
PROCESS-PLCPROCESS-PLCPROCESS-PLCPROCESS-PLC
Programming ManualProgramming ManualProgramming ManualProgramming Manual

JETTER GmbH
Gräterstraße 2
D-71642 Ludwigsburg
Tel +49 7141 2550 0
Fax +49 7141 2550 425
Hotline +49 7141 2550 444
E-Mail jetter@jetter.de
Internet www.jetter.de

Bestell-Nr. 05 98 Printed in Germany

Edition 1.2
February 1999

JETTER GmbH reserves the right to make alterations to its products
in the interest of technical progress. These alterations need not be
documented in every single case.

This manual and the information contained herein has been
compiled with the necessary care. JETTER GmbH makes no war-
ranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantibility and fitness for
a particular purpose. JETTER GmbH shall not be liable for errors
contained herein or for incidental or consequential damage in
connection with the furnishing, performance, or use of this mate-
rial.

The brand names and product names used in this hardware de-
scription are trade marks or registered trade marks of the respec-
tive title owner.

PROCESS-PLC

 Programming 2

Table of ContentsTable of ContentsTable of ContentsTable of Contents

I. SYMPAS PROGRAMMING ENVIRONMENTI. SYMPAS PROGRAMMING ENVIRONMENTI. SYMPAS PROGRAMMING ENVIRONMENTI. SYMPAS PROGRAMMING ENVIRONMENT 5

1. Survey1. Survey1. Survey1. Survey 5

2. The SYMPAS System2. The SYMPAS System2. The SYMPAS System2. The SYMPAS System 7
2.1 Hardware (Requirements)2.1 Hardware (Requirements)2.1 Hardware (Requirements)2.1 Hardware (Requirements) 7
2.2 Software2.2 Software2.2 Software2.2 Software 7
2.3 Hardware Installation2.3 Hardware Installation2.3 Hardware Installation2.3 Hardware Installation 8
2.4 Software Installation2.4 Software Installation2.4 Software Installation2.4 Software Installation 9
2.4 SYMPAS for Several Networked Controllers (JETWay-H)2.4 SYMPAS for Several Networked Controllers (JETWay-H)2.4 SYMPAS for Several Networked Controllers (JETWay-H)2.4 SYMPAS for Several Networked Controllers (JETWay-H) 12

3.3.3.3. Operation of the SYMPAS Programming EnvironmentOperation of the SYMPAS Programming EnvironmentOperation of the SYMPAS Programming EnvironmentOperation of the SYMPAS Programming Environment 16
3.1. Starting of the SYMPAS Programming Environment3.1. Starting of the SYMPAS Programming Environment3.1. Starting of the SYMPAS Programming Environment3.1. Starting of the SYMPAS Programming Environment 16
3.2 Description of the Screens3.2 Description of the Screens3.2 Description of the Screens3.2 Description of the Screens 17
3.3 Program Input 19

3.3.1 Keys and Functions in the Program Editor 25
3.3.2 Program Transfer 28

3.4 The Setup Screen (Setup Mode) 29
3.4.1 Keys and Functions in the Setup Screen 30
3.4.2 Description of the Fields 31

3.5 Description of the Menus3.5 Description of the Menus3.5 Description of the Menus3.5 Description of the Menus 37
3.5.1 Keys and Functions in the Pull-Down Menus 37
3.5.2 The "Project" Menu 38
3.5.3 The "File" Menu 42
3.5.4 The "Edit" Menu 46
3.5.5 The "Block" Menu 48
3.5.6 The "Transfer" Menu 51
3.5.7 The "Listing" Menu 57
3.5.8 The "Monitor" Menu 59
3.5.9 The "Scope" Menu 61
3.5.10 The "Special" Menu 68

3.6 Symbolic Programming - the Symbol Editor 77
3.6.1 Keys and Functions in the Symbol Editor 78
3.6.2 Creating a Symbol File (in the Symbol Editor) 81

3.7 INCLUDE Files 84
3.7.1 INCLUDE Files in the Program Editor 84
3.7.2 INCLUDE Files in the Symbol Editor 87

3.8 Error Messages3.8 Error Messages3.8 Error Messages3.8 Error Messages 90
3.9 Files, Extensions, etc.3.9 Files, Extensions, etc.3.9 Files, Extensions, etc.3.9 Files, Extensions, etc. 100
3.10 Miscellaneous3.10 Miscellaneous3.10 Miscellaneous3.10 Miscellaneous 103

3.10.1 Indirect Addressing 103
3.10.2 Commentaries 103
3.10.3 Call-up by the /o Switch (Laptop, Notebook) 104
3.10.4 The NOSYMPAS.EXE Program 105
3.10.5 Switching to DOS 106
3.10.6 Password 106
3.10.7 SYMPAS Version 3.09 ff, and MIKRO up to 2.10 107
3.10.8 SYMPAS and PASE-J (up to version 4.04) 107
3.10.9 SYMPAS in the Network (PASE-E up to version 4.04) 108
3.10.10 Further Command Line Parameters (Call-Up Switches) 108

II. SYMPAS PROGRAMMINGII. SYMPAS PROGRAMMINGII. SYMPAS PROGRAMMINGII. SYMPAS PROGRAMMING 109

Programming

Programming 3

1. Overview1. Overview1. Overview1. Overview 109

2. Fundamentals of Programming2. Fundamentals of Programming2. Fundamentals of Programming2. Fundamentals of Programming 110
2.1 Principles of Program Setup2.1 Principles of Program Setup2.1 Principles of Program Setup2.1 Principles of Program Setup 110

2.1.1 Rules for Program Structure - Task Structure 116
2.1.2 Special Registers / Flags for Task Control 121

2.2 Symbolic Programming 124
2.2.2 Examples of Symbolic Notation 126

2.3 Remarks on the Program Examples 128

3. The Programming Language3. The Programming Language3. The Programming Language3. The Programming Language 129
3.1 Overview over Instructions3.1 Overview over Instructions3.1 Overview over Instructions3.1 Overview over Instructions 129
3.2 Basic Instructions3.2 Basic Instructions3.2 Basic Instructions3.2 Basic Instructions 133

3.2.1 Waiting Condition WHEN ... THEN 133
3.2.2 Waiting Condition WHEN_MAX ... THEN 135
3.2.3 Branch Condition IF ... THEN ... (ELSE) 137
3.2.4 The DELAY Instruction 140

3.3 Boolean Expressions 143
3.3.1 Phrasing Elementary Conditions 144
3.3.2 Examples of Connected Expressions 149

3.4 Arithmetic Expressions 152
3.4.1 Numbers 153
3.4.2 Arithmetic Expressions 154
3.4.3 Assignment to Integer Registers 155
3.4.4 Assignment to a Floating Point Register 157

3.5 Tasks, Labels, Jumps and Subroutines 160
3.5.1 Tasks, Flags and Jumps 160
3.5.2 Subroutines 163
3.5.3 Functions 168

3.6 Registers and Flags3.6 Registers and Flags3.6 Registers and Flags3.6 Registers and Flags 173
3.6.1 Basic Information on Registers 174
3.6.2 Instructions for Register Loading 178
3.6.3 Calculating with Registers 185
3.6.4 Register Bit Instructions 189
3.6.5 Flags and Flag Instructions 192

3.7 Inputs and Outputs3.7 Inputs and Outputs3.7 Inputs and Outputs3.7 Inputs and Outputs 195
3.7.1 Inputs 195
3.7.2 Outputs 197

3.8 Display Instructions and User Input3.8 Display Instructions and User Input3.8 Display Instructions and User Input3.8 Display Instructions and User Input 200
3.8.1 Display of Texts 200
3.8.2 Display of Register Contents 204
3.8.3 Reading of Register Values by the Program 208
3.8.4 Special Registers for User Input 210

3.9 Instructions for Axis Controlling3.9 Instructions for Axis Controlling3.9 Instructions for Axis Controlling3.9 Instructions for Axis Controlling 220
3.9.1 Positioning 220
3.9.2 Enquiries on the Present Condition 228

3.10 Task Instructions3.10 Task Instructions3.10 Task Instructions3.10 Task Instructions 229
3.10.1 Taskbreak 229
3.10.2 Taskcontinue 230
3.10.3 Taskrestart 230
3.10.4 Examples of the Task Instructions 231

3.11 Various Instructions3.11 Various Instructions3.11 Various Instructions3.11 Various Instructions 232
3.11.1 Time Instructions 232
3.11.2 NOP 237
3.11.3 The Commentary Character 237
3.11.4 Special Functions 238
3.11.5 The LIMITS Instruction 241

PROCESS-PLC

 Programming 4

3.11.6 Word Processing 242
3.12 Network Instructions3.12 Network Instructions3.12 Network Instructions3.12 Network Instructions 246

3.12.1 Sending Register Values to Slave Controllers 247
3.12.2 Getting Register Values from a Slave Controller 248
3.12.3 Network Operation by 50000er Numbers 251
3.12.4 Special Registers / Flags for Network Operation 260

4. Description of the Memory4. Description of the Memory4. Description of the Memory4. Description of the Memory 262
4.1 Basics on Registers and Flags4.1 Basics on Registers and Flags4.1 Basics on Registers and Flags4.1 Basics on Registers and Flags 262

4.1.1 Registers 262
4.1.2 Flags 272

5. Realtime Clock5. Realtime Clock5. Realtime Clock5. Realtime Clock 273
5.1 Overview, Function5.1 Overview, Function5.1 Overview, Function5.1 Overview, Function 273
5.2 Register Description5.2 Register Description5.2 Register Description5.2 Register Description 274
5.3 Realtime Clock: An Exemplary Program5.3 Realtime Clock: An Exemplary Program5.3 Realtime Clock: An Exemplary Program5.3 Realtime Clock: An Exemplary Program 275

REGISTER DESCRIPTIONREGISTER DESCRIPTIONREGISTER DESCRIPTIONREGISTER DESCRIPTION 275

EXEMPLARY PROGRAM: REALTIME CLOCKEXEMPLARY PROGRAM: REALTIME CLOCKEXEMPLARY PROGRAM: REALTIME CLOCKEXEMPLARY PROGRAM: REALTIME CLOCK 276

6. Demonstrating Example: Handling-System6. Demonstrating Example: Handling-System6. Demonstrating Example: Handling-System6. Demonstrating Example: Handling-System 277
6.1 Problem Description6.1 Problem Description6.1 Problem Description6.1 Problem Description 277
6.2 Flow Charts of the Three Tasks6.2 Flow Charts of the Three Tasks6.2 Flow Charts of the Three Tasks6.2 Flow Charts of the Three Tasks 279

6.2.1 TASK 0 - Control Task 279
6.2.2 TASK 1 - Automatic Task 280
6.2.3 TASK 2 - Display Task 281

6.3 Program Listing6.3 Program Listing6.3 Program Listing6.3 Program Listing 282
6.4 Symbol Listing6.4 Symbol Listing6.4 Symbol Listing6.4 Symbol Listing 291

INDEXINDEXINDEXINDEX 295

Programming

Programming 5

I. SYMPAS Programming EnvironmentI. SYMPAS Programming EnvironmentI. SYMPAS Programming EnvironmentI. SYMPAS Programming Environment

1. Survey1. Survey1. Survey1. Survey

SYMPASSYMPASSYMPASSYMPAS is the programming environment for PROCESS-
PLC programs. With the help of this programming
software, problems originating from a process that should
be controlled, can be directly expressed in a SYMPAS
program for all PROCESS-PLC control systems. All
important stages of program development - from editing
via syntax check, up to transfer into the controller and
setup in the integrated setup mode are supported by the
SYMPAS programming environment.

