
IB IL DO 1 AC

INTERBUS-Inline-Klemme mit einem digitalen Ausgang für den Spannungsbereich von 12 V AC bis 253 V AC

Datenblatt 5761A

06/2000

5761A001

Dieses Datenblatt ist nur gültig in Verbindung mit dem Anwenderhandbuch "Projektierung und Installation der Produktfamilie INTERBUS-Inline" IB IL SYS PRO UM.

Funktionsbeschreibung

Die Klemme ist zum Einsatz innerhalb einer INTERBUS-Inline-Station vorgesehen. Sie dient zur Ausgabe von digitalen Ausgangssignalen im AC-Spannungsbereich.

Gefährliche Berührungsspannung! Ziehen und Stecken der Klemme ist nur im **spannungsfreien** Zustand erlaubt.

Schalten Sie bei allen Arbeiten an Klemmen und Verdrahtung immer die Versorgungsspannung ab und sichern Sie diese gegen Wiedereinschalten. Das Nichtbeachten dieses Hinweises kann gesundheitsschädliche Auswirkungen zur Folge haben, bis hin zu lebensgefährlichen Verletzungen.

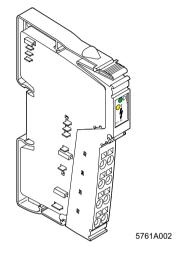


Bild 1 Die Klemme IB IL DO 1 AC mit aufgesetztem Stecker

Der Stecker ist nicht im Lieferumfang der Klemme enthalten. Bestellen Sie den Stecker entsprechend den Bestelldaten auf Seite 14.

Merkmale

- Anschlüsse für einen digitalen Aktor
- Diagnose- und Status-Anzeige

Sicherheitshinweise für Inline-Klemmen zum Einsatz in Bereichen außerhalb der Schutzkleinspannung (Niederspannungsbereich)

An Inline-Klemmen des Niederspannungsbereiches darf nur qualifiziertes Personal arbeiten.

Qualifiziertes Personal sind Personen, die aufgrund ihrer Ausbildung, Erfahrung und Unterweisung sowie ihrer Kenntnisse über einschlägige Normen, Bestimmungen, Unfallverhütungsvorschriften und Betriebsverhältnisse von dem für die Sicherheit der Anlage Verantwortlichen berechtigt worden sind, die jeweils erforderlichen Tätigkeiten auszuführen und dabei mögliche Gefahren erkennen und vermeiden können.

(Definitionen für Fachkräfte laut EN 50110-1:1996).

Beachten Sie bei der Installation und Inbetriebnahme unbedingt die Hinweise im vorliegenden Datenblatt.

Technische Änderungen bleiben vorbehalten.

Bestimmungsgemäße Verwendung

Die Klemme ist ausschließlich für den Einsatz innerhalb einer Inline-Station entsprechend den Angaben im vorliegenden Datenblatt und im Anwenderhandbuch "Projektierung und Installation der Produktfamilie INTERBUS-Inline" bestimmt. Bei nicht bestimmungsgemäßer Verwendung übernimmt Phoenix Contact keine Haftung.

In diesem Datenblatt werden die modulspezifischen Besonderheiten der Klemme IB IL DO 1 AC beschrieben.

2

Allgemeingültige Angaben zur Produktfamilie INTERBUS-Inline finden Sie im Anwenderhandbuch "Projektierung und Installation der Produktfamilie INTERBUS-Inline" IB IL SYS PRO UM.

Allgemeine Beschreibung

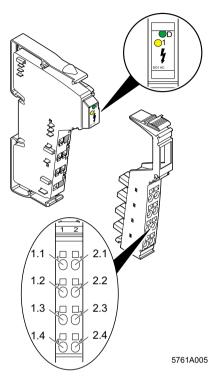


Bild 2 IB IL DO 1 AC mit zugehörigem Stecker

Funktionskennzeichnung

Dunkelrot mit Blitz

Gehäuse-/Steckerfarbe

Graues Gehäuse

5761A

Graue Stecker, entsprechend der Funktion bedruckt

Lokale Diagnose- und Status-Anzeigen

Bez.	Farbe	Bedeutung
D	grün	Busdiagnose
1	gelb	Status-Anzeige des Ausgangs

Klemmenbelegung

Klemm- punkte	Belegung
1.1	Nicht belegt
1.2	Digitaler Ausgang
1.3	Nullleiter-Anschluss (N)
1.4	Schutzleiter-Anschluss (PE)
2.1, 2.2, 2.3, 2.4	Nicht belegt

