

Betriebsanleitung

JXM-IO-EW30-G27 Erweiterungsmodul

60885726_02

We automate your success.

Dieses Dokument wurde von der Jetter AG mit der gebotenen Sorgfalt und basierend auf dem ihr bekannten Stand der Technik erstellt. Änderungen und technische Weiterentwicklungen an unseren Produkten werden nicht automatisch in einem überarbeiteten Dokument zur Verfügung gestellt. Die Jetter AG übernimmt keine Haftung und Verantwortung für inhaltliche oder formale Fehler, fehlende Aktualisierungen sowie daraus eventuell entstehende Schäden oder Nachteile.

Jetter AG

Gräterstraße 2 71642 Ludwigsburg Germany

Telefon

Zentrale	+49 7141 2550-0
Vertrieb	+49 7141 2550-621
Technische Hotline	+49 7141 2550-444

E-Mail

Technische Hotline	hotline@jetter.de
Vertrieb	sales@jetter.de

www.jetter.de

Originaldokument

Dokumentenversion	2.27.1
Ausgabedatum	07.10.2022

Inhaltsverzeichnis

1	Einle	eitung	5			
	1.1	1.1 Informationen zum Dokument				
	1.2 Darstellungskonventionen 5					
2	Sich	erheit	6			
	2.1	Allgemein	6			
	2.2	Verwendungszweck	6			
		2.2.1 Bestimmungsgemäße Verwendung	6			
		2.2.2 Nicht bestimmungsgemäße Verwendung	6			
	2.3	Verwendete Warnhinweise	7			
3	Prod	duktbeschreibung	8			
	3.1	Aufbau	8			
	3.2	Merkmale	8			
	3.3	Diagnosemöglichkeiten über die LEDs	9			
	3.4	Typenschild	. 10			
	3.5	Lieferumfang	. 10			
4	Tech	hnische Daten	. 11			
	4.1	Abmessungen	. 11			
	4.2	Mechanische Eigenschaften	. 12			
	4.3	Elektrische Eigenschaften	. 12			
	4.4	Umweltbedingungen	13			
	4.5	EMV-Werte	13			
	4.6	Ausgänge	. 14			
		4.6.1 Stromdiagnose an den Ausgängen	. 17			
		4.6.2 Überstromabschaltung an den Ausgängen	17			
	4.7	Eingänge	. 18			
5	Mon	tage	20			
	5.1	Anforderungen an Einbauort und Montagefläche	21			
	5.2	Einbaulagen	21			
	5.3	Erweiterungsmodul montieren	21			
6	Elekt	trischer Anschluss	. 22			
	6.1	Pinbelegung	24			
		6.1.1 Platine	. 24			
		6.1.2 5-poliger M12-Stecker	28			

7	Ident	tifikatio	n und Konfiguration	29	
	7.1	Identifikation			
		7.1.1	Geräteinformationen	29	
		7.1.2	Elektronisches Typenschild EDS	30	
	7.2	Betrieb	ossystem	30	
		7.2.1	Betriebssystemupdate des Erweiterungsmoduls	31	
8	Para	metrier	ung	33	
	8.1	Konze	ot und Ansteuerung	33	
		8.1.1	Konfigurationsmöglichkeiten der Anschlüsse	33	
		8.1.2	I/O-Ports und SDO-Abbild	34	
		8.1.3	Übersicht – I/O-Interfaces	35	
		8.1.4	Parameter, Werte und Status	37	
	8.2	Node-I	D einstellen	42	
	8.3	Geräte	diagnose	42	
	8.4	Einstel	lungen permanent speichern und auf Default-Werte zurücksetzen	43	
	8.5	Systen	nparameter	44	
	8.6	Mappir	ng von Prozessdatenobjekten (PDOs)	45	
		8.6.1	RPDO-Kommunikationsparameter	45	
		8.6.2	TPDO-Kommunikationsparameter	46	
		8.6.3	Mapping-Tabellen	46	
		8.6.4	Mapping von Digitalwerten	47	
		8.6.5	Eingangswerte eines Interfaces via TPDO senden	49	
	8.7	Freque	enzmessung an den digitalen Eingängen	51	
	8.8	Erfass	en von Encoder-Signalen	51	
	8.9	NMT-K	Commandos	53	
	8.10	Fehler	behandlung	53	
		8.10.1	Heartbeat	55	
	8.11	Stromr	egelung mit PID-Regler	56	
		8.11.1	Testszenario	56	
		8.11.2	Strommessung an den PWMi_H3_X-Ausgängen	59	
	8.12	Dither-	Technik zur Ansteuerung von Hydraulikventilen	59	
9	Insta	ndhaltu	ung	61	
	9.1	Wartur	ng, Instandsetzung und Entsorgung	61	
	9.2	Lageru	ing und Transport	61	
10	Serv	ice		62	
	10.1	Kunde	ndienst	62	
11	Ersa	tzteile ı	und Zubehör	63	

1 Einleitung

Änderungsdienst.

1.1 Informationen zum Dokument

Dieses Dokument ist Teil des Produkts und muss vor dem Einsatz des Geräts gelesen und verstanden werden. Es enthält wichtige und sicherheitsrelevante Informationen, um das Produkt sachgerecht und bestimmungsgemäß zu betreiben.

 Zielgruppen
 Dieses Dokument richtet sich an Fachpersonal.

 Das Gerät darf nur durch fachkundiges und ausgebildetes Personal in Betrieb genommen werden.

 Der sichere Umgang mit dem Gerät muss in jeder Produktlebensphase gewährleistet sein. Fehlende oder unzureichende Fach- und Dokumentenkenntnisse führen zum Verlust jeglicher Haftungsansprüche.

Verfügbarkeit von
InformationenStellen Sie die Verfügbarkeit dieser Informationen in Produktnähe während der
gesamten Einsatzdauer sicher.
Informieren Sie sich im Downloadbereich unserer Homepage über Änderungen
und Aktualität des Dokuments. Das Dokument unterliegt keinem automatischen

Start | Jetter - We automate your success.

Folgende Informationsprodukte ergänzen dieses Dokument:

- Online-Hilfe der JetSym-Software
 Funktionen der Softwareprodukte mit Anwendungsbeispielen
- Themenhandbücher
 Produktübergreifende Dokumentation
- Versionsupdates Informationen zu Änderungen der Softwareprodukte sowie des Betriebssystems Ihres Moduls

1.2 Darstellungskonventionen

Unterschiedliche Formatierungen erleichtern es, Informationen zu finden und einzuordnen. Im Folgenden das Beispiel einer Schritt-für-Schritt-Anweisung:

- Dieses Zeichen weist auf eine Voraussetzung hin, die vor dem Ausführen der nachfolgenden Handlung erfüllt sein muss.
- Dieses Zeichen oder eine Nummerierung zu Beginn eines Absatzes markiert eine Handlungsanweisung, die vom Benutzer ausgeführt werden muss. Arbeiten Sie Handlungsanweisungen der Reihe nach ab.
- Der Pfeil nach Handlungsanweisungen zeigt Reaktionen oder Ergebnisse dieser Handlungen auf.

INFO Weiterführende Informationen und praktische Tipps In der Info-Box finden Sie weiterführende Informationen und praktische Tipps zu Ihrem Produkt.

2 Sicherheit

2.1 Allgemein

Das Produkt entspricht beim Inverkehrbringen dem aktuellen Stand von Wissenschaft und Technik.

Neben der Betriebsanleitung gelten für den Betrieb des Produkts die Gesetze, Regeln und Richtlinien des Betreiberlandes bzw. der EU. Der Betreiber ist für die Einhaltung der einschlägigen Unfallverhütungsvorschriften und allgemein anerkannten sicherheitstechnischen Regeln verantwortlich.

2.2 Verwendungszweck

2.2.1 Bestimmungsgemäße Verwendung

Das Gerät erweitert eine Steuerung um multifunktionale Ein- und Ausgänge.

Betreiben Sie das Gerät nur gemäß den Angaben der bestimmungsgemäßen Verwendung und innerhalb der angegebenen technischen Daten. Die bestimmungsgemäße Verwendung beinhaltet das Vorgehen gemäß dieser Anleitung.

SELV Das Gerät fällt aufgrund seiner geringen Betriebsspannung unter die Kategorie Safety Extra Low Voltage und somit nicht unter die EU-Niederspannungsrichtlinie. Das Gerät darf nur aus einer SELV-Quelle betrieben werden.

2.2.2 Nicht bestimmungsgemäße Verwendung

Verwenden Sie das Gerät nicht in technischen Systemen, für die eine hohe Ausfallsicherheit vorgeschrieben ist.

Maschinenrichtlinie Das Gerät ist kein Sicherheitsbauteil nach der Maschinenrichtlinie 2006/42/EG und ungeeignet für den Einsatz bei sicherheitsrelevanten Aufgaben. Die Verwendung im Sinne des Personenschutzes ist nicht bestimmungsgemäß und unzulässig.

2.3 Verwendete Warnhinweise

▲ GEFAHR

Hohes Risiko

Weist auf eine unmittelbar gefährliche Situation hin, die, wenn sie nicht vermieden wird, zum Tod oder zu schweren Verletzungen führt.

Mittleres Risiko

Weist auf eine möglicherweise gefährliche Situation hin, die, wenn sie nicht gemieden wird, zum Tod oder zu schweren Verletzungen führen kann.

Geringes Risiko

Weist auf eine potentiell gefährliche Situation hin, die, wenn sie nicht vermieden wird, zu geringfügiger oder mäßiger Verletzung führen könnte.

HINWEIS

Sachschäden

Weist auf eine Situation hin, die, wenn sie nicht vermieden wird, zu Sachschaden führen könnte.

3 Produktbeschreibung

Das Erweiterungsmodul JXM-IO-EW30-G27 ist ein universeller und dezentraler Baustein für mobile Arbeitsmaschinen.

3.1 Aufbau

Abb. 1: Aufbau

1	Befestigungsschrauben für Anbringung des Unterteils
2	Befestigungsösen zur Montage
3	Gehäuse (Deckel)
4	5-poliger M12-Stecker
5	M25-Kabelverschraubung
6	Platine mit 5 Konnektoren und DIP-Schaltern

3.2 Merkmale

- 1 CAN-Anschluss mit optionalem Abschlusswiderstand
- Kommunikation über CANopen-Protokoll
- 8 analoge Eingänge zur Strom- oder Spannungsmessung
- 4 digitale Eingänge zur Verwendung als Digital-, Frequenz-, Periodenzeitoder Zählereingang
- 4 digitale Ausgänge mit Stromüberwachung. Je Kanal mit maximal 3 A belastbar. Insgesamt darf der Summenstrom maximal 6 A betragen. Alternativ ist eine Verwendung als digitaler Eingang möglich.

- 6 PWM-Ausgänge bis 7 A mit Stromüberwachung. Alternativ ist eine Verwendung als digitaler Eingang möglich.
- 4 PWM-Ausgänge bis 3 A mit genauer Strommessung und PID-Stromregelung. Alternativ ist eine Verwendung als digitaler Eingang möglich.
- 3 Ausgänge mit überwachten Versorgungsspannungen für Sensoren (Batteriespannung)
- Getrennte Anschlüsse f
 ür Logik- und Ausgangstreiberversorgung
- Gesamtstromausgabe bis zu 25 A

3.3 Diagnosemöglichkeiten über die LEDs

Der JXM-IO-EW30-G27 verfügt über ein LED-Feld, das verschiedene Zustände und Fehler anzeigt.

Abb. 2: Linke Position

Abb. 3: Rechte Position

Linke Position		Rechte Position		Zustand		
-		An		■ E (Betriebsspannung liegt an (VBAT_ECU). 	
				∎ C	Der Bootloader wird nicht ausge- ührt.	
	-	An	200 ms		Der Bootloader wird ausgeführt.	
		Aus	200 ms		Das Gerät hat keine Firmware.	
		1		,		
	-	An Aus	400 ms 400 ms	• [a	Der Startvorgang wurde fehlerfrei abgeschlossen.	
				• [5	Das Gerät befindet sich im Zustand Stopped.	
An Aus	200 ms 200 ms			E	Der Startvorgang wurde fehlerfrei abgeschlossen.	
				I C	Das Gerät befindet sich im Zustand Pre-Operational.	
An Aus	200 ms			■ [2	Der Startvorgang wurde fehlerfrei abgeschlossen.	
				• C	Das Gerät befindet sich im Zustand Dperational.	
					-	
3x An/ Aus	200 ms		-	■ [a	Der Startvorgang wurde fehlerfrei abgeschlossen.	
Pause	400 ms	-			Das Gerät befindet sich im Kalibrier- nodus.	
		1		1		
An	200 ms	An	200 ms		Das Gerät befindet sich im Zustand	
Aus	400 ms	Aus	400 ms	Ē	Bus-Off.	
				■ E	Eine Buskommunikation ist nicht nöglich.	
					Es liegt ein Verdrahtungsfehler vor.	