As a hardware for the use of SYMPAS an IBM compatible
personal computer will be needed. The PC serves for
data input as well as monitoring the program flow and
the register conditions during the setup stage.

PROCESS-PLC programs and register sets can be stored
on, and read from, hard or floppy disk drives.

The personal computer will be needed, until the program
has been transferred to the controller (any register sets
included) and tested successfully. After that, the PC can
be used again for other tasks.

In the SYMPAS pull-down menu and window structure of
SYMPAS, maximum clarity has been combined with user
friendly operation. To grant the professional user the
possibility of swift working, the most important functions
can also be accessed by hotkeys.

The stages ofThe stages ofThe stages ofThe stages of
programprogramprogramprogram

developmentdevelopmentdevelopmentdevelopment
are supportedare supportedare supportedare supported

HardwareHardwareHardwareHardware
requirements:requirements:requirements:requirements:

PC, IBMPC, IBMPC, IBMPC, IBM
compatiblecompatiblecompatiblecompatible

Menu andMenu andMenu andMenu and
windowwindowwindowwindow

structurestructurestructurestructure

PROCESS-PLC

 Programming 6

Context sensitive information has been provided by the
help text that is always displayed in the status line, and by
the help windows, that can be activated by the F1
function key.

Call up helpCall up helpCall up helpCall up help
by pressingby pressingby pressingby pressing

(F1)

Programming

Programming 7

2. The SYMPAS System2. The SYMPAS System2. The SYMPAS System2. The SYMPAS System

2.1 Hardware (Requirements)2.1 Hardware (Requirements)2.1 Hardware (Requirements)2.1 Hardware (Requirements)

The requirements for the use of the SYMPAS programming
environment are:

• An IBM compatible personal computer with at least
512 kByte RAM and 2 disk drives (or 1 disk drive plus
hard disk) and a DOS operating system.

• one serial interface (COM1 or COM2).

• one programming cable EM-PK connecting the PC
with the controller.

• A PROCESS-PLC controller - PASE-E, DELTA, NANO, or
MIKRO.

2.2 Software2.2 Software2.2 Software2.2 Software

A survey of the available files can be taken from the
README file, which should be read by the user in any
case, as it contains the latest important information,
which cannot be found in the manual. This file will be
displayed on the screen by giving the instruction TYPE
A:README; it will be printed by giving the DOS command
PRINT A:README.

Up-to-dateUp-to-dateUp-to-dateUp-to-date
information ininformation ininformation ininformation in

thethethethe
README fileREADME fileREADME fileREADME file

PROCESS-PLC

 Programming 8

2.3 Hardware Installation2.3 Hardware Installation2.3 Hardware Installation2.3 Hardware Installation

To use SYMPAS together with a PROCESS-PLC, connection
to the serial interface (COM1 or COM2) of the PC has to
be established. The interface can be configurated in the
context of the SYMPAS programming environment. For XT
compatible systems, a 25-pin sub-D male connector for
COM1, for AT compatible systems, a 9-pin sub-D male
connector for COM1 has been provided. The connection
cable EM-PK has to be used.

The programming cable EM-PK can be produced
according to the following figure:

ProgrammingProgrammingProgrammingProgramming
cable EM-PKcable EM-PKcable EM-PKcable EM-PK

Programming

Programming 9

2.4 Software Installation2.4 Software Installation2.4 Software Installation2.4 Software Installation

The software installation is carried out by the INSTALL.EXE
program. A subdirectory called SYMPAS is opened on
floppy disk or hard disk (default setting) by this program.
All important files are copied into this directory. Which files
and subdirectories are to be copied is determined by
the configuration, which can be defined in the
configuration window shown above before the actual
installation process. For installation, write the line

A:\INSTALL or B:\INSTALL.

The SYMPASThe SYMPASThe SYMPASThe SYMPAS
programmingprogrammingprogrammingprogramming

environment isenvironment isenvironment isenvironment is
being installedbeing installedbeing installedbeing installed
By INSTALL.EXEBy INSTALL.EXEBy INSTALL.EXEBy INSTALL.EXE

PROCESS-PLC

 Programming 10

Using the cursor keys ↓ and ↑ , the menu line can be
selected, and by pressing the RETURN key↵ , this selected
line can be changed. When the basic configuration has
been chosen, the installation process can be started by
pressing function key F9. The following definitions can be
made under these selection lines:

Controller TypeController TypeController TypeController Type

Here, a choice can be made between the PASE-E,
DELTA, NANO, and MIKRO controllers. Independent from
the installation, the controller type can be selected anew
any time in the SYMPAS programming environment.

Destination DirectoryDestination DirectoryDestination DirectoryDestination Directory

Here, the entire destination path can be defined. If the
programming environment is to be installed in another
subdirectory, this line has to be edited correspondingly,
for example:

C:\DIRECTORY

By this instruction, SYMPAS is installed in the subdirectory
"Directory" on the C: disk.
After selecting the line with the cursor key, a window will
be opened by the ↵ ENTER key, where the destination
path can be edited.

Copy Tools?Copy Tools?Copy Tools?Copy Tools?

Here, the installation of the available tools can be
determined. These tools have been documented in the
README file and can be attributed to an individual
directory.

Programming

Programming 11

LanguageLanguageLanguageLanguage

Here, the language to operate the programming
environment with can be chosen. A selection can be
made between German and English. Even after
installation, the dialogue, as well as the programming
language can be changed any time in SYMPAS itself.

By pressing the function key F9, the installation process
will be started and carried out according to the
definitions that have been made.

Start installationStart installationStart installationStart installation
by pressing by pressing by pressing by pressing (F9)

PROCESS-PLC

 Programming 12

2.4 SYMPAS for Several Networked Controllers (JETWay-H)2.4 SYMPAS for Several Networked Controllers (JETWay-H)2.4 SYMPAS for Several Networked Controllers (JETWay-H)2.4 SYMPAS for Several Networked Controllers (JETWay-H)

The following advantages are granted by using the
JETWay-H interface as a programming interface instead
of the RS232 interface:
• Up to 126 PROCESS-PLC can be addressed from

one SYMPAS desktop.
• Transfer rates of up to 115 kBaud can be realised.
• Greater distances are possible.

JETWay-H CableJETWay-H CableJETWay-H CableJETWay-H Cable

ConnectionConnectionConnectionConnection
on theon theon theon the

PROCESS-PLCPROCESS-PLCPROCESS-PLCPROCESS-PLC

ShieldingShieldingShieldingShielding SpecificationSpecificationSpecificationSpecification
max. Lengthmax. Lengthmax. Lengthmax. Length

9 pin sub-D
male

connector

or

15 pin sub-D
male

connector

Please shieldPlease shieldPlease shieldPlease shield
extensextensextensextensiiiively!vely!vely!vely!

Only use metallisedOnly use metallisedOnly use metallisedOnly use metallised
housings!housings!housings!housings!

RS485

max.
cable length:

400m

PinPinPinPin SignalSignalSignalSignal PinPinPinPin

7 Gnd 7777
8 Data + 8888
9 Data - 9999

JETWay-H:JETWay-H:JETWay-H:JETWay-H:
126 participants126 participants126 participants126 participants

115 kBaud115 kBaud115 kBaud115 kBaud

Programming

Programming 13

The JETWay-H Board for the PCThe JETWay-H Board for the PCThe JETWay-H Board for the PCThe JETWay-H Board for the PC

The connection between SYMPAS and up to 126
PROCESS-PLC controllers via JETWay H can be
established using the PC board shown below.

These are the DIL
switches for definition
of the port address.
Default value: 340h.

AUTOEXEC.BATAUTOEXEC.BATAUTOEXEC.BATAUTOEXEC.BAT

Into the AUTOEXEC.BAT of your PC the following line is to
be written (only, if default setting is used):

SET JETWAY_PORT=340h

Figure Figure Figure Figure 1111: JETWay-H board for the PC: JETWay-H board for the PC: JETWay-H board for the PC: JETWay-H board for the PC

PROCESS-PLC

 Programming 14

DIL SwitchesDIL SwitchesDIL SwitchesDIL Switches

If you want to, or have to, use another port address, this
is possible by the DIL switches shown above on the
JETWay-H.

DIL Switches on the JETWay-H BoardDIL Switches on the JETWay-H BoardDIL Switches on the JETWay-H BoardDIL Switches on the JETWay-H Board
PortPortPortPort SwitchSwitchSwitchSwitch

2222
SwitchSwitchSwitchSwitch

3333
SwitchSwitchSwitchSwitch

4444
SwitchSwitchSwitchSwitch

5555
SwitchSwitchSwitchSwitch

6666
SwitchSwitchSwitchSwitch

7777
300h OFF OFF ON ON ON ON
310h OFF OFF ON ON ON OFF
320h OFF OFF ON ON OFF ON
330h OFF OFF ON ON OFF OFF
340h*) OFF OFF ON OFF ON ON
350h OFF OFF ON OFF ON OFF
360h OFF OFF ON OFF OFF ON

*) Default setting

Correspondingly, the line in the AUTOEXEC.BAT has to be
changed:

SET JETWAY_PORT=x

The oppositeThe oppositeThe oppositeThe opposite
line must beline must beline must beline must be

written into thewritten into thewritten into thewritten into the
AUTOEXEC.BATAUTOEXEC.BATAUTOEXEC.BATAUTOEXEC.BAT

Programming

Programming 15

In the SYMPAS menu "Special / Settings" a choice can
be made between the programming interface via
RS232 and via JETWay-H.

Figure Figure Figure Figure 2222: SYMPAS Menu: Special / Interface: SYMPAS Menu: Special / Interface: SYMPAS Menu: Special / Interface: SYMPAS Menu: Special / Interface

Note:Note:Note:Note:

For making this cable, the following minimumFor making this cable, the following minimumFor making this cable, the following minimumFor making this cable, the following minimum
requirements have to be met:requirements have to be met:requirements have to be met:requirements have to be met:

Number of wiresNumber of wiresNumber of wiresNumber of wires:::: 3333
Diameter:Diameter:Diameter:Diameter: 0,250,250,250,252222

Male connectorMale connectorMale connectorMale connector SUB-D, metallisedSUB-D, metallisedSUB-D, metallisedSUB-D, metallised
Shielding:Shielding:Shielding:Shielding: total, not in pairstotal, not in pairstotal, not in pairstotal, not in pairs

The shield needs extensive contact to the plugThe shield needs extensive contact to the plugThe shield needs extensive contact to the plugThe shield needs extensive contact to the plug
hohohohouuuusings on both sides.sings on both sides.sings on both sides.sings on both sides.