Internes Prinzipschaltbild

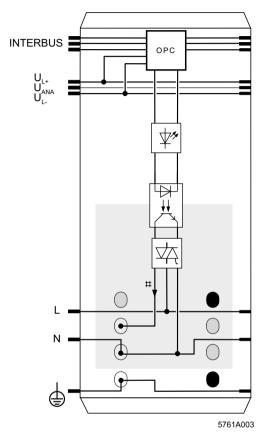
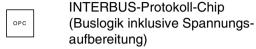



Bild 3 Interne Beschaltung der Klemmpunkte

Legende:

LED

Optokoppler

Triac

Digitaler Ausgang

Potentialgetrennter Bereich

Klemmstelle, ohne Metallkontakt Klemmstelle, ohne Metallkontakt, mit Blindstopfen

Die Erklärung für sonstige verwendete Symbole finden Sie im Anwenderhandbuch IB IL SYS PRO UM.

Installationsvorschriften und -hinweise allgemein

Installation der Anlage

Installieren Sie die Anlage gemäß den Forderungen der EN 50178!

Inbetriebnahme einer Inline-Station

Eine Inline-Station darf nur in Betrieb genommen werden, wenn sie vollständig montiert ist. Das heißt:

- alle Klemmen mit ihren Steckern müssen aufgerastet sein,
- die Station muss durch die Endplatte und die zwei Endhalter abgeschlossen sein.

Vermeidung von Fehlfunktionen Schließen Sie die AC-Klemme ausschließlich über eine geeignete Einspeiseklemme an die Inline-Station an! Schalten Sie die Spannung erst ein, wenn Sie den AC-Bereich mit der Endklemme abgeschlossen haben und alle Stecker aufgesteckt sind!

Die Besonderheiten der Klemmen und Stecker eines AC- und des SELV-Bereiches sind im Anwenderhandbuch und in den Datenblättern zu den Einspeiseklemmen für die AC-Bereiche aufgeführt.

Installationsvorschriften und -hinweise für einen Niederspannungsbereich (AC-Bereich)

Gefährliche Berührungsspannung!

Gefährliche Berührungsspannung bei Arbeiten an Stromkreisen, die nicht den Anforderungen der Schutzkleinspannung entsprechen!

Ziehen und Stecken der Klemmen für den AC-Spannungsbereich ist nur im spannungsfreien Zustand erlaubt!

Schalten Sie bei allen Arbeiten an Klemmen und Verdrahtung immer die Versorgungsspannung ab und sichern Sie diese gegen Wiedereinschalten.

6

Geerdete AC-Netze nutzen!

Sie dürfen die Inline-Klemmen für den AC-Spannungsbereich ausschließlich in geerdeten AC-Netzen betreiben.

Aufbau eines AC-Bereiches

Ein AC-Bereich **muss** durch eine AC-Einspeiseklemme und eine AC-Endklemme begrenzt werden.

Zwischen diesen Klemmen können für diesen Bereich geeignete Ein-/Ausgabeklemmen eingesetzt werden. Ihre Anzahl wird begrenzt durch die Systemgrenzen des INTERBUS-/INTERBUS-Inline-Systems (siehe Anwenderhandbuch IB IL SYS PRO UM).

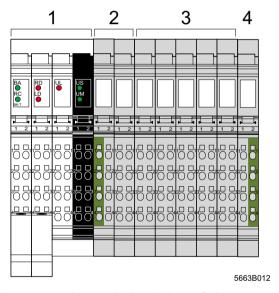


Bild 4 Beispielhafter Inline-AC-Bereich

- 1 Busklemme
- 2 AC-Einspeiseklemme
- 3 Verschiedene Ein-/Ausgabeklemmen
- 4 AC-Endklemme

Absichern eines AC-Bereiches

Schützen Sie jeden AC-Bereich durch eine eigene Sicherung.