Linke P	osition	Rechte	Position	Zustand
An	400 ms	3x An/	200 ms	Messwerte befinden sich außerhalb
Aus	400 ms	Aus		der spezifizierten Bereiche. Folgende Fehler können vorliegen:
				 Die Temperatur der Platine ist zu hoch.
				 Die Temperatur der CPU ist zu hoch.

3.4 Typenschild

Abb. 4: Typenschild

1	Firmenlogo
2	Artikelbezeichnung
3	Artikelnummer
4	Seriennummer
5	Barcode
6	Hardware-Revision

3.5 Lieferumfang

Lieferumfang	Artikelnummer	Stückzahl
JXM-IO-EW30-G27	10002041	1

4 Technische Daten

Dieses Kapitel enthält die elektrischen und mechanischen Daten sowie die Betriebsdaten des Geräts JXM-IO-EW30-G27.

4.1 Abmessungen

Abb. 5: Abmessungen in mm

(i) INFO Toleranz nach GTA 13/5 DIN 1688 Da das Gehäuse des JXM-IO-EW30-G27 konisch geformt ist, verringern sich einige Werte nach unten. Diese Werte werden in der Abbildung durch ein * gekennzeichnet. (i) INFO

CAD-Daten

CAD-Daten des Geräts finden Sie im Download-Bereich unserer Homepage.

4.2 Mechanische Eigenschaften

Parameter	Beschreibung	Normen			
Gewicht	1,5 kg				
Gehäuseeigenschaften	·	·			
Material	Aluminium				
Gehäusepotenzial	Isoliert				
Schwingfestigkeit	10 Hz 150 Hz, 6 h	ISO 16750-3			
Schockfestigkeit					
Schockart	Halbsinuswelle	ISO 16750-3			
Stärke und Dauer	50 g für 11 ms				
Anzahl und Richtung	Anzahl und Richtung 10 Schocks in alle 3 Richtungen der Raumach				
Freier Fall					
Fallhöhe	Aus 1 m Höhe auf festen Grund	ISO 16750-3			

 Tab. 1: Mechanische Eigenschaften

4.3 Elektrische Eigenschaften

Versorgung der	Parameter	Beschreibung				
Ausgangstreiber	Abkürzung	VBAT_PWR				
	Gesamtstrom	Max. 25 A	Max. 25 A			
	Betriebsspannung	DC 8 V 32 V				
	Verpolschutz	Es besteht Kurzschlu Sichern Sie die Schal 25-A-Sicherung ab.	Es besteht Kurzschlussgefahr beim Verpolen. Sichern Sie die Schaltung mit einer externen 25-A-Sicherung ab.			
	Spannungsschutz	+36 V für 1 h bei T _{max}	+36 V für 1 h bei T _{max} -20°C, Funktionsstatus C			
	Tab. 2: Versorgung der A	Ausgangstreiber				
Versorauna der	Parameter	Beschreibung				
ECU	Abkürzung	VBAT ECU	VBAT ECU			
	Betriebsspannung	DC 8 V 32 V	 DC 8 V 32 V			
	Verpolschutz	Max. 32 V	Max. 32 V			
		Es besteht Kurzschlussgefahr beim Verpolen. Sichern Sie die Schaltung mit einer externen 2-A-Sicherung ab.				
	Stromaufnahme	Bei 12 V	ca. 49 mA + Summen- strom an VEXT_SEN			
		Bei 24 V	ca. 34 mA + Summen- strom an VEXT_SEN			
	Tab. 3: Versorgung der E	ECU				
Massebezug	Pin	Verwendungszweck	ſ			
-	GND_PWR	Massebezug für VBA	T_PWR und VBAT_ECU			
	GND_SEN	Massebezug für VEX	Massebezug für VEXT_SEN			

Tab. 4: Massebezug

4.4 Umweltbedingungen

Parameter	Beschreibung	Normen
Betriebstemperatur	-25 °C +85 °C	ISO 16750-4
Lagertemperatur	-40 °C +85 °C	
Relative Luftfeuchtigkeit	5 % 95 %	
Witterungsbeständigkeit	Das Gerät ist für den Einsatz unter allen Witterungs- bedingungen bestimmt und für den Außeneinsatz geeignet.	
Salzwasserbeständigkeit	Das Gerät ist nicht für den Hochseebetrieb ausgelegt.	
Schutzart	IP66	

Tab. 5: Umweltbedingungen

4.5 EMV-Werte

Das Gerät verfügt über eine E1-Zulassung nach ECE R10 Rev. 5 und eine CE-Konformität nach ISO 14982.

Impulse ISO 7637-2	Testimpuls	Werte	Funktionsklasse
	1	-450 V	С
	2a	+37 V	В
	2b	+20 V	С
	За	-150 V	A
	3b	+150 V	A
	Tab. 6: Impulse ISO 7637-2		
Impulse	Testimpuls	Werte	Funktionsklasse
ISO 16750-2	4	Ua1: -12 V / 50 ms	B (24-V-Systeme)
		Ua2: -5 V / 500 ms	
	4		C (12-V-Systeme, E1)
	5b	Load Dump	С
		70 V / 2 Ω / 350 ms	
	Tab. 7: Impulse ISO 16750-2	1	· · · · · · · · · · · · · · · · · · ·
Einstrahlung	Parameter	Werte	Funktionsklasse
ISO 11452	Einstrahlung	20 MHz 2 GHz 60 V/m	A
		20 MHz 2 GHz 75 V/m	В
		20 MHz 57 MHz und 82 MHz 2 GHz 100 V/m	В
	Tab. 8: Einstrahlung ISO 114	52	11
Abstrahlung	Parameter	Werte	
CISPR 25	Narrowband-Emission	30 MHz 1.000 MHz	Min. 1 dB unter Limit
	Wideband-Emission	30 MHz 1.000 MHz	Min. 1 dB unter Limit
	Tab. 9: Abstrahlung CISPR 2	5	

ESD EN 61000-4-2

ESD EN 61000-4-2	Werte	Funktionsklasse
Kontaktentladung	±4 kV	A
Luftendladung	±8 kV	A

Tab. 10: ESD EN 61000-4-2

4.6 Ausgänge

(i) INFO	Verwendung als Eingang			
	Die Verwendung der Ausgänge als Eingang wirkt sich immer auf die gesamte Gruppe aus, Es ist nicht möglich, einzelne Ausgänge einer Gruppe als Eingang			
	zu konfigurieren.			
Ausaana PWMi H3	Parameter	Beschreibung		
Ausgung i Min_no	High-Side-PWM-Ausgan	g mit genauer Stromdiag	nose	
	Abkürzung	PWMi H3		
	Anzahl	4		
	Maximalstrom	3 A je Kanal		
	Lastbereich	0,02 A 3 A je Kanal		
	Eigenschaften	Kabelbrucherkennung Verträgt induktive Last		
		Überstromerkennung, ger	naue Strommessung	
	Pulsweitenmodulation	Pulsweitenmodulation		
	PWM-Frequenz	Max. 1.500 Hz		
	Auflösung	0,1 %		
	Dithering-Frequenz	50 Hz 800 Hz		
	Dither-Amplitude	0 % 20 %		
	Stromregelung	PID-Regler mit konfigurierbaren Regelparametern		
	Regelzeit	≥ 5 ms, einstellbar		
	Stromdiagnose			
	Auflösung	12 Bit		
	Messbereich	0,2 A 4 A		
	Messgenauigkeit	±2,5 % des Maximalwertes bezogen auf den Strom- bereich 3 A		
	Verwendung als Eingang			
	NPN- und PNP-Eingang	Das Umschalten des Interface auf NPN oder PNP wirkt sich auf die gesamte Gruppe PWMi_H3_x aus!L-Pegel ≤ 1,6 ∨H-Pegel ≥ 4,6 ∨		
	Eingangswiderstand	PNP 94 kΩ	NPN 10 kΩ	
	Tab 11: Ausgange DW/Mi H3 1 DW/Mi H3 4			

Tab. 11: Ausgänge PWMi_H3_1 ... PWMi_H3_4

Ausgang PWM H7	Parameter	Beschreibung	
····	High-Side-PWM-Ausgang mit Stromdiagnose		
	Abkürzung	PWM_H7	
	Anzahl	6	
	Maximalstrom	7 A je Kanal	
	Lastbereich	0,2 A 7 A je Kanal	
	Eigenschaften	Kabelbrucherkennung	Verträgt induktive Last
		Überstromerkennung	·
	Stromdiagnose	Diagnosewert	Messgenauigkeit
	Bezogen auf den Mess-	< 0,2 A	±45 %
	bereich 7 A	≤ 1,5 A	±35 %
		> 1,5 A 7 A	±25 %
	Pulsweitenmodulation		
	PWM-Frequenz	Min. 5 Hz	Max. 1.500 Hz
	Auflösung	0,1 %	
	Dithering-Frequenz	25 Hz 800 Hz	
	Dither-Amplitude	0 % 20 %	
	Verwendung als Eingang		
	NPN- oder PNP-Eingang	Das Umschalten des Interface auf NPN oder PN wirkt sich auf die gesamte Gruppe PWM_H7_x aus!	
		L-Pegel ≤ 1,6 V	H-Pegel ≥ 4,6 V
	Eingangswiderstand	ΡΝΡ 94 kΩ	NPN 10 kΩ
	Tab. 12: Ausgänge PWM_H7	_1 PWM_H7_6	
(i) INFO	Messbarkeit von sehr kur	zen Impulsen	

Messbarkeit von sehr kurzen Impulsen

Das Tastverhältnis am PWM-Ausgang hat eine Auflösung von 0,1 %. Aufgrund der begrenzten Flankensteilheit sind sehr kurze Impulse eventuell nicht messbar.

- Beispiel hohe Frequenz: Bei 10 kHz Ausgangsfrequenz und 0,1 % oder 99,9 % Tastverhältnis sowie niederohmiger Last kann ein Signal nicht mehr gemessen werden.
- Beispiel niedrige Frequenz: Bei 1 Hz Ausgangsfrequenz können 0,1 % Tastverhältnis gemessen werden.

Ausgang DO_H3

Parameter	Beschreibung		
Digitaler Ausgang mit Stromdiagnose			
Abkürzung	DO_H3		
Anzahl	4		
Maximalstrom	3 A je Kanal		
Summenstrom	Max. 6 A für alle 4 DO_H3	-Kanäle zusammen	
Lastbereich	0,02 A 3 A		
On-Off-Schaltfrequenz	Max. 50 Hz		
Eigenschaften	Kabelbrucherkennung	Verträgt induktive Last	
	Überstromerkennung		
Stromdiagnose	Strom	Messgenauigkeit	
Bezogen auf den Mess-	< 0,2 A	±45 %	
bereich 3 A	≤ 1,5 A	±35 %	
	> 1,5 A 3 A	±25 %	
Verwendung als Eingang			
NPN- und PNP-Eingang	Das Umschalten des Interface auf NPN oder PNP		
	wirkt sich auf die gesamte Gruppe DO_H3_x aus!		
	L-Pegel ≤ 1,6 V	H-Pegel ≥ 4,6 V	
Eingangswiderstand	PNP 94 kΩ	NPN 10 kΩ	
Tab. 13: Ausgänge DO_H3_1 DO_H3_4			

Sensorausgang	Parameter	Beschreibung
VEXT_SEN	Ausgang für die Versorgung von Sensoren: VBAT_ECU wird auf VEXT_SEN über einen Kaltleiter durchgeschleift. Ein Überstrom bzw. Kurzschluss an der Sensorversorgung kann diagnostiziert werden.	
	Abkürzung	VEXT_SEN
	Anzahl	3
	Maximalstrom	Min. 100 mA je Kanal bei 85 °C
		Ca. 500 mA je Kanal bei 25 °C

Tab. 14: Sensorausgang VEXT_SEN

4.6.1 Stromdiagnose an den Ausgängen

Die Ausgänge haben unterschiedliche Toleranzen (siehe Ausgänge [▶ 14]).

Alle Ausgänge werden von Werk aus kalibriert, um eine möglichst hohe Genauigkeit zu erreichen. Für kleine Stromwerte verläuft die Strommessung nicht linear. Die Messung wird deshalb von der Firmware linearisiert:

Abb. 6: Diagramm: Prinzip der Linearisierung

А	Strom-Wert
В	ADC-Wert

- T1 liegt bei 200 mA, darunter wird der Strom als 0 angezeigt.
- T2 liegt bei 500 mA. Von 200 mA bis 500 mA wird der gemessene Stromwert linearisiert.