PROCESS-PLC

 Programming 16

3.3.3.3. Operation of the SYMPAS Programming EnvironmentOperation of the SYMPAS Programming EnvironmentOperation of the SYMPAS Programming EnvironmentOperation of the SYMPAS Programming Environment

3.1. Starting of the SYMPAS Programming Environment3.1. Starting of the SYMPAS Programming Environment3.1. Starting of the SYMPAS Programming Environment3.1. Starting of the SYMPAS Programming Environment

After the software has been installed, following the
instructions in Chapter 2.4 Software Installation, the
programming environment can be started by entering
SYMPAS.

C:\SYMPAS>SYMPAS

By this instruction, the SYMPAS programming environment
is started.

It might be helpful to create another subdirectory in the
SYMPAS subdirectory, e.g. PROJECT1:

C:\SYMPAS\PROJECT1>

Further, the respective path definition for the SYMPAS call-
up is to be written into AUTOEXEC.BAT.
Now, SYMPAS can be started, for example, the following
way:

C:\SYMPAS\PROJECT1>SYMPAS

All kinds of information, files, etc, which refer to "Project1",
are now filed in this subdirectory. That way, the overview -
even over a great number of projects - will be
maintained.

Create aCreate aCreate aCreate a
meaningfulmeaningfulmeaningfulmeaningful
structure ofstructure ofstructure ofstructure of

subdirectoriessubdirectoriessubdirectoriessubdirectories

Start SYMPASStart SYMPASStart SYMPASStart SYMPAS

Programming

Programming 17

3.2 Description of the Screens3.2 Description of the Screens3.2 Description of the Screens3.2 Description of the Screens

After starting SYMPAS, the program editor screen, which is
used for writing the PROCESS-PLC programs will be
opened. Besides the program editor screen, there are
two more:
The symbol editor serves the creation of the symbolism
used in a program. Using function key F4, you can switch
between program and symbol editor.

Program setup, controller setup, and setup of the
controlled process is supported by the setup screen. It is
activated by function key F7. Using F4 you can switch to
either program or symbol editor.

(F4) (F4) (F7) (F4)

ChangeChangeChangeChange
betweenbetweenbetweenbetween

program andprogram andprogram andprogram and
symbol editorsymbol editorsymbol editorsymbol editor

bybybyby
prepreprepresssssing sing sing sing (F4).

Using Using Using Using (F7) andandandand
(F4), switchswitchswitchswitch

between setupbetween setupbetween setupbetween setup
screen andscreen andscreen andscreen and

editorseditorseditorseditors

Figure Figure Figure Figure 3333: Program Editor: Program Editor: Program Editor: Program Editor

Figure Figure Figure Figure 4444 : Setup : Setup : Setup : SetupFigure Figure Figure Figure 5555: Symbol Editor: Symbol Editor: Symbol Editor: Symbol Editor

PROCESS-PLC

 Programming 18

These three screens represent the global structure of the
SYMPAS graphic user interface.
The menu line has been placed in the upper line of the
respective screen. It is identical for all three screens, yet,
some functions only refer to one specific screen (e.g.
setup screen) and have no meaning for the other
screens (dim display of the selection lines).

The menu line is activated by the F10 function key. Using
the cursor keys � and �, you can move in the menu
line. Using the ↓ cursor key, the respective pull-down
menu can be opened, where you can move with the ↑
and ↓ cursor keys.

The pull-down menu or the menu line can be left with the
ESC key, which can also be used for terminating any
other activated function.

All functions that can be called up from the three
screens are supported by help texts. First, a context
related help text can always be found in the status line,
which is the bottom line of the screen. Extensive help
information will appear in a special window after pressing
function key F1. This information is also context related.
The help windows are left by pressing ESC.

With the help of the program editor, the programs for
PROCESS-PLC control systems are written. The symbol
editor serves for defining the symbolism of a program.
The setup screen, finally, helps testing and optimising the
program in connection with the control system and the
process to be controlled.

Call up theCall up theCall up theCall up the
menu or themenu or themenu or themenu or the
function byfunction byfunction byfunction by

pressing thepressing thepressing thepressing the
(ALT)key pluskey pluskey pluskey plus

thethethethe
highlightedhighlightedhighlightedhighlighted

letterletterletterletter

Programming

Programming 19

3.3 Program Input

The important instructions of the SYMPAS programming
language are written into the program editor by the two
first letters of the instruction. A selection window of all
SYMPAS instructions starting with letter "T" will appear by
pressing "T". Now, by either pressing the cursor keys or "A"
(the second letter of the word TASK), the TASK instruction
can be activated. After writing the parameter number
into a window, the instruction will appear in the
programming editor screen. Following this pattern, the
program is written.
By pressing the "?" key a window is opened, where all
available instructions are listed up, and from where those
instructions can be taken.

Following, an exemplary NANO program will be created.

After having started SYMPAS (Chapter 3.1.) the program
editor screen will appear. First you open the "Project" pull-
down menu by pressing ALT-P. By pressing cursor key ↓ ,
the line "Edit Project Data" is selected and activated by
ENTER<┘. Now a window is opened by SYMPAS, where
the global project data are defined. Under the menu
lines "program name", "customer/project", "place",
"version" and "symbol file" the respective information can
be written. After confirming the input of the last line
"symbol file" with ENTER ↵ , the window is closed. Now
program input on the program editor screen can be
started. Here the pattern of writing the grammalogue of
an instruction to be integrated into the program text as
briefly mentioned above will apply again.

InstructionInstructionInstructionInstruction
input byinput byinput byinput by

gramma-gramma-gramma-gramma-
logueslogueslogueslogues

ExemplaryExemplaryExemplaryExemplary
creation of acreation of acreation of acreation of a

NANONANONANONANO
programprogramprogramprogram

PROCESS-PLC

 Programming 20

First Instruction:First Instruction:First Instruction:First Instruction:

• Press the "T" key -> an input window of all
instructions starting with letter "T" will appear.

• Press the "A" key -> an input window to define the
desired task number will appear

• now press the "0" (zero) key and confirm by ENTER ↵
-> the TASK0 instruction will appear on the screen.

(T) will open a will open a will open a will open a
window of allwindow of allwindow of allwindow of all

instructionsinstructionsinstructionsinstructions
starting with "T"starting with "T"starting with "T"starting with "T"

(A) will open a will open a will open a will open a
window wherewindow wherewindow wherewindow where

the taskthe taskthe taskthe task
number isnumber isnumber isnumber is
specifiedspecifiedspecifiedspecified

Programming

Programming 21

Note:Note:Note:Note:

Each program mustmustmustmust be started with the TASK 0
instruction.

Second Instruction:Second Instruction:Second Instruction:Second Instruction:

• Press the "O" key -> an input window of all
instructions starting with letter "O" will appear.

• Press the "U" key -> an input window for the output
parameter will appear.

The The The The TASK 0
instruction willinstruction willinstruction willinstruction will

appear on theappear on theappear on theappear on the
screenscreenscreenscreen

(O) will open a will open a will open a will open a
window of allwindow of allwindow of allwindow of all

instructionsinstructionsinstructionsinstructions
starting withstarting withstarting withstarting with

"O""O""O""O"

PROCESS-PLC

 Programming 22

• Now press keys "102" and confirm by ENTER ↵ ->
the OUT 102 instruction (output 102) will appear on
the screen. This instruction causes output 102 to be
set or activated.

(U) will open a will open a will open a will open a
window wherewindow wherewindow wherewindow where

the outputthe outputthe outputthe output
parameter isparameter isparameter isparameter is

defineddefineddefineddefined

The OUT 102The OUT 102The OUT 102The OUT 102
instruction willinstruction willinstruction willinstruction will

appear on theappear on theappear on theappear on the
screenscreenscreenscreen

Programming

Programming 23

Third Instruction:Third Instruction:Third Instruction:Third Instruction:

• Press the "D" and "E" keys -> an input window will
appear, where the required delay can be input in
multiples of 100 ms.

• Now input "10" and confirm by ENTER ↵ -> The
DELAY instruction with parameter "10" will appear on
the screen. This instruction causes the controller to
delay for 1 second and then to continue with the
further program execution.

Fourth Instruction:Fourth Instruction:Fourth Instruction:Fourth Instruction:

• Press the "O" and "U" key -> an input window to
define the desired output number will appear.

• This time you input "-102" and confirm by ENTER ↵ -
> the -OUT 102 instruction (-OUTPUT 102) will
appear on the screen. This instruction causes
output 102 to be reset.

Fifth InstructionFifth InstructionFifth InstructionFifth Instruction

• Press the "D" and "E" keys -> an input window will
appear, where the delay time can be defined.

• Confirm the default value of the last instruction
input "10" -> this instruction causes the controller
to once more delay for 1 second.

PROCESS-PLC

 Programming 24

Sixth Instruction:Sixth Instruction:Sixth Instruction:Sixth Instruction:

• Press the "G" and "O" key -> an input window will
appear where the goto destination (task or label)
can be defined which the program is to branch
out to.

• Input "0" and confirm by ENTER ↵ -> the GOTO 0
instruction will appear on the screen. The program
run will return to TASK0, thus, the program will form
an endless loop.

Note:Note:Note:Note:

Each program task mustmustmustmust be closed in itself by a GOTO
instruction.

Now the program text input is terminated. Using the
cursor keys ↑ and ↓ you can move in the program text.
Program lines can be erased by pressing the DEL key.
Automatic input can be made over the actual line,
which is marked by the cursor. With the help of cursor
keys � and �, a selection beween program text and
commentary can be made.

Programming

Programming 25

3.3.1 Keys and Functions in the Program Editor3.3.1 Keys and Functions in the Program Editor3.3.1 Keys and Functions in the Program Editor3.3.1 Keys and Functions in the Program Editor

Cursor Movement:Cursor Movement:Cursor Movement:Cursor Movement:

Key: Function:
cursor up one line back
cursor down one line forward
page up page back
page down page forward
Ctrl-page up to top of program
Ctrl-page down to end of program
cursor left instruction range
cursor right commentary range

Editor Instructions:Editor Instructions:Editor Instructions:Editor Instructions:

Key: Function:
A..Z An instruction is directly activated, if its first letter

appears in the instruction list only once.
Otherwise a selection window for the required
instruction is offered. There is also the possibility
to integrate an instruction into the program text
by input of its first two letters.

? A complete instruction list is offered as a
selection window.

SPACE The instruction that has been input last will be
repeated.

ENTER Edit the parameters of the actual instruction.

BS(←) Delete the instruction preceding the actual
instruction line.

DEL Delete current instruction.

PROCESS-PLC

 Programming 26

Block Operations:Block Operations:Block Operations:Block Operations:

Key: Function:

Ctrl K B mark top of block

Ctrl K K mark end of block

Ctrl K V move block

Ctrl K C copy block

Ctrl K Y delete block

Ctrl K R load block from disk

Ctrl K W save block to disk

Ctr K P l print block

Ctrl K H switch off block

Ctrl K L mark line

Ctrl Q B find top of block

Ctrl Q K find end of block

Programming

Programming 27

Storage of Cursor Position:Storage of Cursor Position:Storage of Cursor Position:Storage of Cursor Position:

Key: Function:
Ctrl-K 0..9 store cursor position 0 to 9 in

the program text.
Ctrl-Q 0..9 go to stored cursor positions 0

to 9.

