBASETYPE, SortMode: QSORTMODE): Int;
60	Function ModbusCRCgen(FramePtr: Int, Length: Int):
	Int;
61	Function ModbusCRCcheck(FramePtr: Int, Length:
	Int): Int;
65/67	Function ModbusReadReg(Const Ref MbParam:
	MODBUS_PARAM): Int;
66/68	Function ModbusWriteReg(Const Ref MbParam:
	MODBUS_PARAM): Int;
80/85	Function RemoteScanConfig(Protocol:
	RSCAN_PROTOCOL, Elements: Int, Const Ref
	Configuration: RSCAN_DSCR): Int;
81	Function RemoteScanStart(Protocol: Int): Int;
82	Function RemoteScanStop(Protocol: Int): Int;
90/91	Function FileDAWrite(Const Ref FileName: String,
	Const Ref Mode: String, VarType: DAWRITE_TYPE,
	First: Int, Last: Int): Int;
92	Function FileDARead(Const Ref FileName: String):
	Int;
110	Function EmailSend(Const Ref FileName: String): Int;
150	Function NetCopyListConfig(IPAddr: Int, IPPort: Int,
	Const Ref List: TNetCopyLinstL): Int;
151	Function NetCopyListSend(Handle: Int): Int;
152	Function NetCopyListDelete(Handle: Int): Int;

Belegung 8-polig M12-Stecker

Funktion
Versorgungsspannung UB für die Logik des Geräts
Spannung: DC 12 V oder DC 24 V
Maximaler Strom: 2 A
Frei
Zündung (+)
Frei
CAN_L
Bezugspotential GND
CAN_H
Abschirmung Pin

2 3 4 5 6 7 8

JVM-104 Anhang

Anhang

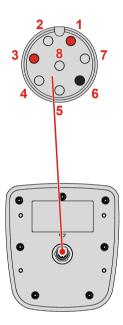
Der Anhang enthält die elektrischen und mechanischen Daten sowie die Betriebsdaten.

Inhalt

Thema	Seite
Schnittstellen	176
Technische Daten	179
Index	185

A: Schnittstellen

Einleitung	Das Bediengerät JVM-104 hat folgende Schnittstelle: M12-Stecker	
M12-Stecker	Der M12-Stecker hat folgende Funktion:	
	 Spannungsversorgung des JVM-104 	
	CANopen®-Busschnittstelle: CAN 1	
	Erkennung der Zündung	
Inhalt		
	Thema	Seite
	Gesamtübersicht der Anschlussbelegung	177

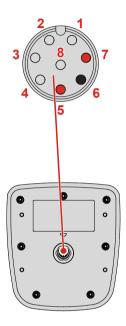

JVM-104 Anhang

Gesamtübersicht der Anschlussbelegung

Spannungsversorgung

Folgend ist die Pinbelegung des Anschlusssteckers für die Spannungsversorgung beschrieben.

Die Abbildung zeigt die Pinbelegung des Anschlusssteckers für die Spannungsversorgung und den Anschluss der Zündung (Blick auf die Kabelseite):


Die Pinbelegung ist wie folgt:

Pin	Beschreibung	Klemmenbezeichnung in KFZ
1	Versorgungsspannung UB für die Logik des Geräts Spannung: DC12 V oder DC 24 V Stromaufnahme: Maximal 2 A	KL 30
3	Zündung (+)	KL 15
6	Bezugspotenzial GND	KL 31

CAN-Schnittstelle

Folgend ist die Pinbelegung des Anschlusssteckers für die CAN-Schnittstelle beschrieben.

Die Abbildung zeigt die Pinbelegung des Anschlusssteckers für den CANopen®-Bus (Blick auf die Kabelseite). Der Pin 6 des Bezugspotenzials ist auch farblich gekennzeichnet.

Die Pinbelegung ist wie folgt:

Pin	Beschreibung	
5	CAN_L	
6	Bezugspotenzial GND	
7	CAN_H	

JVM-104 Anhang

B: Technische Daten

Einleitung

Dieses Kapitel im Anhang enthält die elektrischen und mechanischen Daten sowie die Betriebsdaten des JVM-104.