Beachten Sie, dass der notwendige Schutz von Ihrer speziellen Anwendung abhängig ist.

Anschluss der Einspeisung und der Peripherie im AC-Bereich

Mehrfacheinspeisung nicht zulässig!

Die Einspeisung der Versorgungsspannung ist **ausschließlich** an der dafür vorgesehenen Einspeiseklemme zulässig.

Schließen Sie die Anschlussleitungen aller Aktoren und Sensoren ausschließlich an den Inline-AC-Klemmen an. Die Benutzung von externen Potentialschienen für Sammelpotentiale ist **nicht zulässig**.

Unterbrechung der PE-Rangierung im AC-Bereich

Der PE-Rangierer beginnt an der Einspeiseklemme des AC-Bereiches und endet bei einem vollständig aufgebauten AC-Bereich an der Endklemme.

Wird eine Klemme aus diesem Bereich entfernt, so ist der PE-Rangierer unterbrochen.

Sofern die Installationsvorschriften eingehalten wurden, sind alle nachfolgenden Klemmen spannungsfrei.

Anschlussbeispiel

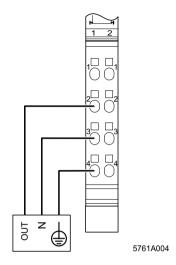


Bild 5 Beispielhafter Anschluss eines Aktors

Stromtragfähigkeit beachten!

Der maximale Summenstrom durch die Potentialrangierer beträgt 8 A.

Programmierdaten

ID-Code	BD _{hex} (189 _{dez})
Längen-Code	C2 _{hex}
Prozessdatenkanal	2 Bit
Eingabe-Adressraum	0 Bit
Ausgabe-Adressraum	2 Bit
Parameterkanal (PCP)	0 Bit
Registerlänge (Bus)	2 Bit

INTERBUS-Prozessdaten

Zuordnung der Klemmpunkte zu den INTERBUS-Ausgangsdaten

Bit-Sicht	Bit	1	0
Modul	Klemmpunkt (Signal)	_	1.2
	Klemmpunkt (N)	_	1.3
	Klemmpunkt (PE)	_	1.4
Status- Anzeige	LED		1

Setzen Sie das nicht benutzte Bit 1 auf 0.

Die zwei Bit können sich durch die automatische Adressierung an jeder beliebigen Position innerhalb eines Bytes befinden.

Die Zuordnung der dargestellten Bit-Sicht zu dem von Ihnen eingesetzten Steuerungs- oder Rechnersystem entnehmen Sie bitte dem Datenblatt DB D IBS SYS ADDRESS,

Teile-Nr. 90 01 27 6.

Technische Daten

Allgemeine Daten		
Gehäusemaße (Breite x Höhe x Tiefe)	12,2 mm x 120 mm x 66,6 mm	
Gewicht	45 g (ohne Stecker)	
Betriebsart	Prozessdatenbetrieb mit 2 Bit	
Anschlussart des Aktors	3-Leiter	
Zulässige Temperatur (Betrieb)	-25 °C bis +55 °C	
Zulässige Temperatur (Lagerung/Transport)	-25 °C bis +85 °C	
Zulässige Luftfeuchtigkeit (Betrieb)	75 % im Mittel, 85 % gelegentlich	
Im Bereich von -25 °C bis +55 °C sind geeignete Maßnahmen gegen erhöhte Luftfeuch tigkeit (> 85 %) zu treffen.		
Zulässige Luftfeuchtigkeit (Lagerung/Transport)	75 % im Mittel, 85 % gelegentlich	
Eine leichte Betauung von kurzer Dauer darf gelegentlich am Außengehäuse auftreten, z.B. wenn die Klemme von einem Fahrzeug in einen geschlossenen Raum gebracht wird.		
Zulässiger Luftdruck (Betrieb)	80 kPa bis 106 kPa (bis zu 2000 m üNN)	
Zulässiger Luftdruck (Lagerung/Transport)	70 kPa bis 106 kPa (bis zu 3000 m üNN)	
Schutzart	IP 20 nach IEC 60529	