Miscellaneous:Miscellaneous:Miscellaneous:Miscellaneous:

Key: Function:
Ctrl S The symbol parameters of the current line are

displayed, until the Ctrl key is released.

Ctrl M The variable content of the current line is
displayed, until the Ctrl key is released.

PROCESS-PLC

 Programming 28

3.3.2 Program Transfer3.3.2 Program Transfer3.3.2 Program Transfer3.3.2 Program Transfer

Before the program can be run in the controller, storing,
e.g. on hard disk, should be made. By pressing ALT-D the
pull-down menu "File" can be opened. By pressing the
cursor key ↓ you will find the "save" selection line. Then
the "save" procedure can be triggered by pressing ENTER
↵ (or quicker by function key F2). "Save" will be changed
into "save as", when the file name has not been defined
before. To load a program from hard disk into the
program editor, the selection line "open..." in the same
pull-down menu must be used.

After the program has been input, it can be transferred to
the controller by pressing CTRL-F9. This will trigger three
functions: First, the program will be transferred to the
controller and started there. Secondly, the screen will
change to "setup" screen. Thirdly, an acoustic start signal
can be heard.

Starting with Chapter 3. Operation of the SYMPAS
Programming Environment you created a PROCESS-PLC
program in the program editor, saved it on hard disk,
transferred it to the controller and started it there
automatically. The LED at input 102 will now function as a
flashing signal with a constant signal time of one second.

By pressing function key F4, you will automatically get
back to the program editor, e.g. to make changes in the
program. Or else you will stay in the setup screen, in order
to test a program for proper functioning. Such a program
will surely be more complex than the flashing light that
has just been programmed. Then the setup mode will
support SYMPAS effectively in testing the program related
to the controller and the process that is to be controlled.

Store theStore theStore theStore the
program byprogram byprogram byprogram by

prepreprepresssssing sing sing sing (F2)

Transfer theTransfer theTransfer theTransfer the
program toprogram toprogram toprogram to

the controllerthe controllerthe controllerthe controller
by pressingby pressingby pressingby pressing
(CTRL) (F9)

Programming

Programming 29

3.4 The Setup Screen (Setup Mode)

In the setup screen a great number of functions are
offered, which are to support program setup in
connection with the controller and the process that is to
be controlled.

Here you will also find direct support in the status line,
while in the help window (to be activated using function
key F1) extensive, context specific help will be offered.

In the setup mode, inputs, outputs, register contents (as
numbers or texts), and axis parameters can be displayed
and modified. Further, the contents of the user interfaces
(LCD9, LCD16, etc.), as well as the number of the
program line just being operated can be displayed.

By pressingBy pressingBy pressingBy pressing
(F1) call up call up call up call up

helphelphelphelp

PROCESS-PLC

 Programming 30

3.4.1 Keys and Functions in the Setup Screen3.4.1 Keys and Functions in the Setup Screen3.4.1 Keys and Functions in the Setup Screen3.4.1 Keys and Functions in the Setup Screen

The field identification number for activation of the
individual fields can either be taken from the status line or
from the brackets after the field name.

In an active field, the following instructions can be given:

Key: Function:

INS insert a new line

DEL delete a current line

ENTER • input of a new value
• input of a new number

Cursor up one input field back

Cursor down one input field forward

Cursor right
Cursor left

switch between number and
value input (only inputs, outputs,
flags, registers, bin registers, text
registers)

Ctrl-cursor selection of bits 0 to 23 in the
"binreg" field

+ incrementation of the cursor
value

- decrementation of the cursor
value

Programming

Programming 31

3.4.2 Description of the Fields3.4.2 Description of the Fields3.4.2 Description of the Fields3.4.2 Description of the Fields

Individual fields can be selected with the help of the field
identification numbers. Thus, the input field can be
activated by key "1", the output field by key "2", the field
for flags by key "3", the field for registers by key "4", the
index field by key "6", the field for the display contents by
key 7, the binary register, in which the content of any
register can be displayed in binary mode, by key "8", and
finally the text register by key "9".

The following function fields are available:

ChangesChangesChangesChanges
between thebetween thebetween thebetween the

individualindividualindividualindividual
fieldsfieldsfieldsfields

can be madecan be madecan be madecan be made

PROCESS-PLC

 Programming 32

• Press key "1" -> now the input field is doubly
framed; this means, it is active.
Press key "Insert" -> a field will appear, where the
number of the input to be displayed can be
defined. Confirm by pressing ENTER ↵ .

The same applies to flags.

InputInputInputInput
FieldFieldFieldField

Key Key Key Key (1)

Programming

Programming 33

• Press key "2" -> now the output field is doubly
framed; this means, it is active.
Press the "Insert" key -> a field will appear, where
the number of the output to be displayed can be
defined. Confirm by pressing ENTER ↵ . This
procedure can be continued, until the field is filled
with displayed outputs. With the help of the ↑ and ↓
cursor keys various outputs can be selected, with
the help of the ← and → cursor keys, one can
switch between output number and output status.
The output can be set or reset by the "+" or "-" keys.
The same way, the output numbers can be
incremented or decremented using the "+" or "-"
key.
With the help of the "Delete" key, the display of the
output maked by the cursor is deleted.
By the "Insert" key, an output can be inserted at the
present cursor position.

The same applies to flags.

• In contrast to other fields, a value can be attributed
to the registers in field 4. With the help of cursor keys
← and →, one can switch between register
content and register number. If the cursor is
positioned on the register content and ENTER ↵ is
pressed, a field will appear, where the register
content can be changed. After input of the new
register value, confirm by ENTER ↵

• After you have opened the axis field by key "5",
press the "Insert" key. A field will appear, where the
desired axis number can be input (confirm by
ENTER ↵). After this, all parameters are set
according to the axis condition. By pressing the
cursor keys, certain parameters can be selected;
by pressing ENTER ↵ , the parameters can be
edited in a field (confirm by pressing ENTER ↵).

OutputOutputOutputOutput
FieldFieldFieldField

Key Key Key Key (2)

RegisterRegisterRegisterRegister
FieldFieldFieldField

Key Key Key Key (4)

Axis FieldAxis FieldAxis FieldAxis Field

Key Key Key Key (5)

PROCESS-PLC

 Programming 34

• The conditions of individual tasks are displayed in
the index field. Press the "Insert" key and input the
number of the task that is to be displayed. Repeat
this procedure, until all relevant tasks appear are
displayed in the field.
The tasks are displayed according to the following
pattern:

− the task number, as it has been defined by the
user

− :

− the line number that is being operated in the task
at the moment

− if applicable, a status description of the task,
which is expressed by the following four signs:

o "╫" DELAY; delay time defined in
the program.

o "i" Input; program is waiting for
user input.

o "M" WHEN_MAX
o "┤" Taskbreak; the parallel

branch is interrupted at the
moment.

o "----" Error; the called-up task
does not exist in the
program.

o "Err" invalid program line

IndexIndexIndexIndex
FieldFieldFieldField

Key Key Key Key (6)

Programming

Programming 35

Remark:Remark:Remark:Remark:

The index field is only functioning, when SYMPAS has not
been left since program transfer; otherwise "-1" will be
displayed.

• In order to activate the display field, press key "7". In
this field it is shown what is displayed by the connected
user interface (e.g. LCD9/10) at that moment.

• Call up the binreg field by pressing key "8". In this
field, a register content can be displayed in binary
form. With the help of key combination CTRL and
one of the two cursor keys ← and →, an individual
bit can be selected and modified (+ and -) The
display of the slave module SV1 status register
10100 can be selected by pressing the "INSERT"
key, followed by input of the desired register
number and confirmation by ENTER ↵ .

• The text-register field is activated by pressing key
"9". After pressing the "INSERT" key, a register
number is queried. Input register 200, for example.
With the help of cursor keys � and � you can
switch between a register number and its
corresponding input text. If the cursor is positioned
on the input text, press ENTER ↵ , in order to edit the
text.

• By this function, dialog texts for VIADU'KT can be
written, for example (maximum length 40 bit). The
text can be stored in one of the registers starting
from register 200. In Bits 0 to 7, information on the
length of the texts, in Bits 8 to 15 status information,
and then each character, will be stored in ASCII
format (three characters per register).

DisplayDisplayDisplayDisplay
FieldFieldFieldField

Key Key Key Key (7)

BinregBinregBinregBinreg
FieldFieldFieldField

Key Key Key Key (8)

Text RegisterText RegisterText RegisterText Register
FieldFieldFieldField

Key Key Key Key (9)

PROCESS-PLC

 Programming 36

If you display output 102 after starting Chapter 3.3
Program Input on the setup screen, you will be able to
monitor the change of status every second. This way, the
status of a great number of functions - even for complex
processes - can be displayed, monitored, and also
modified. The axis, input, output, flag, register, display,
and any other conditions, can be visualised
simultaneously.

• underneath the "project" menu line of the setup-
screen there is a status display of the general
function of the screen.

→→→→

The rotating arrow indicates that the setup screen is
active. If the displayed data do not change, it can
be verified by the still rotating arrow, that the
present conditions of the individual inputs, outputs,
etc. are static, and that misfunctioning of the setup
mode can be excluded.

NumberNumberNumberNumber

By the number behind the rotating arrow, the
duration of a refresh cycle is displayed in 1/100
seconds. This is the time, which passes, until the
state of all inputs, outputs, flags, registers, etc. have
been realised in the display.

Programming

Programming 37

3.5 Description of the Menus3.5 Description of the Menus3.5 Description of the Menus3.5 Description of the Menus

Here, the individual pull-down menus are described,
which can be activated from the menu bar. The
description is given in the order of the individual functions
in the pull-down menus of the three screens. Basically,
the pull-down menus are identical for all three screens -
program editor, symbol-editor, and setup-screen. Some
functions are only possible in connection with a certain
screen and are thus displayed in grey colour, which
means, they are not to be activated, on the other two
screens.

3.5.1 Keys and Functions in the Pull-Down Menus3.5.1 Keys and Functions in the Pull-Down Menus3.5.1 Keys and Functions in the Pull-Down Menus3.5.1 Keys and Functions in the Pull-Down Menus

The following keys can be used to move in the menu bar
and in the pull-down menus:

Key: Function:
Cursor up one menu line backwards
Cursor down one menu line forward
Cursor left one menu function backwards
Cursor right one menu function forward
Home first selection line
End last selection line
ENTER <┘ activate function under cursor
ESC terminate

By pressing a highlighted letter or a function key defined
behind a menu line, the corresponding selection can be
activated (hotkeys).
Selection lines are marked ([x]) by pressing the ALT key
together with the highlighted key.