4.6.2 Überstromabschaltung an den Ausgängen

Wenn durch einen Ausgang für 500 ms (Default-Wert) Überstrom fließt, dann wird die Überstromabschaltung aktiv. Dieser Wert kann über den Parameter OVERCURRENT_TIME verändert werden. Tritt ein Überstromereignis auf, dann schaltet der Ausgang ab und das Überstrom-Bit wird für 10 s gesetzt. Während dieser Zeit kann der Port nicht wieder eingeschaltet werden.

Port wieder einschalten

- ✓ Der JXM-IO-EW30-G27 befindet sich im Zustand **Operational**.
- ✓ Seit der Abschaltung des Ausgangs sind 10 s vergangen.
- Setzen Sie den Ausgangswert (Digital oder PWM) des betreffenden Ports erneut.

4.7 Eingänge

Im Betriebsspannungsbereich sind alle Eingänge spannungsfest und überstromsicher. Der JXM-IO-EW30-G27 verfügt über 3 separate VEXT_SEN-Anschlüsse, über welche die Sensoren versorgt werden sollten. Die Anschlüsse geben die Batteriespannung über einen Kaltleiter aus. Die ausgegebene Spannung kann im Gerät zurückgelesen werden, sodass ein Ausfall der Sensorversorgung festgestellt werden kann.

Die analogen Eingänge können alternativ auch als digitale Eingänge (DI_PNP) verwendet werden.

Analoge Ei	ingänge
------------	---------

Parameter	Beschreibung	
Analoge Eingänge		
Abkürzung	AI	
Anzahl	8	
Auflösung	12 Bit	
Spannungsmessung		
Nennmessbereich	0 V 5 V	
	Ausnahme:	
	DIP-Schalter 1 ON: AI_7 = DIP-Schalter 2 ON: AI_8 =	0 V 10 V (Hi-range) 0 V 10 V (Hi-range)
Überspannungsmessung	5 V 7 V	
	Ausnahme:	
	DIP-Schalter 1 ON: AI_7 = DIP-Schalter 2 ON: AI_8 =	10 V 12 V (Hi-range) 10 V 12 V (Hi-range)
Eingangswiderstand	≥ 35 kΩ	
Bürde	120 Ω	
Maximalspannung	+32 V	
Messgenauigkeit	±2 % bezogen auf den Nennmessbereich	
Gleitender Mittelwert-Filt	eitender Mittelwert-Filter	
Bereich der Filtertiefe	1 32	Bei 1 ist keine Filterung aktiv.
Messzyklus	1 ms	
Strommessung		
Messbereich	0 mA 20 mA	
Überstrombereich	21 mA 24 mA	
Messgenauigkeit	±1,5 % bezogen auf den Strommessbereich 20 mA	
Verhalten bei Überstro- merkennung	Bei Überstromerkennung wird die Strommessung un- terbrochen. Nach Ende des Überstromereignisses wird die Strommessung selbständig wiederherge- stellt.	
Als DI_PNP		
H-Pegel	≥ 4,6 V	
L-Pegel	≤ 1,6 V	
Eingangsfrequenz	Max. 10 Hz	
Eingangswiderstand	≥ 35 kΩ	

Tab. 15: Analoge Eingänge

Digitale Eingänge

Alle digitalen Eingänge sind PNP-Eingänge. Alle Ausgänge können mit Einschränkungen auch als einfache digitale NPN- oder PNP-Eingänge verwendet werden.

Parameter	Beschreibung
Digitale Eingänge mit Fre	equenzmessung
Abkürzung	DI_P
Anzahl	4
Pulldown-Widerstand	5,6 kΩ
H-Pegel	≥ 4,6 V
L-Pegel	≤ 1,6 V
Eingangsfrequenz	0,1 Hz 10 kHz
Spannungsfestigkeit	Max. +32 V

Tab. 16: Digitale Eingänge DI_P_1 ... DI_P_4

Konfigurationseingänge Die Konfigurationseingänge sind Tristate-Eingänge und werden zum Einstellen der Node-ID verwendet. Die Basis-Adresse ist einstellbar und hat den Default-Wert 0x30. Die Node-ID kann durch Verbinden der Konfigurationseingänge mit VBAT_ECU oder GND über einen Offset verschoben werden.

Parameter	Beschreibung	
Konfigurationseingänge zur Konfiguration der Node-ID		
Abkürzung	CFG1	CFG2
Anzahl	2	

Tab. 17: Konfigurationseingänge CFG1 ... CFG2

Weiterführende Informationen finden Sie im Kapitel Node-ID einstellen [42].

5 Montage

△ WARNUNG

Heiße Oberflächen können Verbrennungen verursachen.

Verbrennungsgefahr

- Treffen Sie Schutzma
 ßnahmen gegen versehentliches Ber
 ühren des Ger
 äts.
- Lassen Sie das Gerät einige Zeit abkühlen, bevor Sie Arbeiten am Gerät durchführen.

HINWEIS

Materialschäden oder Funktionsbeeinträchtigung durch Schweißarbeiten

Schweißarbeiten am Fahrgestell können Materialschäden oder Funktionsbeeinträchtigungen verursachen.

- Trennen Sie vor Schweißarbeiten alle Kontakte des Geräts vom Bordnetz des Fahrzeugs.
- Schützen Sie das Gerät vor Funkenflug und Schweißperlen.
- Berühren Sie das Gerät nicht mit der Schweißelektrode oder Masseklemme.

HINWEIS

Schmutz und Feuchtigkeit können die elektrischen Verbindungen beeinträchtigen.

- Verschließen Sie nicht benutzte Pins mit Blindstopfen.
- Schützen Sie alle elektrischen Verbindungen durch entsprechende Einzeladerabdichtungen.
- Reinigen Sie die Umgebung der Stecker, bevor Sie den Gegenstecker abziehen.

HINWEIS

Funktionsbeeinträchtigung durch Magnete oder Motoren mit Spule

Magnete oder Motoren mit Spule in der Nähe des JXM-IO-EW30-G27 können die Strommessung der Ein- und Ausgänge beeinflussen.

 Achten Sie auf einen ausreichenden Abstand oder eine Abschirmung des JXM-IO-EW30-G27.

HINWEIS

Einhaltung der Schutzart

Die Schutzart des Gerätes ist nur dann gegeben, wenn die M25-Kabelverschraubung fest angezogen ist.

5.1 Anforderungen an Einbauort und Montagefläche

Anforderungen an die Montagefläche

Parameter	Beschreibung
Geeignete Materialien	Keine besonderen Materialansprüche
Form / Beschaffenheit	Die Auflagefläche muss eben sein.
Befestigungsösen	Alle vorhandenen Befestigungsösen müssen ver- schraubt werden. Das Gerät kann direkt am Fahr- zeug oder auf einer Montageplatte montiert werden.

Tab. 18: Anforderungen an die Montagefläche

Anforderungen an den Einbauraum

- Ausreichende Luftzirkulation
- Ausreichender Abstand zu Teilen mit großer Hitzeentwicklung
- Das Gerät muss jederzeit für Servicearbeiten zugänglich sein.

5.2 Einbaulagen

▶ Installieren Sie den JXM-IO-EW30-G27 nicht mit dem Stecker nach oben, um das Eindringen von Feuchtigkeit zu vermeiden.

5.3 Erweiterungsmodul montieren

Montagematerial

Das Montagematerial ist nicht im Lieferumfang enthalten. Die Jetter AG empfiehlt folgendes Montagematerial:

Material	Eigenschaften
Schrauben	M6
Sicherungsscheiben	Sicherungsscheiben werden empfohlen, um vibrati- onsbedingte Lockerungen der Schrauben zu ver- meiden.
Kabelfixierung und Zugent- lastung	Eine mechanische Fixierung und Zugentlastung der Kabel ist notwendig, um vibrationsbedingten Kabel- bruch oder Überlastung der Stecker zu vermeiden.

Tab. 19: Montagematerial

Montage

Befestigen Sie den JXM-IO-EW30-G27 an allen 4 Befestigungsösen. Das Anzugsmoment beträgt max. 4 Nm.

6 Elektrischer Anschluss

MARNUNG

Signalstörung aufgrund fehlerhafter CAN-Verdrahtung

Nicht geschirmte oder verdrillte CAN-Leitungen können Kommunikationsstörungen zur Folge haben. Im Extremfall kann eine Fehlfunktion des Geräts zu Folgeschäden an Personen führen.

- Schließen Sie an beiden Enden des CAN-Busses Abschlusswiderstände von 120 Ω an.
- Verdrahten Sie alternativ den internen Abschlusswiderstand (siehe Pinbelegung).

HINWEIS

Beeinflussung der elektromagnetischen Verträglichkeit

Ungeeignete Ausführung des Kabelbaums kann die elektromagnetische Verträglichkeit beeinflussen.

- ► Halten Sie die Kabel möglichst kurz.
- Führen Sie Signalleitungen separat von leistungsführenden Leitungen.

HINWEIS

Materialschäden oder Funktionsbeeinträchtigung

Ungeeignete Ausführung des Kabelbaums kann zu mechanischer Überbeanspruchung führen.

- Schützen Sie Leitungen vor Abknicken, Verdrehen und Scheuern.
- Montieren Sie Zugentlastungen für die Anschlusskabel.

HINWEIS

Überspannung durch fehlende externe Absicherungen

Hohe Spannungswerte können Funktionsbeeinträchtigungen und Produktschäden verursachen.

- Sichern Sie die Spannungseingänge entsprechend den Anforderungen ab.
- Achten Sie auf einen ESD-gerechten Umgang mit dem Gerät.

HINWEIS

Störung durch Potentialunterschiede

Potentialunterschiede können zu Störungen führen.

 Verdrahten Sie die Sensoren und die Aktoren inklusive deren Versorgungsleitungen sternförmig, um Potentialunterschieden vorzubeugen.

HINWEIS

Einhal Die Sc

Einhaltung der Schutzart

Die Schutzart des Gerätes ist nur dann gegeben, wenn die M25-Kabelverschraubung fest angezogen ist.

6.1 Pinbelegung

6.1.1 Platine

Abb. 7: Pinbelegung Platine (Draufsicht)

Α	DIP-Schalter [> 25]
1	Stecker 1
2	Stecker 2
3	Stecker 3
4	Stecker 4
5	Stecker 5
В	4-poliger JST-Steckverbinder (male)
С	5-poliger M12-Stecker [▶ 28] (male)
D	M25-Kabelverschraubung

Verwendete Abkürzungen

Abkürzung	Bedeutung			
AI	Analogeingang für Strom und Spannung			
CFG	Konfigurationspin zum Einstellen der CAN-ID			
DI_P	Digital- und Frequenzeingang			
DO_H3	Digitaler High-Side-Ausgang			
GND_PWR	Masse für Leistungsausgänge			
GND_SEN	Masse für Sensorversorgung			
PWMi_H3	High-Side-PWM-Ausgang mit bis 3 A mit genauer Strommes-			
	sung			
PWM_H7	High-Side-PWM-Ausgang bis 7 A			
VBAT_ECU	Spannungsversorgung für Logik und Sensoren			
VBAT_PWR	Spannungsversorgung für Ausgangstreiber			
VEXT_SEN_x	Sensor-Versorgung, die jeweils über Kaltleiter gesichert ist.			
Tab. 20: Verwendete Abkürzungen				

DIP-Schalter

Auf der Platine befinden sich die DIP-Schalter 1 ... 4. Mit den DIP-Schaltern können Sie die in der Tabelle dargestellten Funktionen aktivieren oder deaktivieren.