Schnittstelle	
INTERBUS-Schnittstelle	über Datenrangierung

Leistungsbilanz		
Logikspannung	7,5 V	
Stromaufnahme aus dem Lokalbus	maximal 35 mA	
Leistungsaufnahme aus dem Lokalbus	maximal 0,26 W	
Leistungsaufnahme an der Peripherie- Versorgungsspannung	maximal 0,5 W	
Leistungsaufnahme gesamt	maximal 0,75 W	

Versorgung der Modulelektronik durch die Busklemme und der Peripherie durch die Einspeiseklemme	
Anschlusstechnik	über Potentialrangierung

Digitaler Ausgang			
Anzahl	1		
Art des Ausgangs	Triacausgang mit Nullspannungsschalter		
Nennausgangsspannung U _{OUT}	12 V AC ≤ U _{OUT} ≤ 253 V AC		
Maximale Spannungsdifferenz bei I _{Nenn}	1,5 V		
Nennstrom I _{Nenn}	0,5 A		
Maximal zulässiger Strom	0,6 A, Derating beachten!		
l ² t-Wert (eine Halbwelle) für Kurzschlussschutz	$4,5 \text{ A}^2\text{s}$		
Schutz	keine integrierte Schutzfunktion gegen Kurz- schluss und Überlast		
Verhalten im Fehlerfall ohne externen Schutz	Ausgang wird zerstört		
Ein Kurzschlussschutz kann durch eine vorgeschaltete Sicherung mit geeignetem Schmelzintegral erreicht werden.			
Signalverzögerung	maximal eine Halbwelle		
Einschaltmoment des Ausgangs	im Spannungs-Nulldurchgang		
Triac	600 V		
Maximaler Koeffizient ΔI/Δt	10 A/μs		
Schaltfrequenz	maximal Netzfrequenz, abhängig von Buslänge, Datenrate und Umgebungsbedingungen		
Nennlast ohmsch	6 W ≤ P _N ≤ 125 W		
Gesamtstrom	0,5 A		
Minimaler Haltestrom	15 mA (inklusive Snubber-Glied)		
Art der externen Schutzschaltung	RC-Snubber-Glied 33 nF/100 Ω		
Im auggeschalteten Zustand des Auggengs (off) ist der Auggeng wegen der BC Schutz			

Im ausgeschalteten Zustand des Ausgangs (off) ist der Ausgang wegen der RC-Schutzbeschaltung nicht potentialfrei.

Ausgangskennlinie im eingeschalteten Zustand (typisch)			
Ausgangsstrom (Laststrom) (A)	Ausgangsspannungs- Differenz (V)	Verlustleistung (mW)	
0	0	0	
0,2	0,85	0,17	
0,4	0,90	0,36	
0,6	0,95	0,57	

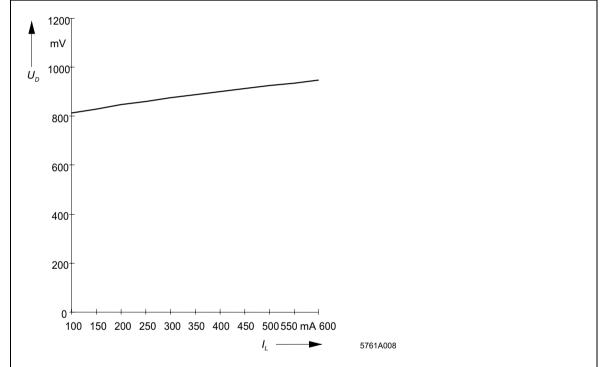


Bild 6 Typische Ausgangsspannungs-Differenz im eingeschalteten Zustand U_D [mV] als Funktion des Laststromes I_L [mA]