Inhalt

Thema	Seite
Technische Daten	180
Mechanische Abmessungen	182
Betriebsparameter Umwelt und Mechanik	183
Betriebsparameter EMV	184

Technische Daten

Technische Daten -Spannungsversorgung UB

Parameter	Beschreibung
Nennspannung	DC 12 V oder DC 24 V
Zulässiger Spannungsbereich UB	DC 8 V DC 32 V, gemäß ISO 7637
Zulässiger Spannungsbereich Zündung	DC 5 V DC 32 V
Maximaler Strom	2 A
Load-Dump Schutz	Bis DC 70 V
Typische Stromaufnahme Logik (UB)	170 mA bei DC 12 V 90 mA bei DC 24 V
Leistungsaufnahme	Ca. 2 W
Integrierte Schutzfunktionen	Verpolschutz, Überlast, Kurzzeitige Spannungspulse

Technische Daten -Display

Parameter	Beschreibung
Display	3,5"-TFT-LCD-Flachbildschirm
Lichtstärke	LED-Backlight (weiß) , typ. 350 cd/m²
Auflösung Display	320 x 240 Pixel

Technische Daten - CAN-Schnittstelle

Parameter	Beschreibung
Baudrate	250 kBaud 1 MBaud
Busabschlusswiderstand	Keiner im Gerät verbaut
Externer Busabschluss	120 Ω
Anschlussspezifikation	Verdrillte Adern, ungeschirmt

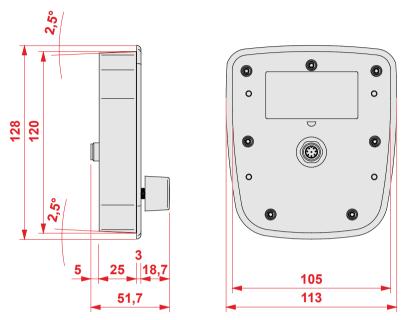
Anzahl möglicher CANopen®-Schnittstellen

Parameter	Beschreibung
Anzahl möglicher CAN-Schnittstellen	1
CANMAX	0

Anzahl möglicher SAEJ1939-Schnittstellen

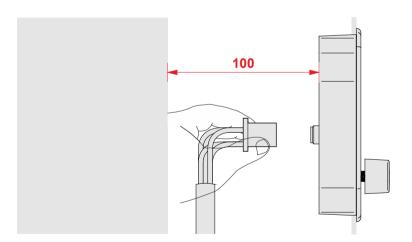
Parameter	Beschreibung
Anzahl möglicher CAN-Schnittstellen	0
CANMAX	0

JVM-104 Anhang


Speicherausbau

Parameter	Beschreibung
Anzahl remanente Register	30.000
Remanenter Variablenspeicher	120.000 Byte
Flash-Disk:	
Gesamter Speicher	512 MByte
Ordner App	64 MByte
Ordner Data	368 MByte

Mechanische Abmessungen


Mechanische Abmessungen

Die Abbildung zeigt die Abmessungen des JVM-104 in Millimeter.

Platzbedarf für den Einbau und Service

Die Abbildung zeigt den Platzbedarf für das Bediengerät JVM-104. Das Maß ist in Millimeter angegeben.

Halten Sie den Raum um das Gehäuse für den Servicefall frei.

Der Stecker muss sich jederzeit abziehen lassen.

JVM-104 Anhang

Betriebsparameter Umwelt und Mechanik

Umwelt

Parameter	Wert	Norm
Betriebstemperaturbereich	-20 +60 °C	
Lagertemperaturbereich	-30 +70 °C	ISO 16750-4 DIN EN 60068-2-1 DIN EN 60068-2-2
Luftfeuchtigkeit	10 95 % Das JVM-104 nicht mit Dampf- strahler oder ähnlichem reini- gen.	DIN EN 61131-2
Klimatest	Feuchte Wärme	ISO 16750-4
Verschmutzungsgrad	2	DIN EN 61131-2
Einbauort	Das JVM-104 ist in der Fahrer- kabine einzubauen.	