Abb. 8: DIP-Schalter 1 ... 4

DIP-Schalter	Position	Funktion
1 ON		Hi-range (0 10 V) für AI_7 aktiviert
	OFF	Hi-range (0 10 V) für AI_7 deaktiviert
2	ON	Hi-range (0 10 V) für AI_8 aktiviert
	OFF	Hi-range (0 10 V) für AI_8 deaktiviert
3 ON		-
	OFF	-
4 ON		BOOTSEL aktiviert
	OFF	BOOTSEL deaktiviert

Spezifikation – 2-reihige 1-Leiter-Federleiste

Gegenstück zu 16-poligem WAGO-Stecker

Parameter	Beschreibung			
Hersteller	WAGO			
Hersteller-Artikelnummer	713-1108/037-000			
Anschlussdaten				
Anschlusstechnik	CAGE CLAMP®			
Eindrähtiger Leiter	0,08 mm² 1,5 mm² / 28 16 AWG			
Feindrähtiger Leiter	0,08 mm² 1,5 mm² / 28 16 AWG			
Feindrähtiger Leiter; mit Aderendhülse mit Kunst- stoffkragen	0,25 mm² 1 mm²			
Feindrähtiger Leiter; mit Aderendhülse ohne Kunst- stoffkragen	0,25 mm² 1 mm²			
Abisolierlänge	6 mm 7 mm / 0,24 inch 0,28 inch			
Polzahl	16			
Steckverbindung				
Kontaktausführung im Steckverbinderbereich	Federleiste/Buchse			
Steckverbinder Anschluss- typ	für Leiter			
Fehlsteckschutz	Ja			
Verriegelung der Steckver- bindung	Verriegelungshebel			

Gegenstück zu 12-poligem WAGO-Stecker

Beschreibung	
WAGO	
713-1106/037-000	
CAGE CLAMP®	
0,08 mm² 1,5 mm² / 28 16 AWG	
0,08 mm² 1,5 mm² / 28 16 AWG	
0,25 mm² 1 mm²	
0,25 mm² 1 mm²	
6 mm 7 mm / 0,24 inch 0,28 inch	
12	
Federleiste/Buchse	
für Leiter	
Ja	
Verriegelungshebel	

Gegenstück zu 8poligem WAGO-Stecker

Parameter	Beschreibung		
Hersteller	WAGO		
Hersteller-Artikelnummer	713-1104/037-000		
Anschlussdaten			
Anschlusstechnik	CAGE CLAMP [®]		
Eindrähtiger Leiter	0,08 mm² 1,5 mm² / 28 16 AWG		
Feindrähtiger Leiter	0,08 mm² 1,5 mm² / 28 16 AWG		
Feindrähtiger Leiter; mit Aderendhülse mit Kunst- stoffkragen	0,25 mm² 1 mm²		
Feindrähtiger Leiter; mit Aderendhülse ohne Kunst- stoffkragen	0,25 mm² 1 mm²		
Abisolierlänge	6 mm 7 mm / 0,24 inch 0,28 inch		
Polzahl	8		
Steckverbindung			
Kontaktausführung im Steckverbinderbereich	Federleiste/Buchse		
Steckverbinder Anschluss- typ	für Leiter		
Fehlsteckschutz	Ja		
Verriegelung der Steckver- bindung	Verriegelungshebel		

Spezifikation – 4-poliges Steckverbindergehäuse

Kompatibles Gegenstück des 4-poligen JST-Steckverbinders ist das folgende Gehäuse:

Parameter	Beschreibung
Hersteller	JST
Hersteller Teile-Nr.	XHP-4
Anzahl der Kontakte	4
Anzahl der Reihen	1
Raster	2,5 mm
Gender	Female
Länge	12,3 mm
Breite	5,7 mm
Gehäusematerial	Polyamid

6.1.2 5-poliger M12-Stecker

Abb. 9: M12-Stecker, 5-polig, A-codiert

Pin	Signal	Beschreibung			
1	NC	Reserviert			
2	VBAT_ECU	Spannungsversorgung ECU			
3	GND_ECU	Masse für GND_PWR			
4	CAN_H	CAN-High			
5	CAN_L	CAN-Low			

7 Identifikation und Konfiguration

7.1 Identifikation

Dieses Kapitel beschreibt die Identifikation des Geräts JXM-IO-EW30-G27:

- Bestimmung der Hardware-Revision
- Auslesen des elektronischen Typenschilds EDS. Im EDS sind zahlreiche fertigungsspezifische Daten remanent abgelegt.
- Bestimmung der Betriebssystemversion des Geräts und der Softwarekomponenten

7.1.1 Geräteinformationen

Geräte-	Index	Subindex	Beschreibung	Тур	Zugriff	Default-Wert
informationen	0x1018	0	Anzahl der unterstützen Einträge	U8	R	
		1	Hersteller-ID	U32	R	0x00000B3
		2	Produktcode	U32	R	
		3	Revisionsnummer	U32	R	
		4	Seriennummer	U32	R	
	0x1000	0	Gerätetyp	U32	R	
	0x1008	0	Gerätename	String	R	
	0x1009	0	Hardware-Revision	String	R	
	0x100A	0	Software-Version	String	R	

Tab. 21: Geräteinformationen

7.1.2 Elektronisches Typenschild EDS

Jeder JXM-IO-EW30-G27 verfügt über ein elektronisches Typenschild EDS. In den CANopen-Objektindizes 0x4555 und 0x4565 sind fertigungsspezifische Daten abgelegt.

EDS-Information	Index	Subindex	Beschreibung	Тур	Zugriff
	0x4555	0	Anzahl der unterstützten Einträge	U8	R
		1	reserviert		
		2	reserviert		
		3	reserviert		
		4	Modulcode	U16	R
		5	Produktname	String	R
		6	PCB-Versionsnummer	I16	R
		7	PCB-Optionen	I16	R
		8	reserviert		
		9	Produktseriennummer	String	R
		10	Produktionszeitstempel: Tag	U8	R
		11	Produktionszeitstempel: Monat	U8	R
		12	Produktionszeitstempel: Jahr	U16	R
		13	reserviert		
		14	reserviert		
		15	Mindest-OS-Version	U32	R
		16	Mindest-Bootloader-Version	U32	R

Tab. 22: EDS-Information

Elektronisches Typenschild

Index	Subindex	Beschreibung	Тур	Default
0x4565	0	Anzahl der unterstützten Einträge	U32	5
	1	Versionsnummer des elektroni- schen Typenschilds	U32	0
	2	Befehl	U32	0
	3 Seriennummer des Geräts	String	0	
	4	Artikelnummer	String	0
	5	Version des Geräts	String	0

Tab. 23: Elektronisches Typenschild

7.2 Betriebssystem

Die Betriebssysteme unserer Produkte werden laufend weiterentwickelt. Dabei kommen neue Funktionen hinzu, bestehende Funktionen werden erweitert und verbessert. Sie finden die aktuellen Betriebssystemdateien auf unserer Homepage im Bereich Downloads beim jeweiligen Produkt.

(i) INFO

Weiterführende Informationen

Weiterführende Informationen zum Thema finden Sie auf unserer Homepage. *Start* | *Jetter - We automate your success.*

7.2.1 Betriebssystemupdate des Erweiterungsmoduls

Dieses Kapitel beschreibt, wie Sie ein Betriebssystemupdate beim Erweiterungsmodul JXM-IO-EW30-G27 durchführen. Sie haben hierbei mehrere Möglichkeiten, die Betriebssystemdatei auf das Erweiterungsmodul zu übertragen:

- Über die Steuerung
- Über das Kommandozeilen-Tool JetEasyDownload (ab Version 1.00.0.15) von Jetter

Betriebssystemupdate über JetEasyDownload

Sie können die Betriebssystemdatei des Geräts mit einem CAN-Dongle von PEAK und dem Kommandozeilen-Tool JetEasyDownload (ab Version 1.00.0.15) von Jetter aktualisieren.

JetEasyDownload Parameter Für den Aufruf von JetEasyDownload benötigen Sie spezifische Parameter.

Parameter	Beschreibung	Werte	
-H <num></num>	Hardware	0=	PCAN_ISA1CH
		1=	PCAN_ISA2CH
		2=	PCAN_PCI_1CH
		3=	PCAN_PCI_2CH
		4=	PCAN_PCC_1CH
		5=	PCAN_PCC_2CH
		6=	PCAN_USB_1CH
		7=	PCAN_USB_2CH
		8=	PCAN_Dongle Pro
		9=	PCAN_Dongle
		10=	PCAN_NET Jetter
		11=	PCAN_DEV Default-Gerät
		20=	IXXAT V2.18
		22=	IXXAT V3
		100=	Zuerst erkannte CAN-Hardware
-T <nodeid></nodeid>	Ziel-Node-ID		
-B <num></num>	Baudrate	0=	10 kB
	Beachten Sie die	1=	20 kB
	zulässigen	2=	50 kB
	Baudraten Ihres	3=	100 kB
	Geräts!	4=	125 kB
		5=	250 kB
		6=	500 kB
		7=	1 MB
-S <num></num>	SDO-Timeout	Default	300 ms
-L <name></name>	OS-Dateiname	z. B. JX	M-IO-E30_Vx.xx.x.os

Tab. 24: JetEasyDownload Parameter

Update durchführen

chführen	
(i) INFO	Auswahl des CAN-Dongles

Der Parameter –H100 wählt die zuerst erkannte CAN-Hardware aus, die am PC angeschlossen ist. Achten Sie darauf, dass am PC nur der CAN-Dongle von PEAK eingesteckt ist. Ansonsten kann es vorkommen, dass der falsche CAN-Dongle ausgewählt wird.

JetEasyDownload -H100 -T48 -B5 -S8000 -LJXM-IO-E30 Vx.xx.x.xx.os

- ✓ JetEasyDownload und PEAK-CAN-Dongle sind funktionsbereit.
- Zwischen PEAK-CAN-Dongle und JXM-IO-EW30-G27 besteht eine CAN-Verbindung.
- 1. Rufen Sie JetEasyDownload mit den oben angegebenen Parametern und einer gültigen OS-Datei auf.
 - ⇒ Das Gerät führt einen Reset durch.
 - ⇒ Das Gerät startet im Bootloader mit einem einzelnen Heartbeat im Init-Zustand (Daten = 0x00).
- 2. Warten Sie ca. 7 Sekunden lang, während das Gerät den Flash formatiert.
 - ⇒ Das Gerät startet den Download-Vorgang.
- ⇒ Das Gerät startet automatisch mit der neuen Firmware.

8 Parametrierung

8.1 Konzept und Ansteuerung

Das Konzept des Geräts JXM-IO-EW30-G27 beruht auf der Zuweisung von Interfaces zu den Eingängen und Ausgängen des Geräts. Jeder Eingang und Ausgang des Geräts wird als Port bezeichnet und kann konfiguriert werden. Die Funktion eines Ports wird bestimmt, indem ihm ein Interface zugewiesen wird. Jedes Interface beinhaltet Parameter, Werte und einen Status:

- Jedem Interface können Parameter zugewiesen werden.
- Über Werte können Informationen an jedes Interface übermittelt und gesetzt werden.
- Der Status gibt Auskunft über den Zustand des Interface.

Abb. 10: Konzept und Ansteuerung

8.1.1 Konfigurationsmöglichkeiten der Anschlüsse

Die folgende Tabelle zeigt eine Übersicht über die Ports und die jeweils zulässigen Interfaces:

Ports	Beschreibung	Zulässige Interfaces
AI_1 AI_8	Analoge Eingänge	AI_VOLTAGE
		AI_CURRENT
		DI_PNP
DI_P_1 DI_P_4	Digitale Eingänge	DI_PNP (DI_NPN nur für DI_P_1)
		FI_PNP (FI_NPN nur für DI_P_1)
		ENCI_PNP (Jeweils für DI_P_1 und DI_P_2 sowie für DI_P_3 und DI_P_4)
PWMi_H3_1	PWM-Ausgänge	PWMO_HS3, CPWMO_HS3, DO_HS3
PWMi_H3_4		DI_NPN, DI_PNP

Ports	Beschreibung	Zulässige Interfaces
PWM_H7_1 PWM_H7_6	PWM-Ausgänge	PWMO_HS7, PWMO_HS3, DO_HS3, DO_HS7
		DI_NPN, DI_PNP
DO_H3_1 DO_H3_4	Digitale Ausgänge	DO_HS3
		DI_NPN, DI_PNP

Tab. 25: Übersicht Ports und zulässige Interfaces

Beachten Sie bei der Konfiguration der Ausgänge die Angaben im Kapitel Ausgänge [14].

8.1.2 I/O-Ports und SDO-Abbild

Jeder I/O-Port wird mit einem SDO-Index abgebildet:

I/O-Ports	SDO-Index
AI_1 AI_8	0x2100 0x2107
DI_P_1 DI_P_4	0x2108 0x210B
PWMi_H3_1 PWMi_H3_4	0x210C 0x210F
PWM_H7_1 PWM_H7_6	0x2110 0x2115
DO_H3_1 DO_H3_4	0x2116 0x2119

 Tab. 26:
 SDO-Abbilder
 der I/O-Ports

Über Subindex 1 weisen Sie einem Port ein bestimmtes Interface zu (Übersicht – I/O-Interfaces [▶ 35]). Über die weiteren Subindizes greifen Sie auf die Parameter, Werte und Status zu.

INFO Interfaces zuweisen Sie können ein Interface nur während des Startvorganges im Zustand Pre-Operational zuweisen.

Index	Subindex	Beschreibung	Тур	Zugriff	Default- Wert
0x2100	0	Anzahl der unterstützen Einträge	U8	R	
	1	ID des Interface	U32	R/W	0 (inaktiv)
0x2119	2	I/O-Status	U32	R	(Inaktiv) Bit gesetzt
	10 29	Eingangswerte		R	
	30 49	Ausgangswerte		R/W	0
		Bei einem Wechsel in den Zustand Operational werden die Sollwerte auf 0 gesetzt. Ein zuvor gesetzter Wert bleibt bei einem Wechsel vom Zustand Operational zu Pre-Operational nicht erhalten.			
		Nur im Zustand Operational mög- lich, sonst kommt es zu einem Feh- ler (SDO-Abort).			
	50 199	Parameter		R/W	

Tab. 27: Subindizes für den Zugriff auf Parameter, Werte und Status

8.1.3 Übersicht – I/O-Interfaces

Die folgende Tabelle ist eine Übersicht über die I/O-Interfaces und deren verfügbare Parameter, Werte und Status [▶ 37].