PROCESS-PLC

 Programming 38

3.5.2 The "Project" Menu3.5.2 The "Project" Menu3.5.2 The "Project" Menu3.5.2 The "Project" Menu

Show Project DataShow Project DataShow Project DataShow Project Data

Under the headlines shown below, general information is
given:

Programming

Programming 39

Edit Project DataEdit Project DataEdit Project DataEdit Project Data

In this menu, the respective general information can be
input (also see illustration above).

• Program name
• Customer/project
• Place
• Version
• Symbol file

The input is confirmed by pressing the ENTER ↵ key.
Each time the program editor is activated, the version
number is incremented. If this has not been desired, the
version number can be reset by hand.

Main FileMain FileMain FileMain File

If INCLUDE files are to be integrated into the program
text, a main file must be defined, where up to 32
INCLUDE files can be stored. The following line will appear
in the program editor:

#INCLUDE NAME

The design of an INCLUDE file is the same as that of a
common program file. Thus, already existing programs or
program sequences can be assembled to one main file.
Another advantage of working with INCLUDE files is the
possibility to work with program sizes that could not be
stored in a PC memory any more. By dividing up the
program into various INCLUDE files which will again be
logically combined in the main file, the restriction of
memory space by the size of the PC memory can be by-
passed. An extensive description can be found in
Chapter 3.7 INCLUDE Files.

PROCESS-PLC

 Programming 40

Note:Note:Note:Note:

In the main file 32 INCLUDE files can be defined as a
maximum.

Delete Main File EntryDelete Main File EntryDelete Main File EntryDelete Main File Entry

The main file that has been defined in the "Main File..."
selection is deleted.

Convert Symbol LanguageConvert Symbol LanguageConvert Symbol LanguageConvert Symbol Language

The language used in the SYMPAS symbolism is
converted into another language. For this purpose the
alternative expression is given in square brackets in the
symbol editor.

Programming

Programming 41

Convert Symbol LanguageConvert Symbol LanguageConvert Symbol LanguageConvert Symbol Language

Before ConvertingBefore ConvertingBefore ConvertingBefore Converting

After ConvertingAfter ConvertingAfter ConvertingAfter Converting

Define theDefine theDefine theDefine the
alternativealternativealternativealternative
symbol insymbol insymbol insymbol in

squaresquaresquaresquare
brabrabrabraccccketsketsketskets

Figure Figure Figure Figure 6666: Symbol editor before converting: Symbol editor before converting: Symbol editor before converting: Symbol editor before converting

Figure 7: Program editor before convertingFigure 7: Program editor before convertingFigure 7: Program editor before convertingFigure 7: Program editor before converting

StartStartStartStart
converting inconverting inconverting inconverting in

the menuthe menuthe menuthe menu
"Project /"Project /"Project /"Project /

SymbolSymbolSymbolSymbol
LaLaLaLannnnguage"guage"guage"guage"

Figure Figure Figure Figure 7777: symbol editor after converting: symbol editor after converting: symbol editor after converting: symbol editor after converting

Select theSelect theSelect theSelect the
programmingprogrammingprogrammingprogramming

language inlanguage inlanguage inlanguage in
the menuthe menuthe menuthe menu
"Special /"Special /"Special /"Special /
SeSeSeSetttttings"tings"tings"tings"

Figure Figure Figure Figure 8888: Program editor after converting: Program editor after converting: Program editor after converting: Program editor after converting

PROCESS-PLC

 Programming 42

3.5.3 The "File" Menu3.5.3 The "File" Menu3.5.3 The "File" Menu3.5.3 The "File" Menu

New ProjectNew ProjectNew ProjectNew Project

In order to start a new program, the program and symbol
editor can be reset. The present content of the two
editors will get lost by taking this step, thus it should be
stored in advance. You will now find the same conditions
as after a new SYMPAS start.

Open...Open...Open...Open...

Program or symbol files are loaded from the disk or hard
disk drive by this function. A window will appear, where
the complete path and file name can be defined. If the
window is ignored and RETURN ↵ is pressed, all available
file names, among which a selection can be made with
the help of the cursor keys (load by pressing ENTER ↵), will
be displayed.

Programming

Programming 43

SaveSaveSaveSave

By this function, the program or symbol editor is stored on
the drive under the name that has been defined in the
menu part "edit project data".

Save as...Save as...Save as...Save as...

By this function , the program editor, as well as the
symbol editor, will be saved on the disk under any
desired name. After "Save as ..." has been activated, a
window will be opened, where the file name defined
under "project data" will appear. This name (and path)
can be confirmed by ENTER ↵ , or else be modified; then
the function can be ended by ENTER ↵ . The defined
name will be the actual name.

Save allSave allSave allSave all

By this function, the program-, as well as the symbol
editor will be stored on floppy or hard disk. If no symbol
file has been defined in the "Edit project data" window,
only the program editor will be stored by the settings from
the "Edit project data ..." window.

New ProgramNew ProgramNew ProgramNew Program

The program in the program editor is deleted. The
content of the symbol editor remains unchanged (Add
INCLUDE-files to the project).

PROCESS-PLC

 Programming 44

Pick-List...Pick-List...Pick-List...Pick-List...

32 file names can be loaded into a selection window as
a maximum, or the corresponding files out of the window
into the program editor.
A main file and up to 32 INCLUDE files can easily be
managed by this pick list. SHIFT-F9, helps to switch
between the two files which have last been worked with.

Change Directory...Change Directory...Change Directory...Change Directory...

This function helps to change the directory or drive.

Save Environment...Save Environment...Save Environment...Save Environment...

By this function, the following settings are saved under a
definable file name. (Select the required file by pressing
ENTER and activate by pressing ALT-W.)

Program Editor:Program Editor:Program Editor:Program Editor:
• Program name
• Cursor position
• Block data
• Program label data
• Switch to "Display symbol

parameter"
• Switch to "Monitor function"

Symbol Editor:Symbol Editor:Symbol Editor:Symbol Editor:
• Symbol file name
• Cursor position
• Block data
• Program labels

SelectSelectSelectSelect
directory bydirectory bydirectory bydirectory by

ENTER andENTER andENTER andENTER and
changechangechangechange

directory bydirectory bydirectory bydirectory by
ALT-WALT-WALT-WALT-W

Programming

Programming 45

Setup Screen:Setup Screen:Setup Screen:Setup Screen:
• here, the complete screen will be stored. The

condition of all the windows up to the cursor
position is kept in the memory.

The extension of the peripheral files is .DSK.

Load environmentLoad environmentLoad environmentLoad environment

A *.DSK file is loaded by this function. See "Store
environment".

DOS shellDOS shellDOS shellDOS shell

By this instruction SYMPAS is interrupted in order to operate
on DOS surface, and from there one can return to
SYMPAS by the DOS instruction EXIT.

Exit SYMPASExit SYMPASExit SYMPASExit SYMPAS

By this function SYMPAS is terminated in order to return to
the DOS level.

PROCESS-PLC

 Programming 46

3.5.4 The "Edit" Menu3.5.4 The "Edit" Menu3.5.4 The "Edit" Menu3.5.4 The "Edit" Menu

ProgramProgramProgramProgram

By this instruction the program editor is activated.

SymbolSymbolSymbolSymbol

By this instruction the symbol editor is activated.

Find...Find...Find...Find...

This function helps to find an instruction or a program line.
After activating the function, a window will appear, where
the expression to be found (Criteria for searching:
Instruction, parameter or program line number included)
can be defined. Indirect levels are not considered as
criteria for searching here.
The search is carried out from the cursor position down to
end of program.

Criteria forCriteria forCriteria forCriteria for
searching:searching:searching:searching:
Instruction,Instruction,Instruction,Instruction,
parameterparameterparameterparameter

and lineand lineand lineand line
numbernumbernumbernumber

inclinclinclincluuuudeddeddedded

Programming

Programming 47

Replace...Replace...Replace...Replace...

This instruction is connected with the above search
function. First the command is analogue to the
searching command mentioned above, yet, another
input line is offered, where the expression is written, by
which the searching expression can be replaced.
Indirect levels cannot be used.

Find Text...Find Text...Find Text...Find Text...

This function helps to search for texts, which can either be
found in the commentary ranges or are parameter
components of certain instructions (e.g. DISPLAY_TEXT).

Replace Text...Replace Text...Replace Text...Replace Text...

This instruction is connected with the search function
mentioned above. Further, an expression can be
defined, by which the search expression is to be
replaced..

NextNextNextNext

This instruction also relates to the search function. Further,
an expression can be defined, by which the search
expression is to be replaced.

Restore LineRestore LineRestore LineRestore Line

The line deleted last is restored by this instruction.

PROCESS-PLC

 Programming 48

3.5.5 The "Block" Menu3.5.5 The "Block" Menu3.5.5 The "Block" Menu3.5.5 The "Block" Menu

Block on/offBlock on/offBlock on/offBlock on/off

Here the block function can be switched on or off. After
activating, the block can be marked using cursor key ↓ ,
starting from the present cursor position. After this, the
marking mode is deactivated by repeated call-up of this
function. Then the block can be used for further
operation.

Move (Ctrl K-V)Move (Ctrl K-V)Move (Ctrl K-V)Move (Ctrl K-V)

The block is moved from its original position to the actual
cursor position. Thus, after execution of the command,
the block is removed from its original position.

Programming

Programming 49

Copy (Ctrl K-C)Copy (Ctrl K-C)Copy (Ctrl K-C)Copy (Ctrl K-C)

The block is copied in front of the actual cursor position.
After carrying out the instruction, the block will be on the
place, where it has been marked, as well as over the
actual cursor position.

Erase (Ctrl K-Y)Erase (Ctrl K-Y)Erase (Ctrl K-Y)Erase (Ctrl K-Y)

The marked block is deleted.

ListingListingListingListing

With the help of this function, program sequences
marked as a block can be edited on a printer or stored
in a file. This file has got the same format as the data
transfer to the printer during the printing process. After
activating the selection line "Listing", a window will
appear, where the output to printer or file, the sheet
length, and the left margin can be defined. The default
values refer to the printing on continuous form paper.

Load block...Load block...Load block...Load block...

Here, a block is loaded from disk or hard disk. A window
will be opened, where the name of the block to be
loaded can be input. If this window is ignored and ENTER
↵ is pressed instead, a window with the files available for
selection will appear. The structure of a block file is
identical with the file of a complete program.

PROCESS-PLC

 Programming 50

Save block ...Save block ...Save block ...Save block ...

The block is saved to floppy or hard disk. After
confirmation of the selection line, a window will appear,
in which the name of the block can be defined. The
structure of a block file is identical with the file of a
complete program.

Note:Note:Note:Note:

For the "Load block..." and "Save block..." functions, a
path to a directory can be specified, which need not be
defined again. For this purpose, the following instruction is
to be given on DOS level (e.g. in the AUTOEXEC.BAT):

SET SYMPASBLOCKS="PATH"

where, for instance, "PATH" can stand for C:\BLOCK.

Programming

Programming 51

3.5.6 The "Transfer" Menu3.5.6 The "Transfer" Menu3.5.6 The "Transfer" Menu3.5.6 The "Transfer" Menu

Editor -> File.ENBEditor -> File.ENBEditor -> File.ENBEditor -> File.ENB

By this function the program is transferred into an object
file the name of which can be defined in a window.