Mechanik

Parameter	Wert	Norm
Vibration	Breitbandrauschen, 10 Hz / 0,005 (m/s²)²/Hz 200 Hz / 0,02 (m/s²)²/Hz 300 Hz / 0,01 (m/s²)²/Hz 350 Hz / 0,002 (m/s²)²/Hz Dauer: 3x 24 h	Nach DIN EN 60068-2-64
Schockfestigkeit	Halbsinus, 30 g (300 m/s²), 18 ms, 3 Schocks in alle 6 Richtungen	Nach DIN EN 60068-2-27
Schutzart	Frontseitig: IP65 Rückseitig: IP65	DIN EN 60529

Betriebsparameter EMV

Spannungsprüfung an UB und UB_PA

Die Spannungsprüfung nach DIN EN 16750-2 ist erfüllt.

EMV-Störaussendung

Parameter	Wert	Norm
Störaussendung nach e1	400 1.000 MHz mit 63 dB (μV/m) konstant	DIN EN 55025
Störaussendung nach CE	0,15 0,5 MHz, 66 56 dB (μV) QP DC-Versorgung 0,5 5 MHz, 56 dB (μV) QP 5 30 MHz, 60 dB (μV) QP	DIN EN 55011-DC
	30 230 MHz, 30/40 dB (μV/m) Gehäuse 230 1.000 MHz, 37/47 dB (μV/m)	DIN EN 55011-HF

EMV-Störfestigkeit

Parameter	Wert	Norm
Störfestigkeit nach CE	10 V/m über 80 % des Frequenzbereichs	DIN EN 61000-4-3
	2/1 kV Daten 4/2 kV Power	DIN EN 61000-4-4
	± 1 kV Line/Ground ± 0,5 kV Line/Line	DIN EN 61000-4-5
	10 V von 0,15 80 MHz, 80 % AM Sinus 1 kHz	DIN EN 61000-4-6
ESD	Luftentladung: Prüfscheitelspannung 8 kV Kontaktentladung: Prüfscheitelspannung 4 kV	DIN EN 61000-4-2

JVM-104 Index

C: Index

Α

Anwendungsprogramm laden • 167 Standardablage • 166

В

Bestandteile • 15
Bestellbezeichnung • 17
Bestimmungsgemäße Verwendung • 10
Betriebsparameter
EMV • 184
Umwelt und Mechanik • 183
Betriebssystemupdate • 161

C

CANopen® • 65

D

Dateisystem
Eigenschaften • 132
Verzeichnisse • 128

Ε

Eingabe über das Digipot • 59 Entsorgung • 10 Erstinbetriebnahme • 39

Κ

Kurzreferenz • 169

L

Laufzeitregister • 155

M

Mechanische Abmessungen • 18 Montage • 33

Ν

Nicht bestimmungsgemäße Verwendung • 10

P

Personalqualifikation • 10 Produktbeschreibung • 14 Programmierung Digipot • 151
Eingabetasten • 149
Zündung und Ausschaltverzögerung • 153

R

Reparatur • 10

S

SAE J1939 • 103
Speicherarten • 137
Speicherübersicht • 137
Stecker • 26
Beispiel einer Verdrahtung • 27
CAN • 30
Spannungsversorgung • 28

Т

Technische Daten • 180 Transport • 10 Typenschild • 21

U

Umbauten • 10

V

Versionsregister • 22 Visualisierung ändern (Visualisierungskommando) • 63 Visualisierung anlegen in JetSym • 50 in JetViewSoft • 45

Jetter AG Gräterstraße 2 71642 Ludwigsburg | Germany

Tel +49 7141 2550-0 Fax +49 7141 2550-425 info@jetter.de www.jetter.de

We automate your success.