Einschränkungen

Die folgenden Einschränkungen sind in den unterschiedlichen Zuständen **Operational** und **Pre-Operational** zu beachten:

- Sie können ein Interface nur während des Startvorganges im Zustand Pre-Operational zuweisen.
- Sie können Ausgangswerte nur im Zustand Operational konfigurieren.

Parameter können Sie in beiden Zuständen konfigurieren.

- Wenn Sie den Zustand Pre-Operational verlassen, dann werden alle Werte auf 0 gesetzt.
- Alle Ausgänge sind im Zustand Pre-Operational inaktiv.
 Die Eingänge bleiben im Zustand Pre-Operational aktiv.

ID Dez/Hex	Interface	Parameter	Werte	Status
0	INACTIVE IO			ist ausgeschaltet
1	AI_VOLTAGE	SENSOR_SUPPLY	I_VOLTAGE	INACTIVE
	Analoger	FILTER_DEEP	I_RATIO	ERROR
	Spannungsein- gang	MIN_DEVIATION		OVERVOLTAGE
	5 5			SUPPLY_FAULT
2	AI_CURRENT	SENSOR_SUPPLY	I_CURRENT	INACTIVE
	Analoger	FILTER_DEEP		ERROR
	Stromeingang $(0 \text{ mA} 24 \text{ mA})$	MIN_DEVIATION		OVERCURRENT
				SUPPLY_FAULT
3	DI_PNP	SENSOR_SUPPLY	I_DIGITAL	INACTIVE
	Digitaler		I_COUNTER	ERROR
	Eingang			SUPPLY_FAULT
	Pull-down)			
4	FI_PNP	SENSOR_SUPPLY	I_FREQUENCY	INACTIVE
	Frequenz-	TIMEOUT_TIME	I_DUTY_CYCLE	ERROR
	Eingang (Active-High mit	GATE_TIME	I_DIGITAL	SUPPLY_FAULT
	Pull-down)		I_COUNTER	TIMEOUT
			I_PERIODIC_ TIME	
			I_H_PULSE_TIME	
			I_L_PULSE_TIME	

ID Dez/Hex	Interface	Parameter	Werte	Status
5	DI_NPN	SENSOR_SUPPLY	I_DIGITAL	INACTIVE
	Digitaler Eingang		I_COUNTER	ERROR
	(Active-Low mit Pull-up)			SUPPLY_FAULT
6	PWMO_HS3	PWM_FRQ	I_HCURRENT	INACTIVE
	High-Side-PWM-	DITHER_FRQ	O_DUTY_CYCLE	ERROR
	Ausgang (bis zu	DITHER_AMP		OVERCURRENT
	Strommessung)	MAX_CURRENT		OPEN_CIRCUIT
		OVERCURRENT_TIME		
		FILTER_DEEP		
		MIN_DEVIATION		
		MIN_CURRENT		
		OPENCIRCUIT_ DETECTION		
7	DO_HS3	MAX_CURRENT	I_HCURRENT	INACTIVE
	High-Side-	OVERCURRENT_TIME	O_DIGITAL	ERROR
	Digital-Ausgang	FILTER_DEEP		OVERCURRENT
		MIN_DEVIATION		OPEN_CIRCUIT
		MIN_CURRENT		
		OPENCIRCUIT_ DETECTION		
8	reserviert		·	
9	reserviert			
10/a	CPWMO_HS3	PWM_FRQ	I_HCURRENT	INACTIVE
	High-Side-	DITHER_FRQ	O_HCURRENT	ERROR
	(bis zu 3 A, mit	DITHER_AMP		OVERCURRENT
	Stromregelung)	CURRENT_CONTROL_P		OPEN_CIRCUIT
		CURRENT_CONTROL_I		CC_UNLOCK
		CURRENT_CONTROL_D		
		MAX_CURRENT		
		OVERCURRENT_TIME		
		CURRENT_ CONTROL_TIME		
		FILTER_DEEP		
		MIN_DEVIATION		
		MIN_CURRENT		
		OPENCIRCUIT_ DETECTION		

ID Dez/Hex	Interface	Parameter	Werte	Status
11/b	PWMO_HS7	PWM_FRQ	I_HCURRENT	INACTIVE
	High-Side-	DITHER_FRQ	O_DUTY_CYCLE	ERROR
	PWM-Ausgang	DITHER_AMP		OVERCURRENT
		MAX_CURRENT		OPEN_CIRCUIT
		OVERCURRENT_TIME		
		FILTER_DEEP		
		MIN_DEVIATION		
		MIN_CURRENT		
		OPENCIRCUIT_ DETECTION		
12/c	DO_HS7	MAX_CURRENT	I_HCURRENT	INACTIVE
	High-Side-	OVERCURRENT_TIME	O_DIGITAL	ERROR
	Digital-Ausgang (bis zu 7 A)	FILTER_DEEP		OVERCURRENT
		MIN_DEVIATION		OPEN_CIRCUIT
		MIN_CURRENT		
		OPENCIRCUIT_ DETECTION		
13/d	FI_NPN	SENSOR_SUPPLY	I_FREQUENCY	INACTIVE
	Frequenz-	TIMEOUT_TIME	I_DUTY_CYCLE	ERROR
	Lingang (Active-Low mit	GATE_TIME	I_DIGITAL	SUPPLY_FAULT
	Pull-up)		I_COUNTER	TIMEOUT
			I_PERIODIC_ TIME	
			I_H_PULSE_TIME	
			I_L_PULSE_TIME	
26/1a	ENCI_PNP	SENSOR_SUPPLY	I_COUNTER	INACTIVE
	Inkrementeller	TIMEOUT_TIME	I_DIRECTION	ERROR
	Encoder- Eingang	RESOLUTION		SUPPLY_FAULT

Tab. 28: Übersicht - I/O- Interfaces

8.1.4 Parameter, Werte und Status

Eingangswerte

Subinde	ex.	Beschreibung	Тур	Zugriff	Einheit/ Wertebereich
10	I_VOLTAGE	Spannungswert	U16	R	1 mV
11	I_RATIO	Verhältnis zu VBAT_ECU	U16	R	1 ‰
12	I_CURRENT	Stromwert (kleiner Messbereich)	U16	R	1 µA
13	I_HCURRENT	Stromwert (großer Messbereich)	U16	R	1 mA
14	I_FREQUENCY	Frequenzwert	U32	R	0,1 Hz
15	I_DUTY_CYCLE	Tastverhältnis	U16	R	1 ‰

Subinde	×	Beschreibung	Тур	Zugriff	Einheit/ Wertebereich
16	I_DIGITAL	Digitalwert	BOOL	R	0 1
17	I_COUNTER	Zählerwert (freilaufender Zähler)	U32	R	0 4294967 295
18	I_PERIODIC_TIME	Periodenzeit, es wird die Dauer der Periode gemessen	U32	R	1 µs
19	I_HPULS_TIME	High-Puls-Zeit, es wird die Dauer des High-Puls gemessen	U32	R	1 µs
20	I_LPULS_TIME	Low-Puls-Zeit, es wird die Dauer des Low-Puls gemessen	U32	R	1 µs
22	I_DIRECTION	Aktuelle Laufrichtung	U8	R	0 2 0 = keine
					Bewegung
					1 = vorwärts
					2 = rückwärts

Tab. 29: Eingangswerte

Ausgangswerte

Subinde	X	Beschreibung	Тур	Einheit/ Wertebereich
30	O_DIGITAL	Digitalwert	BOOL	0 1
31	O_DUTY_CYCLE	Tastverhältnis	U16	1 ‰
32	O_HCURRENT	Eingestellter Stromwert (großer Messbereich)	U16	1 mA

Tab. 30: Ausgangswerte

Parameter

Subinde	ех-Тур	Beschreibung	Тур	Zugriff	Einheit/ Wertebereich
50	SENSOR_SUPPLY	Zugehörige Sensorversor-	U16	R/W	0 = aus
		gung, die mit überwacht wird.			1 =
					VEXT_SEN_1
					2 =
					VEXT_SEN_2
					3 =
					VEXT_SEN_3
					Default: 0
51	PWM_FRQ	PWM-Frequenz	U32	R/W	0,1 Hz
					Default: 1 kHz
52	DITHER_FRQ	Dither-Frequenz	U32	R/W	0,1 Hz
					Default: 1.000
53	DITHER_AMP	Dither-Amplitude	U16	R/W	0,1 %
					Default: 0

Subinde	ех-Тур	Beschreibung	Тур	Zugriff	Einheit/ Wertebereich
54	CURRENT_CONTROL_P	Stromregelung P-Anteil x1000000	U32	R/W	0 4294967295
					Default: 100.000
55	CURRENT_CONTROL_I	Stromregelung I-Anteil x1000000	U32	R/W	0 4294967295 Default:
					10.000
56	CURRENT_CONTROL_D	Stromregelung D-Anteil x1000000	U32	R/W	0 4294967295 Default [:] 400
57	MAX_CURRENT	Maximaler Strom, der den	U16	R/W	1 mA
		vorgegebenen Wert im Inter- face-Tvp nicht übersteigen			Default:
		kann.			 3 A für PW- Mi_H3
					 7 A für PWM_H7
58	OVERCURRENT_TIME	Bei Überstrom wird das Gerät nach der entsprechen- den Zeit abgeschaltet.	U32	R/W	1 ms Default: 500 ms
59	TIMEOUT_TIME	Setzt das TIMEOUT-Bit im Status bei der Frequenzmes- sung, wenn keine Signalän- derung anliegt. Bestimmt, ab wann I_DIRECTION keine Bewegung signalisiert.	U32	R/W	0 4294967295 Default: 1.000 ms
60	CURRENT_ CONTROL_TIME	Zykluszeit der Stromregelung	U32	R/W	1 ms Default: 5 ms
61	FILTER_DEEP	Gleitende Mittelwertberech- nungstiefe	U32	R/W	1 32 Default: 1
62	GATE_TIME	Messzeit der Frequenzmes- sung	U32	R/W	1 ms Default: 1.000
63	MIN_DEVIATION	Minimum-Abweichung für	U16	R/W	µA bzw. mV
		(Ab OS 2.04.0.00)			Default für AI: 10

Subinde	ех-Тур	Beschreibung	Тур	Zugriff	Einheit/ Wertebereich
64	MIN_CURRENT	Unterschreitet der am Aus- gang anliegende Strom den eingestellten Schwellwert, dann wird dies als Kabel- bruch erkannt und der Status wird im Zustand Operational gesetzt (ab OS 2.05.0.00).	U16	R/W	 1 mA Default ist der minimal mög- liche Wert: PWMi-H3- Ausgänge: min. 200 mA sonstige Ausgänge: min. 500 mA
65	OPENCIRCUIT_ DETECTION	Aktiviert/deaktiviert die Ka- belbrucherkennung eines Ports. Modus 1 prüft beim Booten einmalig, ob der Ausgang von einer Last nach GND ge- zogen wird. Modus 2 prüft zusätzlich im eingeschalteten Zustand, ob MIN_CURRENT unterschrit- ten wurde. HINWEIS! Verwenden Sie den Wert 2 (permanente Kabelbrucherkennung) nicht für PWM-Ausgänge und stromgeregelte Ausgänge. Dies kann dazu führen, dass ein Kabelbruch erkannt wird, obwohl kein Kabelbruch vorliegt	U16	R/W	500 mA 0 = keine Ka- belbrucher- kennung 1 = Kabelbru- cherkennung nur im Zu- stand Pre- Operational 2 = perma- nente Kabel- brucherken- nung Default: 1
68	RESOLUTION	Auflösung z.B. am Encoder- Eingang	U8	R/W	0 2 0 = 1/4 Auflösung 1 = 1/2 Auflösung 2 = volle Auflösung Default: 0

Tab. 31: Parameter

Status

Bit	Status	Beschreibung
0x00000001	INACTIVE	Der Port ist abgeschaltet.
0x00000002	ERROR	Ein undefinierter Fehler liegt vor.
0x0000008	OVERVOLTAGE	Am Eingang liegt Überspannung an.
0x00000010	OVERCURRENT	Am Eingang/Ausgang liegt Überstrom an.
0x00000020	SUPPLY_FAULT	Die Versorgungsspannung VEXT_SEN ist fehlerhaft.
0x0000080	OPEN_CIRCUIT	Am Ausgang ist keine Last vorhanden, z.B. bei Kabel- bruch. Dieser Statuseintrag wird nur beim Booten des Gerätes geprüft!
0x00000100	TIMEOUT	Die Zeit bei der Frequenzmessung wurde überschritten.
0x00000200	CC_UNLOCK	Die Stromregelung ist nicht im Regelbereich.
		·

Tab. 32: Status

8.2 Node-ID einstellen

Die Basis-Node-ID kann über die Systemparameter [▶ 44] eingestellt werden. Der Default-Wert ist 0x30.