Ausgangskennlinie im ausgeschalteten Zustand		
Lastwiderstand (Ω)	Ausgangsspannung (V)	
1 000 000	226	
100 000	188,6	
10 000	32,2	
1 000	3,4	
100	0,34	
10	0,03	
1	0,03	

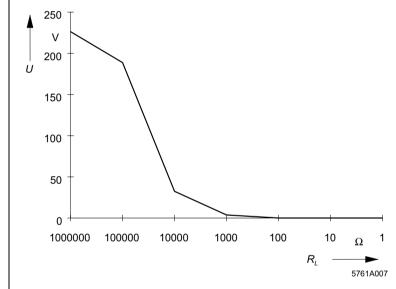


Bild 7 Typische Ausgangsspannung im ausgeschalteten Zustand U [V] als Funktion des Lastwiderstandes $R_L\left[\Omega\right]$

Verlustleistung

Formel für die Berechnung der Verlustleistung der Elektronik

$$P_{EL} = 250 \text{ mW} + I_L x 1 \text{ V}$$

Dabei sind

 P_{EL} Gesamte Verlustleistung in der Klemme

Laststrom des Ausgangs

Verlustleistung des Gehäuses in Abhängigkeit von der Umgebungstemperatur

$$P_{GEH} = 2.4 \text{ W}$$

$$P_{GEH} = 2.4 \text{ W} - \frac{T_{U} - (-5 \text{ °C})}{37.5 \text{ K/W}}$$
 -5 °C < $T_{U} \le +55 \text{ °C}$

Dabei sind

 P_{GEH} Zulässige Verlustleistung des Gehäuses

Umgebungstemperatur T_{U}

Einschränkung der Gleichzeitigkeit, Derating

Keine Einschränkung der Gleichzeitigkeit, kein Derating

Schutzeinrichtungen

275-V-Varistor Überspannung

Potentialtrennung/Isolation der Spannungsbereiche		
Gemeinsame Potentialgruppen		
Phase und Nullleiter liegen auf demselben Potential. PE stellt einen eigenen Potentialbereich dar.		
Getrennte Potentiale im System aus Busklemme/Einspeiseklemme im 24-V-DC-Bereich und Einspeiseklemmen/E/A-Klemmen im AC-Bereich		
- Prüfstrecke	- Prüfspannung	
5-V-Versorgung ankommender Fernbus / 7,5-V-Versorgung (Buslogik)	500 V AC, 50 Hz, 1 min	
5-V-Versorgung weiterführender Fernbus / 7,5-V-Versorgung (Buslogik)	500 V AC, 50 Hz, 1 min	
7,5-V-Versorgung (Buslogik) / Peripheriebereich	2500 V AC, 50 Hz, 1 min	
Stückprüfung	1200 V AC, 50 Hz, 1 min	
Peripheriebereich / PE	500 V AC, 50 Hz, 1 min	
Ausgang / Phase	500 V AC, 50 Hz, 1 min	

Fehlermeldungen an das übergeordnete Steuerungs- oder Rechnersystem		
Kurzschluss eines Ausgangs	nein	
Überlast eines Ausgangs	nein	

Bestelldaten

Beschreibung	Artikel-Bezeichnung	Artikel-Nr.
Klemme mit einem digitalen Ausgang im Spannungsbereich 12 V AC oder 253 V AC	IB IL DO 1 AC	28 36 74 8
Zur vollständigen Bestückung der Klemme benötigen Sie einen Stecker.		
Peripheriestecker mit 8 Anschlüssen in Zugfedertechnik (grau, bedruckt) Packungsinhalt: 10 Stück	IB IL SCN-8-AC-OCP	27 40 27 4
Anwenderhandbuch "Projektierung und Installation der Produktfamilie INTERBUS-Inline"	IB IL SYS PRO UM	27 45 55 4

© Phoenix Contact 06/2000 Technische Änderungen vorbehalten TNR 94 24 93 3

Phoenix Contact GmbH & Co. KG Flachsmarktstr. 8 32825 Blomberg Germany

1 + 49 - (0) 52 35 - 3-00

+ 49 - (0) 52 35 - 3-4 12 00

www.phoenixcontact.com