NANO-B -> File.ENBNANO-B -> File.ENBNANO-B -> File.ENBNANO-B -> File.ENB

Transfer of a program from the RAM of a controller into
an object file the name of which can be defined in a
window.

Extension, byExtension, byExtension, byExtension, by
the examplethe examplethe examplethe example
of NANO-B; itof NANO-B; itof NANO-B; itof NANO-B; it

can becan becan becan be
nnnnaaaamedmedmedmed

differendifferendifferendifferenttttly,ly,ly,ly,
depending ondepending ondepending ondepending on
the cothe cothe cothe connnntrollertrollertrollertroller

PROCESS-PLC

 Programming 52

File.ENB -> Editor...File.ENB -> Editor...File.ENB -> Editor...File.ENB -> Editor...

Program transfer from an object file into the program
editor.

Programming

Programming 53

SYMPAS Program and System FilesSYMPAS Program and System FilesSYMPAS Program and System FilesSYMPAS Program and System Files
(Extension *.ENB, for NANO-B as an example)

PROCESS-PLC

 Programming 54

File.ENB -> NANO-B...File.ENB -> NANO-B...File.ENB -> NANO-B...File.ENB -> NANO-B...

Program transfer from an object file into the RAM of a
controller. The program will be transferred to, yet not
started in, NANO-B.

CompareCompareCompareCompare Editor -> NANO-BEditor -> NANO-BEditor -> NANO-BEditor -> NANO-B

The program editor is compared with the editor in the
RAM of the file. In a window, information is given, as to
what degree both programs are identical.

Register -> File.DA...Register -> File.DA...Register -> File.DA...Register -> File.DA...

You will be able to save self defined register and flag
ranges as hard disk files. After function call-up a window
will appear, where various ranges can be defined. These
ranges can differ from each other in their type. Register
and flag ranges are possible- 8 as a maximum. After all
the desired ranges have been defined, the window can
be left by the first menu line "All ranges defined, start
transfer". Now a window will appear, where the file name
can be defined. The extension ".DA" will be added by
SYMPAS, and the file will be saved on hard disk.

File.DA -> Register...File.DA -> Register...File.DA -> Register...File.DA -> Register...

The file described under "Register -> File.DA" which serves
for the storage of register and flag ranges, is loaded into
the controller from hard or floppy disk.
Thus, all register and flag ranges of the controller, which
have been defined in the file, have been updated.

Programming

Programming 55

The DA FileThe DA FileThe DA FileThe DA File

The DA file is an ASCII file which can be stored on the PC
or VIADUKT hard disk and reloaded into the controller
from there.

As an example, a DA file can look this way:

SD1001
; NANO-B DATA FILE - JETTER Automation
Technique 71642 Ludwigsburg
; C:\SYMPAS\EXAMPLE\EXAMPLE1

RS 1 10
RS 2 20
RS 3 30
RS 4 40
RS 5 50

FS 1 0
FS 2 0
FS 3 0
FS 4 0
FS 5 0

In the example shown above, the following register
ranges, resp. flag ranges have been stored in the DA-file
"EXAMPLE1.DA":
• Register 1 to 5 with the respective content
• Flag 1 to 5 with the respective status

Register andRegister andRegister andRegister and
flag rangesflag rangesflag rangesflag ranges

are stored onare stored onare stored onare stored on
PC or VIADUKTPC or VIADUKTPC or VIADUKTPC or VIADUKT
by the DA fileby the DA fileby the DA fileby the DA file

Header ->Header ->Header ->Header ->

HeaderHeaderHeaderHeader
DefinitionDefinitionDefinitionDefinition

Range ofRange ofRange ofRange of
registersregistersregistersregisters

->->->-> RegisterRegisterRegisterRegister
ListListListList

FlagFlagFlagFlag
ListListListList

Range of flagsRange of flagsRange of flagsRange of flags
->->->->

PROCESS-PLC

 Programming 56

The register-, resp. the flag list is designed as follows.

• 1st column: Identification RS for register, FS for flag
• 2nd column: Register-, resp. flag number
• 3rd column: Register, resp. flag status

Setup of aSetup of aSetup of aSetup of a
DA-fileDA-fileDA-fileDA-file

Programming

Programming 57

3.5.7 The "Listing" Menu3.5.7 The "Listing" Menu3.5.7 The "Listing" Menu3.5.7 The "Listing" Menu

PrinterPrinterPrinterPrinter

The content of a program or symbol editor will be output
as a program listing on the printer.

File...File...File...File...

The content of a program or symbol editor will be written
as a program listing into a file. After activating the "File"
selection line, a window will be open, where the file
name can be defined, which is then be taken over into
the program listing. The extension *.LST." will be added
automatically.

PROCESS-PLC

 Programming 58

Page settings...Page settings...Page settings...Page settings...

Various settings concerning the page format can be
made in this window.

Sheet lengthSheet lengthSheet lengthSheet length

Here, the sheet length can be defined. The default value
refers to the printing of listings on continuous form paper.

Left marginLeft marginLeft marginLeft margin

Here the width of the left margin of the listing is
defined.The input number refers to the number of blanks
preceding the actual text.

Form feedForm feedForm feedForm feed

A form feed at the end of each printed listing page is
generated by this function (if marked, it is activated). If
the form feed function has been deactivated, blank lines
will be printed.

Programming

Programming 59

3.5.8 The "Monitor" Menu3.5.8 The "Monitor" Menu3.5.8 The "Monitor" Menu3.5.8 The "Monitor" Menu

SetupSetupSetupSetup

By this selection line, switching into the setup screen is
caused.

NANO-B startNANO-B startNANO-B startNANO-B start

The program is started in the NANO-B by this instruction
after having been transferred into the controller RAM, for
example, by the selection "File.EPR -> RAM" out of the
"Transfer" pull-down menu. It is started by this instruction.

NANO-B stopNANO-B stopNANO-B stopNANO-B stop

Processing of the user program will be stopped.

PROCESS-PLC

 Programming 60

NANO-B continueNANO-B continueNANO-B continueNANO-B continue

Processing of the user program will be continued at the
point where it has been interrupted. The "NANO-B Start"
function, though, would start at the beginning of the
program.

Programming

Programming 61

3.5.9 The "Scope" Menu3.5.9 The "Scope" Menu3.5.9 The "Scope" Menu3.5.9 The "Scope" Menu

Using the scope function, any register of the following
modules can be recorded:

• PASE-E SV4 Plus (servo controller)
• PASE-E DIMA3 (digital servo controller)
• PASE-E PID4 (digital PID controller)
• PASE-E AD16 (analogue input card)

• NANO SV (Servo controller)
• NANO PID (Digital PID controller)

As all register contents can be logged, it is possible, to
display speed and position of an axis in relation to time,
or to display the graph of an analogue input, to give but
a few examples.

Up to 3 graphs can be displayed simultaneously in the
scope screen.

MonitoringMonitoringMonitoringMonitoring
any register ofany register ofany register ofany register of

variousvariousvariousvarious
controllercontrollercontrollercontroller
modulesmodulesmodulesmodules

3 graphs can3 graphs can3 graphs can3 graphs can
be displayedbe displayedbe displayedbe displayed

simultaneouslysimultaneouslysimultaneouslysimultaneously

PROCESS-PLC

 Programming 62

The following functions are available in the "Scope"
menu:

Module configuration...Module configuration...Module configuration...Module configuration...

First, a window will appear, where number and type of
the module to be monitored will be given.

Press Press Press Press (F8)
to open theto open theto open theto open the

Scope screenScope screenScope screenScope screen

Input of slotInput of slotInput of slotInput of slot
number andnumber andnumber andnumber and
module typemodule typemodule typemodule type

Programming

Programming 63

Another window will be opened now for input of the
detailed module configuration.

Here the sampling time will be defined, while registers of
controller modules will be assigned to the channel
(scope) of the Scope screen, in which they are to be
displayed.

Start recording...Start recording...Start recording...Start recording...

The following window will appear:

Recording of the registers assigned to channels under
"Module configuration".

DefineDefineDefineDefine
sampling timesampling timesampling timesampling time

and assignand assignand assignand assign
registers toregisters toregisters toregisters to

channelschannelschannelschannels

StartStartStartStart

PROCESS-PLC

 Programming 64

Recording of the registers, which have been assigned to
channels in "Module configuration", depending on the
conditions defined in the selection line "Trigger setup".

The following window will be opened:

The condition for trigger register 1 is:
• Trigger register 1 > Trigger value 1

The condition for trigger register 2 is:
• Trigger register 2 < Trigger value 2

Both trigger conditions must be fulfilled.

Stop recordingStop recordingStop recordingStop recording

Recording the register values is stopped.

ConditionalConditionalConditionalConditional
startstartstartstart

Trigger setupTrigger setupTrigger setupTrigger setup

Both triggerBoth triggerBoth triggerBoth trigger
conditionsconditionsconditionsconditions

must bemust bemust bemust be
fulfifulfifulfifulfillllledledledled

Programming

Programming 65

Transfer data...Transfer data...Transfer data...Transfer data...

The following window serves for defining the number of
curves to be read by SYMPAS from the controller memory
and to be displayed on the Scope screen.

Edit view box...Edit view box...Edit view box...Edit view box...

This function helps to display and change up to 4
controller registers of any kind in the top right corner of
the Scope screen.

Input theInput theInput theInput the
number ofnumber ofnumber ofnumber of

curves to becurves to becurves to becurves to be
displayeddisplayeddisplayeddisplayed

The contentsThe contentsThe contentsThe contents
of 4 additionalof 4 additionalof 4 additionalof 4 additional

registers canregisters canregisters canregisters can
be displayedbe displayedbe displayedbe displayed

PROCESS-PLC

 Programming 66

Zoom...Zoom...Zoom...Zoom...

The range of the time axis to be displayed over the entire
screen can be defined by the "Zoom" instruction.

Scale Y-axis...Scale Y-axis...Scale Y-axis...Scale Y-axis...

First define, for which graph the display of the y-axis is to
be scaled.

Now input the new value range which is to be displayed.

The x-axis canThe x-axis canThe x-axis canThe x-axis can
be scaled bybe scaled bybe scaled bybe scaled by

the "Zoom"the "Zoom"the "Zoom"the "Zoom"
instructioninstructioninstructioninstruction

Y-axis scalingY-axis scalingY-axis scalingY-axis scaling
of each graphof each graphof each graphof each graph

can becan becan becan be
selectedselectedselectedselected

individuallyindividuallyindividuallyindividually

Programming

Programming 67

Display ref. file...Display ref. file...Display ref. file...Display ref. file...

The monitor display can be saved by "File / Save" (*.SCP).
By "Display ref. file..." a reference file, which has been
stored on hard disk, will be displayed on the screen
again.

Erase ref. displayErase ref. displayErase ref. displayErase ref. display

The monitor display of the reference file (*.SCP) will be
deleted again.

Save as PCX file...Save as PCX file...Save as PCX file...Save as PCX file...

The monitor display will be stored as a PCX file on hard
disk.