Die Konfigurationseingänge (CFG1 und CFG2) erzeugen einen Offset zu der eingestellten Basis-Node-ID.

Die CFG1 und CFG2 können einen der 3 folgenden Zustände haben:

- Brücke zu $GND \rightarrow Low L$
- Brücke zu VBAT \rightarrow High H
- Offen \rightarrow O

Der Offset entspricht den Angaben in der folgenden Tabelle:

CFG1	CFG2	Offset der Modul-ID
0	0	0
L	0	1
Н	0	2
0	L	3
L	L	4
Н	L	5
0	Н	6
L	Н	7
Н	Н	8

Tab. 33: Offset zur eingestellten Basis-Node-ID

8.3 Gerätediagnose

Gerätediagnose

Index	Subindex	Beschreibung	Тур	Zugriff	Einheit
0x2000	0	Anzahl der unterstützten Einträge	U8	R	
	2	VBAT_PWR	U16	R	mV
	3	7V IO	U16	R	mV
	4	3V3	U16	R	mV
	6	PCB-Temperatur	I16	R	0,1 °C
	7	CPU-Temperatur	I16	R	0,1 °C
	9	CPU-VRef	U16	R	mV
	10	SPWR1	U16	R	mV
	11	SPWR2	U16	R	mV
	12	SPWR3	U16	R	mV
	13	VBAT_ECU	U16	R	mV
	14	CFG1	U16	R	mV
	15	CFG2	U16	R	mV
	20	Gesamtstrom ±50 %	U32	R	mA

Tab. 34: Gerätediagnose

Index	Subindex	Beschreibung	Тур	Zugriff
0x1001	0	Fehlerregister	U8	R
	Bit 0	Allgemeiner Fehler		R
	Bit 1	Gesamter Überstrom		R
	Bit 3	Temperatur		R
	Bit 4	Kommunikationsfehler		R
	Bit 7	CI-Fehler (ungültige Eingabe)		R

Statusinformation

Tab. 35: Statusinformation

8.4 Einstellungen permanent speichern und auf Default-Werte zurücksetzen

Folgende Parameter werden permanent im EEPROM gespeichert:

- PDO-Mapping
- Alle I/O-Interface-Zuweisungen und Parameter
- Producer Heartbeat Time

Einstellungen speichern

Index	Subindex	Beschreibung	Тур	Zugriff	Default- Wert
0x1010	0	Anzahl der unterstützen Einträge	U8	R	1
	1	Alle Parameter speichern	U32	R/W	
		Wenn die spezifische Signatur 0x6 wird, dann wird die Speicherung a	65766173 (, usgeführt.	"save") ges	chrieben

Tab. 36: Einstellungen im EEPROM speichern

Einstellungen auf Default-Werte zurücksetzen

Index	Subindex	Beschreibung	Тур	Zugriff	Default- Wert
0x1011	0	Anzahl der unterstützen Einträge	U8	R	1
	1	Kommandoregister	U32	R/W	1
		Wenn die spezifische Signatur 0x6 wird, dann werden alle Einstellung gesetzt.	64616F6C (Jen auf die l	"load") ges Default-We	chrieben rte zurück-

 Tab. 37: Einstellungen auf Default-Werte zurücksetzen

(i) INFO	Einstellungen aus dem EEPROM laden
	Beim Booten werden automatisch die zuletzt gespeicherten Einstellungen geladen. Bei einem Firmwareupdate werden die Einstellungen möglicherweise auf die Default-Werte zurückgesetzt.

Einstellen der Parameter

Das Einstellen der Parameter läuft wie folgt ab:

- 1. Die Fahrzeugsteuerung konfiguriert die Parameter des JXM-IO-EW30-G27.
- 2. Die Fahrzeugsteuerung speichert die Einstellungen per Index 0x1010 im EEPROM ab.
- 3. Die Fahrzeugsteuerung liest den CRC über Index 0x4556 Subindex 1 aus und speichert diesen Wert lokal remanent ab.
- 4. Nach einem Neustart des JXM-IO-EW30-G27 vergleicht die Fahrzeugsteuerung den lokal gespeicherten CRC-Wert mit dem Wert in Index 0x4556 Subindex 1. Wenn diese nicht übereinstimmen, muss die Parametrierung erneut starten.

(i) INFO	Aktivierung der Änderungen
	Die Änderungen an den Indizes 0x1010 und 0x1011 werden erst nach ei- nem Neustart aktiv.

8.5 Systemparameter

Index	Subin- dex	Beschreibung	Тур	Zugriff	Default- Wert
0x4556	0	Anzahl der unterstützen Einträge	U8	R	4
	1	CRC der aktuellen Parametereinstellungen*	U32	R	
		Mit der CRC kann geprüft werden, ob die Ein- stellungen neu ins Gerät übertragen werden müssen.			
3	CAN-Baudrate	U8	R/W	1	
		0: 125 kBaud	-		
		1: 250 kBaud (Default)			
		2: 500 kBaud			
		3: 1 MBaud			
	4	CANopen-Node-ID, welche zukünftig verwen- det werden soll (ohne Config-Pins)	U8	R/W	0x30
	5	CANopen-Node-ID, welche derzeit verwendet wird (ohne Config-Pins)	U8	R	0x30
	6	Offset zur BasisID (Config-Pins)	U8	R	0

Tab. 38: Systemparameter

*Die CRC wird über die im Kapitel Einstellungen permanent speichern und auf Default-Werte zurücksetzen [▶ 43] beschriebenen aktuellen Parameterwerte berechnet.

Aktivierung der eingestellten Systemparameter Die eingestellten Systemparameter können Sie erst nach einem Neustart des Systems nutzen.

8.6 Mapping von Prozessdatenobjekten (PDOs)

Die Sende-PDOs (TPDO 1 ... 4) und Empfangs-PDOs (RPDO 1 ... 4) stellen Sie über die folgenden Parameter ein.

(i) INFO

Weiterführende Informationen

Weiterführende Informationen zum Thema finden Sie im Themenhandbuch *CANopen-STX-API* im Download-Bereich unserer <u>Homepage</u>.

Gültigkeit eines PDOs

Über das MSB (most mignificant bit) der COB-ID bestimmen Sie die Gültigkeit eines PDOs. Um ein PDO zu mappen, setzen Sie das PDO zuerst auf ungültig (Bit 31 = 1) und anschließend auf gültig (Bit 31 = 0).

Bit	Wert	Bedeutung
31 (MSB)	0	PDO existiert/ist gültig
	1	PDO existiert nicht/ist ungültig
30	0	RTR (Remote Transmission Request) für dieses PDO zulässig
	1	Keine RTR für dieses PDO zulässig
29	0	11-Bit-ID (CAN 2.0A)
	1	29-Bit-ID (CAN 2.0B)
28 11	0	Wenn Bit 29 = 0
	Х	Wenn Bit 29 = 1: Bits 28 11 der 29-Bit-COB-ID
10 0 (LSB)	Х	Bits 10 0 der COB-ID

Tab. 39: Gültigkeit eines PDOs

8.6.1 RPDO-Kommunikationsparameter

Index	Subin- dex	Beschreibung	Тур	Zugriff	Einheit	Default-Wert	
0x1400 0x1403	0	Anzahl der un- terstützen Ein- träge	U8	R		0	
	1	COB-ID (frei konfigurierbarer	U32	R/W		RPDO 1: Index 0x1400	0x200 + Node-ID
	Wert für PDOs)				RPDO 2: Index 0x1401	0x300 + Node-ID	
						RPDO 3: Index 0x1402	0x400 + Node-ID
						RPDO 4: Index 0x1403	0x500 + Node-ID
	2	Transmission Type	U8	R		Azyklischer Typ =	0
	3	Inhibit Time	U16	R/W	0,1 ms	100 (10 ms)	
	5	Event Time	U16	R/W	1 ms	500 (500 ms)	

Tab. 40: RPDO-Kommunikationsparameter

(i) INFO

Kommunikationsparameter beschreiben

Die Kommunikationsparameter sind nur dann beschreibbar, wenn sich der JXM-IO-EW30-G27 im Zustand **Pre-Operational** befindet.

8.6.2 TPDO-Kommunikationsparameter

Index	Subin- dex	Beschreibung	Тур	Zugriff	Einheit	Default-Wert	
0x1800 	0	Anzahl der unter- stützen Einträge	U8	R		0	
0x1803 1	1	COB-ID (frei kon- figurierbarer	U32	R/W		TPDO 1: Index 0x1800	0x180 + Node-ID
		Wert für PDOs)				TPDO 2: Index 0x1801	0x280 + Node-ID
						TPDO 3: Index 0x1802	0x380 + Node-ID
						TPDO 4: Index 0x1803	0x480 + Node-ID
	2	Transmission Type	U8	R		Azyklischer Typ =	0
	3	Inhibit Time	U16	R/W	0,1 ms	100 (10 ms)	
	5	Event Time	U16	R/W	1 ms	500 (500 ms)	

Tab. 41: TPDO-Kommunikationsparameter

(i) INFO

Kommunikationsparameter beschreiben

Die Kommunikationsparameter sind nur dann beschreibbar, wenn sich der JXM-IO-EW30-G27 im Zustand **Pre-Operational** befindet.

Eine Beispielkonfiguration finden Sie im Kapitel Eingangswerte eines Interfaces via TPDO senden [> 49].

8.6.3 Mapping-Tabellen

RPDO-Mappingtabelle

Index	Subin- dex	Beschreibung	Тур	Zugriff	Default-Wert
0x1600	0	Anzahl der unterstützen Einträge	U8	R/W	0
	1	Erstes Objekt, das gemappt wird	U32	R/W	
0x1603	2	Zweites Objekt, das gemappt wird	U32	R/W	
			U32	R/W	
	64	64. Objekt, das gemappt wird	U32	R/W	

Tab. 42: RPDO-Mappingtabelle

т	D	n	n	_N		n	ni	in	a	ta	h	ام	ما
	Г	υ	U	-14	a	μ	μ		y	ια	υ	ei	ie

Index	Subin- dex	Beschreibung	Тур	Zugriff	Default-Wert
0x1A00	0	Anzahl der unterstützen Einträge	U8	R/W	0
	1	Erstes Objekt, das gemappt wird	U32	R/W	
0x1A03 -	2	Zweites Objekt, das gemappt wird	U32	R/W	
			U32	R/W	
	64	64. Objekt, das gemappt wird	U32	R/W	

 Tab. 43:
 TPDO-Mappingtabelle

Mapping-Eintrag U32

Byte	0	1	2 und 3		
Inhalt	Bit-Länge	Subindex	Index		
Tab. 44: Mapping-Eintrag U32					

8.6.4 Mapping von Digitalwerten

Alternativ zum bitweisen Mapping von Digitalwerten auf PDOs können Sie auch das Objekt 0x6000 für das Mapping von Digitalwerten verwenden.

Index	Subindex	Beschreibung	Тур	Zugriff	Default- Wert
0x6000	0	Anzahl der unterstützen Einträge	U8	R	4
	1	Eingänge DIP und PWMi_H3 lesen	U8	R	
		Bits 0 3 stellen Index 0x2108 0x210b Subindex 16 dar.			
		Bits 4 … 7 stellen Index 0x210c … 0x210f Subindex 16 dar.			
	2	Eingänge DIP und DO_H3 lesen	U8	R	
		Bits 0 3 stellen Index 0x2108 0x210b Subindex 16 dar.			
		Bits 4 … 7 stellen Index 0x2116 … 0x2119 Subindex 16 dar.			
	3	Eingänge PWMi_H3 und DO_H3 lesen	U8	R	
		Bits 0 … 3 stellen Index 0x210c … 0x210f Subindex 16 dar.			
		Bits 4 … 7 stellen Index 0x2116 … 0x2119 Subindex 16 dar.	_		
	4	Eingänge PWM_H7 lesen	U8	R	
		Bits 0 … 5 stellen Index 0x2110 … 0x2115 Subindex 16 dar.			

 Tab. 45: Mapping von Digitalwerten

Digitalwert anzeigen

Das SDO zeigt den Wert I_DIGITAL für ausgewählte Werte. Wenn Sie den entsprechenden Port zuvor nicht für Digitalwerte konfiguriert haben, dann erfolgt keine Fehlermeldung und der Wert in diesem Bit ist nicht definiert.

Byteweises Mapping aktivieren

Um nach dem Systemstart vom standardmäßigen bitweisen Mapping auf das byteweise Mapping umzuschalten, müssen 2 SDO-Kommandos an den Knoten gesendet werden:

Index	Subindex	Beschreibung	Datenlänge	Wert
0x2001	2	Byteweises Mapping aktivieren	4 Byte	0xb4c0ffee
	3		4 Byte	1

 Tab. 46: SDO-Kommandos, Aktivierung byteweises Mapping

8.6.5 Eingangswerte eines Interfaces via TPDO senden

Um Eingangswerte eines Interfaces via TPDO zu senden, befolgen Sie folgende Schritte:

- 1. Schalten Sie den JXM-IO-EW30-G27 in den Zustand Pre-Operational.
- 2. Weisen Sie das gewünschte Interface zu.
- 3. Machen Sie das TxPDO-Objekt ungültig.
- 4. Deaktivieren Sie das Mapping.
- 5. Tragen Sie den Mapping-Wert ein.
- 6. Aktivieren Sie das Mapping.
- 7. Machen Sie das TxPDO-Objekt gültig.
- 8. Schalten Sie den JXM-IO-EW30-G27 in den Zustand Operational.

STX-Beispiel

Das folgende STX-Beispiel zeigt Ihnen auszugsweise, wie Sie den Wert Al1 Voltage auf TPDO1 ausgeben können.

```
//Schalte JXM-IO-EW30-G27 in den Zustand Pre-Operational
CanOpenSetCommand(
cCanChannel, CAN CMD NMT, CAN CMD NMT Value (
cJXMNodeId, CAN NMT PREOPERATIONAL));
//AI 1 Port-Typ auf AI VOLTAGE (=1)
iTemp := 1;
CanOpenDownloadSDO(
cCanChannel, cJXMNodeId, 0x2100, 1, CANOPEN DWORD, 4, iTemp, iBusy);
when SDOACCESS FINISHED (iBusy) continue;
//TxPDO-Objekt ungültig machen, oberstes Bit auf 1 setzen
dTemp := 0x8000000+0x180+0x30;
CanOpenDownloadSDO(
cCanChannel, cJXMNodeId, 0x1800, 1, CANOPEN DWORD, 4, dTemp, iBusy);
when SDOACCESS FINISHED (iBusy) continue;
//Mapping deaktivieren
dTemp := 0;
CanOpenDownloadSDO(
cCanChannel, cJXMNodeId, 0x1a00, 0, CANOPEN BYTE, 1, dTemp, iBusy);
when SDOACCESS FINISHED (iBusy) continue;
//Wert für AI1 Voltage eintragen
dTemp := 0x21000a10; // Index: 0x2100, Subindex 0x0a = 10, Länge 0x10 = 16 Bit
CanOpenDownloadSDO(
cCanChannel, cJXMNodeId, 0x1a00, 1, CANOPEN DWORD, 4, dTemp, iBusy);
when SDOACCESS FINISHED (iBusy) continue;
//Mapping aktivieren
dTemp := 1; // Anzahl Mapping-Einträge
CanOpenDownloadSDO(
cCanChannel, cJXMNodeId, 0x1a00, 0, CANOPEN BYTE, 1, dTemp, iBusy);
when SDOACCESS FINISHED (iBusy) continue;
//Objekt gültig machen, oberstes Bit auf 0 setzen, PDO-COB angeben
dTemp := 0x180+0x30;
CanOpenDownloadSDO(
cCanChannel, cJXMNodeId, 0x1800, 1, CANOPEN DWORD, 4, dTemp, iBusy);
when SDOACCESS FINISHED (iBusy) continue;
```

//Schalte JXM-IO-EW30-G27 in den Zustand Operational CanOpenSetCommand(cCanChannel,CAN_CMD_NMT,CAN_CMD_NMT_Value(cJXMNodeId,CAN_NMT_OPERATIONAL));

8.7 Frequenzmessung an den digitalen Eingängen

Für die Frequenzmessung an den digitalen Eingängen stehen 2 Messmethoden zur Verfügung:

- Torzeitmessung
- Impulslängenmessung

Torzeitmessung

Die Torzeit (GATE_TIME) ist der Zeitraum, in dem Impulse gezählt werden. Messungen hochfrequenter Signale können damit gut erfasst werden. Die Werte I_FREQUENCY und I PERIODIC TIME werden über dieses Verfahren ermittelt.

Um für Signale mit niedriger Frequenz die Auflösung von 0,1 Hz zu erreichen, muss die Torzeit entsprechend angepasst werden. Die maximale Torzeit beträgt 10 Sekunden.

Impulslängenmessung

Diese Methode eignet sich zur Auflösung niedriger Frequenzen. Sie basiert auf der Zeitdauer zwischen den Flankenwechseln. Dazu ist es erforderlich, die Werte I_HPULSE_TIME und I_LPULSE_TIME extern zu verrechnen:

f [mHz] = 10⁹ / (I_HPULSE_TIME + I_LPULSE_TIME)

8.8 Erfassen von Encoder-Signalen

Mit dem Interface ENCI_PNP können Sie Encoder-Signale erfassen. Die Encoder-Eingänge haben keine Entprellung.

(i) INFO	Automatische Konfiguration der Eingänge als ENCI_PNP			
	Für die Erfassung von Encoder-Signalen sind immer 2 Eingänge erforder- lich.			
Wenn Sie z.B. den Eingang DI_P_3 als ENCI_PNP konfigurieren, o wird der benachbarte Eingang DI_P_4 automatisch ebenfalls als ENCI_PNP konfiguriert.				
	Wenn Sie nun einen der beiden Eingänge umkonfigurieren, dann wird der benachbarte Eingang automatisch INAKTIV – es werden keine Encoder- Signale mehr erfasst.			

Auflösung

Die Auflösung stellen Sie über den Parameter RESOLUTION ein.

RESOLUTION	Laufrichtung	Auflösung
0 (Default)	Vorwärts	$DI_P_3 1 \ 2 \ 3 \ 4 \ 1 \ 4 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$
	Rückwärts	$DI_P_3 \xrightarrow{1}_{00} 10 11 01 00 10 11 01 00 10 11 01 00 10} \xrightarrow{1}_{-1} \xrightarrow{1}_{-$
1	Vorwärts	$DI_P_3 1 \ 2 \ 3 \ 4 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$
	Rückwärts	$DI_P_3 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$
2	Vorwärts	DI_P_4 00 01 11 10 00 01 11 10 00 01 11 10 00 0
	Rückwärts	DI_P_3 DI_P_4 0010 11 01 00 10 11 01 00 10 11 01 00 10 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -

Tab. 47: Auflösung der Encoder-Signale

Eingangswerte für ENCI_PNP

Sie können die folgenden Eingangswerte abfragen:

Eingangswert	Beschreibung	PDO-Sendebedingung
I_COUNTER	Vorwärts- und rückwärtslaufen- der 32-Bit-Zähler	Event Time
I_DIRECTION	Aktuelle Laufrichtung	Bei Veränderung

Tab. 48: Eingangswerte für ENCI_PNP

Stillstand signalisieren

Mit dem Parameter TIMEOUT_TIME bestimmen Sie, nach welcher Zeit ein Stillstand signalisiert werden soll. Der Default-Wert ist 1.000 ms, d. h. wenn 1.000 ms lang keine Impulse mehr kommen, dann ist I_DIRECTION = 0.

8.9 NMT-Kommandos

Der JXM-IO-EW30-G27 unterstützt folgende NMT-Kommandos:

NMT-Kommandos	Beschreibung
RESET	Setzt den JXM-IO-EW30-G27 zurück
PREOPERATIONAL	Wechselt in den Zustand Pre-Operational
OPERATIONAL	Wechselt in den Zustand Operational
START	Startet den JXM-IO-EW30-G27
STOP	Stoppt den JXM-IO-EW30-G27, der JXM-IO-EW30-G27 sendet aber weiterhin Heartbeat und akzeptiert NMT-Kommandos.

Tab. 49: Unterstützte NMT-Kommandos

8.10 Fehlerbehandlung

Emergency-Object-Telegramme (EMCY-Telegramme)

Die EMCY-Telegramme werden beim Start oder nach Änderungen mit einer Inhibit Time von 50 ms versendet.

Byte	Inhalte		
0 1 :	Emergency Error Code		
2	= Fehlerregister	Objekt 0x1001	
3	I/O-Offset 0x21nn, dabei	ist nn der Offset	
4 7	= Herstellerspezifisches "E	Herstellerspezifisches "Error Field"	
	Es wird immer 0 gesende	Es wird immer 0 gesendet.	

Tab. 50: Byte-Werte der Emergency-Objekte

Fehlerspeicher (Error History)

Die EMCY-Fehler werden in einem Stapelspeicher abgelegt. Über den Subindex 1 erhalten Sie Zugriff auf den neuesten Fehler.

Byte	Inhalte	
0 1	= Emergency Error Code	
2	= Fehlerregister	Objekt 0x1001
3	/O-Offset 0x21nn, dabei ist nn der Offset	

Tab. 51: Byte-Werte des Fehlerspeichers

Der Fehlerspeicher ist über den Index 0x1003 erreichbar.

Index	Subindex	Beschreibung	Тур	Zugriff	Default- Wert
0x1003	0	Anzahl der Fehler	U8	R/W	0
		Die Eingabe von 0 löscht den ge- samten Speicher. Werte > 0 sind nicht erlaubt.			
	1	Neuester "Error Field"-Eintrag	U32	R	
	2 254	Weitere aktuelle "Error Field"- Einträge	U32	R	

Tab. 52: Subindizes des Fehlerspeichers

Emergency Error Codes

Code	Beschreibung	
0x0000	Kein Fehler oder Fehler-Reset	
0x1000	Generischer Fehler	
0x2300	Gesamtstrom ist zu hoch	
0x3100	Spannung außerhalb des geforderten Toleranzbereichs	
0x4200	Gerätetemperatur zu hoch	
0x8110	CAN-Data-Overrun (Objekte verloren)	
0x8130	Life-Guard-Error oder Heartbeat-Error	
0x8140	Wiederhergestellt aus dem Zustand Bus-Off	
0x8210	Verarbeitungsfehler durch fehlerhafte Länge der PDOs	
0x8220	PDO-Länge überschritten	
0xff00	Konfigurationsfehler am Gerät	
0xff01	I/O-Port OVERVOLTAGE	
0xff02	I/O-Port OVERCURRENT	
0xff03	I/O-Port SUPPLYFAULT	
0xff05	I/O-Port OPEN_CIRCUIT	
0xff06	I/O-Port TIMEOUT	
0xff07	I/O-Port CC_UNLOCK	

Tab. 53: Emergency-Error-Codes

8.10.1 Heartbeat

Das Gerät sendet zyklisch eine Heartbeat-Nachricht, sobald es sich im Zustand Pre-Operational befindet.

Index	Subindex	Beschreibung	Тур	Zugriff	Default-Wert
0x1017	0	Producer Heartbeat Time in ms	U16	R/W	1000
Tab 54: Index der Heartheat Nachricht					

Tab. 54: Index der Heartbeat-Nachricht

Heartbeat-Überwachung

Die Anzahl der zu überwachenden Heartbeats lässt sich mit der entsprechenden Master-Node-ID und entsprechendem Timeout über die Steuerung einstellen. Wenn das Gerät keinen Heartbeat innerhalb der angegebenen Timeout-Zeit erkennt (z. B. im Falle eines Kommunikationsabbruchs) erfolgt der Wechsel in den Zustand Stopped und die Ausgänge werden energiefrei geschaltet.

Index	Sub- index	Beschr	eibung			Тур	Zugriff	Default- Wert
0x1016	0	Anzahl d	Anzahl der zu überwachenden Heartbeats			U8	R/W	0
	1 4	Zu überv	Zu überwachende Node-ID und Timeout			U32	R/W	
			MSB		LSB			
		Bits	31 24	23 16	15 0			
		Wert	Reserviert	Node-ID	Heartbeat-			
			(Wert: 00h)		Timeout			
		Тур	-	U8	U16			

Tab. 55: Heartbeat-Überwachung

Wertebereiche

- Node-ID: 0 ... 127
- Heartbeat-Timeout: 0 ... 65535 (in ms)

Beispiel

Kommando	Beschreibung
r 0x1016 0	Lese Anzahl überwachbarer Node-IDs.
w 0x1016140x007F03e8	Setze erste zu überwachende Node-ID auf 127
1 = erster Eintrag	mit Timeout 1.000 ms.
■ 4 = 4 Bytes (U32)	
00 = Reserviert	
■ 7F = 127 (Node-ID)	
■ 3e8 = 1000 (Timeout in ms)	
r 0x1016 1	Lese erste Konfiguration im ersten Eintrag.