The displayThe displayThe displayThe display
area of eacharea of eacharea of eacharea of each

graph can begraph can begraph can begraph can be
selectedselectedselectedselected

individuallyindividuallyindividuallyindividually

PROCESS-PLC

 Programming 68

3.5.10 The "Special" Menu3.5.10 The "Special" Menu3.5.10 The "Special" Menu3.5.10 The "Special" Menu

JETTERJETTERJETTERJETTER

After giving this instruction, an information window will
appear, from which the following information can be
taken:

• Program version
• Our phone number
• Current interfaces: COM1, COM2, or JETWay
• Controller state: online or offline
• Save environment: ON or OFF

Under this heading information about the switch
position of the "Auto save environment" function is
given.

• Syntax-Check: ON or OFF
Uncer this heading information about the switch
position of the "Syntax Check" function is given.

• RAM capacity is still available in the PC

Programming

Programming 69

TerminalTerminalTerminalTerminal

A terminal is simulated by this function. In the upper
section of the screen there will be the data sent via
interface, in the lower section there will be the data
which have been sent back to SYMPAS.
These functions are reserved for internal use by the JETTER
company.

Investigate Program LineInvestigate Program LineInvestigate Program LineInvestigate Program Line

Investigate actual program line (task pointer, special
function).

Interface...Interface...Interface...Interface...

In the window which will appear, the interface can be
defined, by which the connection to the controller is
made up. A choice can be made between COM1 and
COM2 of the PC or the JETWay interface (see Chapter 2.4
SYMPAS for Several Networked Controllers (JETWay-H)). In
addition, can be defined a timeout for the selected
interface. The change between various screens
(program editor, symbol editor, setup-screen) can be
speeded up using this function, if the controller is not
connected. Further, the baud rate for the DA file, resp. for
program transfer, will be given.

Dialogue Language...Dialogue Language...Dialogue Language...Dialogue Language...

Here, the dialogue language, e.g. the language of the
pull-down menus, help windows, etc. can be defined. A
choice between English and German can be made.

InterfaceInterfaceInterfaceInterface

Timeout timeTimeout timeTimeout timeTimeout time

Baud rateBaud rateBaud rateBaud rate

PROCESS-PLC

 Programming 70

Program Language...Program Language...Program Language...Program Language...

Here, the programming language, i.e. the language, in
which the instructions will be displayed, can be selected.
A choice between English and German can be made.

Colors...Colors...Colors...Colors...

In this selection line the colour settings for the entire
programming environment can be determined. After
confirming the selection line a window will appear, where
again a choice of 4 subordinate windows is offered. With
the help of the TAB key, the windows "Group", "Item",
"Foreground" and "Background" will be activated one
after the other (distinguished by double frame). By the
SHIFT-TAB key combination, the windows are activated in
reverse sequence. One can move between the
individual windows by the cursor keysFor each line of the
"Group" window, there are one or more sub-divisions in
the window "Detail", which can be assigned a certain
colour in the windows "Foreground" and "Background".
Colour setting will be interrupted by pressing the ESC key,
while it is confirmed by the ENTER ↵ key. Underneath the
"Background" window there is a test text, where a preview
of the colour setting is given in an exemplary text.

Programming

Programming 71

Settings...Settings...Settings...Settings...

In a window, the following settings can be defined:

Program EditorProgram EditorProgram EditorProgram Editor

• Display of the symbol parameters (Ctrl-Alt-S)

When symbolic expressions are used for
parameters of the programming language
instructions, the numeric value of the parameter will
additionally be displayed in the program text by
this function.
If the following line is found in the program

REG rNumberParts

in the line below, the number of the controller
register will be added by the function:

REG rNumberParts
100

That way, the assignment of symbolism to
physically existing registers can be checked.

PROCESS-PLC

 Programming 72

• Monitor Function (Ctrl-Alt-M)

The register contents are displayed in the program
editor.
If, for example, there is the following program line

REGISTER_LOAD [100 with R(200)]

the "Monitor function" will lead to the following
result:

REGISTER_LOAD [100 with R(200)]
0 23

The contents of the respective registers are
displayed in the line below and are continuously
actualised.

Programming

Programming 73

ConfigurationConfigurationConfigurationConfiguration

• Auto save environment

If this switch is active, all environment settings (as
described in Chapter 3.5.3) are saved under
SYMPAS.DSK. When SYMPAS is started afresh, all
settings are restored, when the switch "Auto save
environment" is being kept by the instruction "Save
environment".

•••• Controller typeController typeController typeController type

Here, the desired controller type can be set.

•••• Version numberVersion numberVersion numberVersion number

Here, the version number of the operating system
of the controller mentioned above is input.
Auto:Auto:Auto:Auto: Error report, if for program transfer the
controller version does not contain the instruction
set that has been used (if it is too old).
Number:Number:Number:Number: Error report, if for program transfer the
controller version does not contain the instruction
set that has been used (if it is too old).

•••• Display-TypeDisplay-TypeDisplay-TypeDisplay-Type

Here the information is given, whether a 2 or 4 line
LCD display is being used (only for the setup-
screen).

SetupSetupSetupSetup

•••• Disable inputDisable inputDisable inputDisable input

Register contents, respectively input, output and
flag conditions can be displayed, but not
changed..

With theWith theWith theWith the
settingssettingssettingssettings

o numbero numbero numbero number
o autoo autoo autoo auto

o ignoreo ignoreo ignoreo ignore

CompatibilityCompatibilityCompatibilityCompatibility
withwithwithwith

formerformerformerformer
versionsversionsversionsversions

PROCESS-PLC

 Programming 74

Syntax - CheckSyntax - CheckSyntax - CheckSyntax - Check

• active

By this function, "Syntax check" is switched on and off. The
program is checked by "Syntax check" for the following
criteria:

• Has TASK0 been defined?
• incomplete comment
• double flag or task
• conditioning has not been finished
• incomplete conditioning
• brackets have not been set correctly
• task instructions without corresponding task
• condition without corresponding flag
• subroutine without corresponding flag
• GOTO without SUBROUTINE command
• error in instruction syntax
• completeness of task
• number of subroutine levels (20 are possible)
• main program is running in subroutine
• go into a non-corresponding task
• local subroutine has been called up by a non-

corresponding task
• error in arithmetic or Boolean syntax

If the "Syntax Check" switch is set to "ON", a syntax-check
will be carried out for the following actions:

• before program transfer by the selection line
"File.ENB... -> RAM" in the "Transfer" pull-down
menu.

• Before automatic program transfer and program
start from the program editor with key combination
Ctrl-F9.

Programming

Programming 75

Independent from the switch position the syntax check is
carried out:

• with the SHIFT-F9 key combination in the program
editor.

• Check global CALLs

Per definitionem, global calls stand at the end of
the last task. Any different positioning will be
remarked by the Syntax check. If this function has
been deactivated, global calls can be placed
anywhere.

OthersOthersOthersOthers

• Transfer constants

The constant data defined in the symbol file are
transferred to the controller.

• old protocol

For the programming interface (RS232) the old
protocol is used (applies to PASE-E PLUS only.)

Save configSave configSave configSave config

Using the function "Save config", the following
configurations are kept:

• Dialogue language
• Programming language
• Interface
• Number of lines per page

PROCESS-PLC

 Programming 76

This setting refers to output of block and program
listings.

• Margin
This setting refers to the output of block and
program listings.

• Switch Positions
o Auto save environment
o Syntax check
o Formfeed at end of page
o Timeout

• Colours

Programming

Programming 77

3.6 Symbolic Programming - the Symbol Editor

Using the F4 function key or the corresponding selection
line "edit" in the pull-down menu you will get into the
symbol editor. In this edior a file to assign symbolic
names to all instruction parameters of the programming
language can be created. Thus, for example, input
"IN102" will become "IN iStart". Each numeric parameter
of the instruction language can be replaced by such
symbolic naming, which means more clarity of the
program and laees maintenance after completion. The
following order should be observed: First, create the
complete symbol file, in order to write the corresponding

SwitchSwitchSwitchSwitch
betwbetwbetwbetweeeeenenenen

program andprogram andprogram andprogram and
symbol editorsymbol editorsymbol editorsymbol editor

by pressingby pressingby pressingby pressing
(F4)

PROCESS-PLC

 Programming 78

program into the program editor.

3.6.1 Keys and Functions in the Symbol Editor3.6.1 Keys and Functions in the Symbol Editor3.6.1 Keys and Functions in the Symbol Editor3.6.1 Keys and Functions in the Symbol Editor

Some rules for the creation of the program symbolism
must be considered.

Any available ASCII character, starting from the ordinal
number 32, can be input.

Valid symbols must start in column 1 and must be
separated from the following parameter by at least one
blank. The symbol length is limited to 15 characters.

Parameters of the type "string" (DISPLAY_TEXT) have to be
enclosed by one of the following characters: ", ', or #
(e.g. "Hello World"). The string length is limited to 24
characters.

INCLUDE files can be included after the following pattern:

#INCLUDE file name

INCLUDE files must also start in the first column.

Commentaries must be preceded by semicolon or at
least one blank.

Programming

Programming 79

Cursor Movement:Cursor Movement:Cursor Movement:Cursor Movement:

Key: Function:
Cursor up one line back
Cursor down one line forward
Page up page back
Page down page forward
Ctrl-page up go to first line
Ctrl-page down go to last line
Cursor left one column back
Cursor right one column forward
Home go to beginning of line
End go to end of line
Ctrl-cursor left previous word
Ctrl-cursor right next word

Editor Instructions:Editor Instructions:Editor Instructions:Editor Instructions:

Key: Function:
ENTER new line
BS delete character in front of the cursor
DEL delete marked character
Ctrl-Y delete line

PROCESS-PLC

 Programming 80

Block Operations:Block Operations:Block Operations:Block Operations:

Key: Function:

Ctrl-K B mark top of block

Ctrl-K K mark end of block

Ctrl-K V move block

Ctrl-K C copy block

Ctrl-K Y delete block

Ctrl-K R load block from disk

Ctrl-K W write block onto disk

Ctrl-K P print block

Ctrl-K H switch off block

Ctrl-K L mark line

Ctrl-Q B search for top of block

Ctrl-Q K search for end of block

Program Labels:Program Labels:Program Labels:Program Labels:

Key: Function:
Ctrl K 0..9 0 to 9 cursor positions of the symbol text

are stored.
Ctrl Q 0..9 cursor positions 0 to 9 are searched for in

the symbol text.

Programming

Programming 81

3.6.2 Creating a Symbol File (in the Symbol Editor)3.6.2 Creating a Symbol File (in the Symbol Editor)3.6.2 Creating a Symbol File (in the Symbol Editor)3.6.2 Creating a Symbol File (in the Symbol Editor)

The numeric parameters of the programming language
can be replaced by symbolic names.