Tab. 56: Beispiel Heartbeat-Überwachung

8.11 Stromregelung mit PID-Regler

Die einzelnen P-, I- und D-Regler haben üblicherweise folgende Charakteristik:

Abb. 11: Vergleich der Reglertypen in einem Regelkreis

Α	Sprungantwort
В	Zeit

8.11.1 Testszenario

Die Regelung wurde am JXM-IO-EW30-G27 unter den folgenden Bedingungen getestet:

Bedingung	Beschreibung	
Ausgang	PWM mit 1 kHz	
Regelzeit	10 ms	
Last	induktiv	eine nicht weiter bezeichnete Ventilspule
VBAT	24 V	Spule macht bei einem Kurzschluss 4,8 A $ ightarrow$ ~5 Ω

 Tab. 57:
 Rahmenbedingungen des Testszenarios

Mit JetSym wurde ein Testszenario aufgebaut, bei dem der Sollwert zwischen 0,3 A und 0,7 A hin- und herschaltet.

Regelparameter: P = 100.000, I = 0, D = 0 Gemessen: Blau = Sollwert, Rot = Istwert

Abb. 12: Testszenario mit den Regelparametern P = 100.000, I = 0, D = 0

Der P-Regler arbeitet mit diesem Wert gut. Der Sollwert wird jedoch nicht erreicht, was dem typischen Verhalten eines P-Reglers entspricht (siehe Stromregelung mit PID-Regler [▶ 56]).

Regelparameter: P = 100.000, I = 5.000, D = 0 Gemessen: Blau = Sollwert, Rot = Istwert

Der I-Regler arbeitet ebenfalls zufriedenstellend, der Sollwert wird bei dieser Einstellung erreicht.

Abb. 14: Testszenario mit den Regelparametern P = 100.000, I = 5.000, D = 400

Der D-Regler bewirkt, dass sich der Istwert dem Sollwert schneller annähert.

Abb. 15: Testszenario mit den Regelparametern P = 100.000, I = 10.000, D = 400

In diesem Beispiel wurde zu Anschauungszwecken die Periode des Sollsignales mit ca. 10 ms gewählt. Für eine schnelle Regelung sollte insbesondere der P-Wert erhöht werden und die Abtastzeit auf 5 ms verkleinert werden. Es können Einregelzeiten < 50 ms erreichet werden.

8.11.2 Strommessung an den PWMi_H3_X-Ausgängen

Die Strommessung an den PWMi_H3_X-Ausgängen wird über einen Shunt-Widerstand realisiert. Am Messverstärker befindet sich ein Tiefpass mit R * C = 1 ms. Dieser Tiefpass sorgt für einen integralen Anteil.

Gemessen wird der arithmetische Mittelwert. Die CPU misst den Strom ausschließlich in der Mitte der Einschaltzeit des PWM-Signals. Es wird kein Verhältnis der Einschaltzeit zur Ausschaltzeit berechnet, daher ist ein integraler Anteil für eine möglichst korrekte Messung notwendig.

Üblicherweise haben Ventile durch ihre Eigeninduktivität schon eine gute Mittelung des Laststromes. Rein ohmsche Lasten können am Regler betrieben werden, wenn die PWM-Frequenz auf 1 kHz gesetzt wird. Hierfür ist der oben aufgeführte Tiefpass vorgesehen. Für kleinere Frequenzen (z. B. 100 Hz) ist die Strommessung an rein ohmschen Lasten zu ungenau.

8.12 Dither-Technik zur Ansteuerung von Hydraulikventilen

Proportionale Hydraulikventile werden üblicherweise mit PWM-Signalen von 100 Hz ... 200 Hz angesteuert. Die niedrige Frequenz bewirkt, dass die Ventilnadel nicht vollständig zur Ruhe kommt und die Ansteuerung ohne größere Hystereseeffekte funktioniert.

Ist eine Ansteuerung des Ventils nur mit höheren Frequenzen (1 kHz) zulässig, so kann das PWM-Signal moduliert werden. Diese als Dither-Technik bezeichnete Ansteuerung bewirkt ebenfalls, dass die Nadel nicht zur Ruhe kommt. Im JXM-IO-EW30-G27 können Sie dieses Dither-Signal in Frequenz und Amplitude einstellen:

- Mit Hilfe der Dither-Amplitude legen Sie die Änderung der Impulslänge des Ausgangssignals fest (max. 20 % der Periodenlänge).
- Mit Hilfe der Dither-Frequenz legen Sie die Häufigkeit der Änderung fest (100 Hz ... 200 Hz).

Abb. 16: Dithering

(i) INFO	Wenn Sie die Dither-Technik in Verbindung mit dem PID-Regler verwer
	den wollen, dann testen Sie zuvor gewissenhatt das Regelverhalten. Die Modulation verändert durchgehend den Ist-Wert des Reglers. Wenn die
	Regelung nicht zufriedenstellend funktioniert, dann können Sie Folgendes versuchen:
	 Setzen Sie die Amplitude des Dither-Signals herab.
	 Verwenden Sie den Mittelwertfilter an der Stromrücklesung des Aus- ganges.
	Verändern Sie die PID-Parameter.

9 Instandhaltung

9.1	Wartung, Instandsetzung und Entsorgung
Wartung	Das Gerät ist wartungsfrei. Im laufenden Betrieb sind keine Inspektions- und Wartungsarbeiten nötig.
Instandsetzung	Defekte Komponenten können zu gefährlichen Fehlfunktionen führen und die Si cherheit beeinflussen. Instandsetzungsarbeiten am Gerät dürfen nur durch den Hersteller erfolgen. Das Öffnen des Geräts ist untersagt.
Entsorgung	Für die Entsorgung gilt die Environmental Product Declaration EPD. Die gelten- den Umweltschutzrichtlinien und Vorschriften des Betreiberlandes müssen einge- halten werden. Das Produkt ist als Elektronikschrott zu entsorgen. Verpackungs- materialien müssen der Wiederverwendung zugeführt werden.
Umbauten und Veränderungen am	Umbauten und Veränderungen am Gerät und dessen Funktion sind nicht gestat- tet. Umbauten am Gerät führen zum Verlust jeglicher Haftungsansprüche.
Gerät	Die Originalteile sind speziell für das Gerät konzipiert. Die Verwendung von Tei- Ien und Ausstattungen anderer Hersteller ist nicht zulässig.
	Für Schäden, die durch die Verwendung von nicht originalen Teilen und Ausstat- tungen entstehen, ist jegliche Haftung ausgeschlossen.
9.2	Lagerung und Transport
Lagerung	Beachten Sie bei der Einlagerung des Geräts die Umweltbedingungen im Kapitel Technische Daten.
Transport und Verpackung	Das Produkt enthält elektrostatisch gefährdete Bauelemente, die durch unsach- gemäße Behandlung beschädigt werden können. Beschädigungen am Gerät können dessen Zuverlässigkeit beeinträchtigen.
	Zum Schutz vor Schlag- und Stoßeinwirkungen muss der Transport in der Origi- nalverpackung oder in einer geeigneten elektrostatischen Schutzverpackung er- folgen. Prüfen Sie bei beschädigter Verpackung das Gerät auf sichtbare Schäden und

Prufen Sie bei beschädigter Verpackung das Gerat auf sichtbare Schäden und informieren Sie umgehend den Transporteur und die Jetter AG über Transportschäden. Bei Beschädigungen oder nach einem Sturz ist die Verwendung des Geräts untersagt.

10 Service

10.1 Kundendienst

Bei Fragen, Anregungen oder Problemen steht Ihnen unser Kundendienst mit seiner Expertise zur Verfügung. Diese können Sie telefonisch über unsere Technische Hotline oder über unser Kontaktformular auf unserer Homepage erreichen:

Technische Hotline | Jetter - We automate your success.

Oder schreiben Sie eine E-Mail an die Technische Hotline: *hotline@jetter.de*

Bei E-Mail- oder Telefonkontakt benötigt die Hotline folgende Informationen:

- Hardware-Revision und Seriennummer Die Seriennummer und Hardware-Revision Ihres Produkts entnehmen Sie dem Typenschild.
- Betriebssystemversion
 Die Betriebssystemversion entnehmen Sie aus dem Index 0x100A.

11 Ersatzteile und Zubehör

HINWEIS

Ungeeignetes Zubehör kann Produktschäden verursachen

Teile und Ausstattungen anderer Hersteller können Funktionsbeeinträchtigungen und Produktschäden verursachen.

 Verwenden Sie ausschließlich von der Jetter AG empfohlenes Zubehör.

Abbildungsverzeichnis

Abb.	1	Aufbau	8
Abb.	2	Linke Position	9
Abb.	3	Rechte Position	9
Abb.	4	Typenschild	10
Abb.	5	Abmessungen in mm	11
Abb.	6	Diagramm: Prinzip der Linearisierung	17
Abb.	7	Pinbelegung Platine (Draufsicht)	24
Abb.	8	DIP-Schalter 1 4	25
Abb.	9	M12-Stecker, 5-polig, A-codiert	28
Abb.	10	Konzept und Ansteuerung	33
Abb.	11	Vergleich der Reglertypen in einem Regelkreis	56
Abb.	12	Testszenario mit den Regelparametern P = 100.000, I = 0, D = 0	57
Abb.	13	Testszenario mit den Regelparametern P = 100.000, I = 5.000, D = 0	57
Abb.	14	Testszenario mit den Regelparametern P = 100.000, I = 5.000, D = 400	58
Abb.	15	Testszenario mit den Regelparametern P = 100.000, I = 10.000, D = 400	58
Abb.	16	Dithering	59

Tabellenverzeichnis

Tab. 1	Mechanische Eigenschaften	12
Tab. 2	Versorgung der Ausgangstreiber	12
Tab. 3	Versorgung der ECU	12
Tab. 4	Massebezug	12
Tab. 5	Umweltbedingungen	13
Tab. 6	Impulse ISO 7637-2	13
Tab. 7	Impulse ISO 16750-2	13
Tab. 8	Einstrahlung ISO 11452	13
Tab. 9	Abstrahlung CISPR 25	13
Tab. 10	ESD EN 61000-4-2	14
Tab. 11	Ausgänge PWMi_H3_1 … PWMi_H3_4	14
Tab. 12	Ausgänge PWM_H7_1 … PWM_H7_6	15
Tab. 13	Ausgänge DO_H3_1 DO_H3_4	16
Tab. 14	Sensorausgang VEXT_SEN	16
Tab. 15	Analoge Eingänge	18
Tab. 16	Digitale Eingänge DI_P_1 DI_P_4	19
Tab. 17	Konfigurationseingänge CFG1 … CFG2	19
Tab. 18	Anforderungen an die Montagefläche	21
Tab. 19	Montagematerial	21
Tab. 20	Verwendete Abkürzungen	25
Tab. 21	Geräteinformationen	29
Tab. 22	EDS-Information	30
Tab. 23	Elektronisches Typenschild	30
Tab. 24	JetEasyDownload Parameter	31
Tab. 25	Übersicht Ports und zulässige Interfaces	33
Tab. 26	SDO-Abbilder der I/O-Ports	34
Tab. 27	Subindizes für den Zugriff auf Parameter, Werte und Status	34
Tab. 28	Übersicht - I/O- Interfaces	35
Tab. 29	Eingangswerte	37
Tab. 30	Ausgangswerte	38
Tab. 31	Parameter	38
Tab. 32	Status	41
Tab. 33	Offset zur eingestellten Basis-Node-ID	42
Tab. 34	Gerätediagnose	42
Tab. 35	Statusinformation	43
Tab. 36	Einstellungen im EEPROM speichern	43
Tab. 37	Einstellungen auf Default-Werte zurücksetzen	43
Tab. 38	Systemparameter	44
Tab. 39	Gültigkeit eines PDOs	45

Tab. 40	RPDO-Kommunikationsparameter	45
Tab. 41	TPDO-Kommunikationsparameter	46
Tab. 42	RPDO-Mappingtabelle	46
Tab. 43	TPDO-Mappingtabelle	47
Tab. 44	Mapping-Eintrag U32	47
Tab. 45	Mapping von Digitalwerten	47
Tab. 46	SDO-Kommandos, Aktivierung byteweises Mapping	48
Tab. 47	Auflösung der Encoder-Signale	52
Tab. 48	Eingangswerte für ENCI_PNP	52
Tab. 49	Unterstützte NMT-Kommandos	53
Tab. 50	Byte-Werte der Emergency-Objekte	53
Tab. 51	Byte-Werte des Fehlerspeichers	53
Tab. 52	Subindizes des Fehlerspeichers	54
Tab. 53	Emergency-Error-Codes	54
Tab. 54	Index der Heartbeat-Nachricht	55
Tab. 55	Heartbeat-Überwachung	55
Tab. 56	Beispiel Heartbeat-Überwachung	55
Tab. 57	Rahmenbedingungen des Testszenarios	56

Jetter AG Gräterstraße 2 71642 Ludwigsburg www.jetter.de

E-Mail info@jetter.de Telefon +49 7141 2550-0

We automate your success.