REG 100 will become

REG rNumberOfParts

A symbol file is created according to the followingA symbol file is created according to the followingA symbol file is created according to the followingA symbol file is created according to the following
patternpatternpatternpattern

• A valid symbol has to begin in the first column. If a
line starts with ";" or a blank " ", this line is interpreted
as a commentary line.

rNumberOfParts

• This symbolic parameter rNumberOfParts is now
given its numeric equivalent, which will appear in
the same line only being separated by at least one
blank " " from the symbolic name.

rNumberOfParts 100

• A commentary can be added now. It must be
separated from the parameter by at least one
blank or semicolon.

rNumberOfParts 100 ;Commentary: The symbol
"NumberOfParts" is related
to the numeric parameter
"100".

PROCESS-PLC

 Programming 82

REG 200 = REG rNumberOfParts

register REG 100 , which is physically existant in the
controller is given the symbolic name "NumberOfParts".

After writing the symbol listing, the creation of programs in
the program editor can be supported as follows: For
example, a register with symbolic naming will be input
into the program editor. After input of the "RE" short form
a window will appear, in which register numbering,
respectively symbolic naming can be carried out. If in
this window the first letter of the symbolic name is written,
and after this the key combination SHIFT-? is pressed, a
window of all symbolic names starting with this letter will
appear. Now you can easily select the respective name
by cursor key. This way, symbols that have been defined
once, will not have to be typed over and over again.

Programming

Programming 83

Example of a Symbol File:Example of a Symbol File:Example of a Symbol File:Example of a Symbol File:

Symbollisting von „prog01“ V1, 28.04.1996 15:13 Seite 1

JETTER PROCESS-PLC NANO--B

Customer/Project: sympas manual
Place : Ludwigsburg
Date : 28.04.1996 15:13
Version : 1

;**** TASK ****
;
tControlTask 0 ;The process is controlled by the task
tAutoTask 1 ;Automatic-Task
tDisplayActualpos 2 ;Display-Task Actual position
tEMERGENCY_STOP 3 ;EMERGENCY STOP-Task

;**** LABELS ****
;
sLoop 40 ;Flag 40
sDriveLeft 41 ;Flag 41: Program sequence drive left
sDriveRight 42 ;Flag 42: Program sequence drive right
sRefDrive 43 ;Flag 43: Program sequence reference run

;**** INPUTS ****
;
iEmergStopSwitch 105 ;Switch Emergency Stop Condition
iEmergDoor 106 ;Switch Emergency Stop Condition;

;Emergency Door is Open
iAutomatic 107 ;Switch Automatik/Hand
iStartButton 108 ;Button „Start"
iStop_Button 201 ;Button „Stop“
iRef_Run/Button 202 ;Button „Reference Run“

;**** REGISTER ****
;
rSM_Status 11100 ;Status register SM-Control
rCommand Register 11101 ;Command register SM-Control
rSM_Speed 11103 ;Nominal speed register SM-Control
rActualPosition 11109 ;Actual position register SM-Control

;**** FLAG ****
;
fReferenceOK 1 ;Flag: Reference Drive has taken place
fAutomaticTask 2 ;Control Flag Automatic-Task
fArrowLeft 217 ;LCD Cursor Key left
fArrowRight 218 ;LCD Cursor Key right

Note:Note:Note:Note:

The path of the symbol file must be identical to the path
of the corresponding program file. The relationship
between program file and symbol file will be
demonstrated extensively in Chapter 6. Demonstrating
Example: Handling-System.

PROCESS-PLC

 Programming 84

3.7 INCLUDE Files

SYMPAS programs respectively program parts can be
included in a SYMPAS program. Thus, a complete
program can be combined out of a pool of SYMPAS
modules. #INCLUDE instructions can be part of both
program and symbol files. The maximum number of
INCLUDE files has been restricted to 32 per editor.

INCLUDE files are used forINCLUDE files are used forINCLUDE files are used forINCLUDE files are used for

• modular structuring of programs
• Combining INCLUDE-files in instruction libraries
• Avoiding restrictions in the maximum program length

3.7.1 INCLUDE Files in the Program Editor3.7.1 INCLUDE Files in the Program Editor3.7.1 INCLUDE Files in the Program Editor3.7.1 INCLUDE Files in the Program Editor

INCLUDE-files are integrated into the text of the main file
by the #INCLUDE instruction. This instruction line is
functioning as a place-holder for the program text, which
is written in the INCLUDE-file. Exactly the program text
which is in the INCLUDE file is logically placed in the main
file, where the #INCLUDE instruction has been inserted
under the name of the respective file.

Structuring ofStructuring ofStructuring ofStructuring of
programsprogramsprogramsprograms

FunctionFunctionFunctionFunction
librlibrlibrlibraaaariesriesriesries

EnlargementEnlargementEnlargementEnlargement
of maximumof maximumof maximumof maximum

programprogramprogramprogram
lengthlengthlengthlength

#INCLUDE
instruction asinstruction asinstruction asinstruction as

a placea placea placea place
holder for theholder for theholder for theholder for the

text of thetext of thetext of thetext of the
INCLUDE fileINCLUDE fileINCLUDE fileINCLUDE file

Programming

Programming 85

Define Main FileDefine Main FileDefine Main FileDefine Main File

In the menu "File/Main file..." the main file will be defined.
In this main file the INCLUDE-files will be inserted..

The #INCLUDE InstructionThe #INCLUDE InstructionThe #INCLUDE InstructionThe #INCLUDE Instruction

With the help of the #INCLUDE-instruction, the INCLUDE
file will logically be integrated in the program text.

32 INCLUDE32 INCLUDE32 INCLUDE32 INCLUDE
files arefiles arefiles arefiles are
popopoposssssiblesiblesiblesible

No nesting ofNo nesting ofNo nesting ofNo nesting of
INCLUDE filesINCLUDE filesINCLUDE filesINCLUDE files

Figure Figure Figure Figure 9999: Up to 32 INCLUDE files can: Up to 32 INCLUDE files can: Up to 32 INCLUDE files can: Up to 32 INCLUDE files can
be defined in the main file.be defined in the main file.be defined in the main file.be defined in the main file.

The INCLUDEThe INCLUDEThe INCLUDEThe INCLUDE
file is insertedfile is insertedfile is insertedfile is inserted

by theby theby theby the
#INCLUDE
instructioninstructioninstructioninstruction

Figure Figure Figure Figure 10101010: The INCLUDE file is inserted by: The INCLUDE file is inserted by: The INCLUDE file is inserted by: The INCLUDE file is inserted by
the #INCLUDE instruction.the #INCLUDE instruction.the #INCLUDE instruction.the #INCLUDE instruction.

PROCESS-PLC

 Programming 86

Note:Note:Note:Note:

• 32 INCLUDE files can be defined in the main file.
• Nesting of INCLUDE files is not permitted. In one

INCLUDE file no further INCLUDE files must be defined.

The result might be similar to the following one:

The Pick ListThe Pick ListThe Pick ListThe Pick List

With the help of the pick list (file / pick list ...) selection
between main file and INCLUDE files can be made. For
this purpose, first load the necessary files (New File) into
the pick list. From then on, the file will appear in the
program editor, which has been mouse-clicked upon in
the pick-list.

Example:Example:Example:Example:

Main file:Main file:Main file:Main file:
TOTAL.PNBTOTAL.PNBTOTAL.PNBTOTAL.PNB

INCLUDE fileINCLUDE fileINCLUDE fileINCLUDE file
PUMP01PUMP01PUMP01PUMP01

Figure Figure Figure Figure 11111111: The INCLUDE file PUMP01 has been inserted into: The INCLUDE file PUMP01 has been inserted into: The INCLUDE file PUMP01 has been inserted into: The INCLUDE file PUMP01 has been inserted into
TOTAL.PNBTOTAL.PNBTOTAL.PNBTOTAL.PNB

Determine withDetermine withDetermine withDetermine with
the help of thethe help of thethe help of thethe help of the
pick list, whichpick list, whichpick list, whichpick list, which

file is tofile is tofile is tofile is to
appear in theappear in theappear in theappear in the

programprogramprogramprogram
editoreditoreditoreditor

Programming

Programming 87

3.7.2 INCLUDE Files in the Symbol Editor3.7.2 INCLUDE Files in the Symbol Editor3.7.2 INCLUDE Files in the Symbol Editor3.7.2 INCLUDE Files in the Symbol Editor

A symbol file serves for integrating further files as INCLUDE
files. Thus, a library of pre-designed, application related
symbol files can be created, which can be integrated
into the symbol text if necessary. In the symbol editor, the
following line can be read, for example:

Figure Figure Figure Figure 12121212: Integrate files in the list by "Open". The file which: Integrate files in the list by "Open". The file which: Integrate files in the list by "Open". The file which: Integrate files in the list by "Open". The file which
has been mouse-clicked upon in the list will appear in thehas been mouse-clicked upon in the list will appear in thehas been mouse-clicked upon in the list will appear in thehas been mouse-clicked upon in the list will appear in the
screen..screen..screen..screen..

By By By By #INCLUDE
further symbolfurther symbolfurther symbolfurther symbol

files can befiles can befiles can befiles can be
integrated inintegrated inintegrated inintegrated in

the symbolthe symbolthe symbolthe symbol
texttexttexttext

#INCLUDE
instructioninstructioninstructioninstruction

PROCESS-PLC

 Programming 88

The INCLUDE-file can be defined together with a path.
Nesting on several levels is not possible. The respective
pieces of information are taken from the files on hard disk
and will not appear in the symbol editor.

Note:Note:Note:Note:

• 32 INCLUDE files can be defined in the symbol file.
• Nesting of INCLUDE files is not permitted. In an INCLUDE

file, no further INCLUDE files must be defined..

For the use of INCLUDE files, two aspects have to be
considered. First, the file name must be identical with the
name that is on the hard disk. Secondly, the content of
the respective INCLUDE-file must be o.k. In case there are
errors in the INCLUDE-file or in the file name, leaving the
symbol editor is not possible any more. The
corresponding include files have to be cleared, if an
error has occurred.

Note:Note:Note:Note:

If the symbol editor cannot be left because of a faulty
INCLUDE file, the errors of the INCLUDE files must be
cleared (with ;). Then, the INCLUDE file which has been
cleared of the errors can be left.

INCLUDE filesINCLUDE filesINCLUDE filesINCLUDE files
can becan becan becan be
defineddefineddefineddefined

togethertogethertogethertogether
with a pathwith a pathwith a pathwith a path

INCLUDE Files:INCLUDE Files:INCLUDE Files:INCLUDE Files:

The file nameThe file nameThe file nameThe file name
and the fileand the fileand the fileand the file

itself must beitself must beitself must beitself must be
o.k.o.k.o.k.o.k.

Programming

Programming 89

May we remark in conclusion, that the design of an
INCLUDE file is identical to that of a symbol file. Thus, any
existant symbol file that has been saved on hard disk,
can be included in any further symbol file as an INCLUDE
file, which then must not contain any further INCLUDE files,
though.

The design ofThe design ofThe design ofThe design of
the INCLUDEthe INCLUDEthe INCLUDEthe INCLUDE

file is identicalfile is identicalfile is identicalfile is identical
to the designto the designto the designto the design

of a symbolof a symbolof a symbolof a symbol
filefilefilefile

PROCESS-PLC

 Programming 90

3.8 Error Messages3.8 Error Messages3.8 Error Messages3.8 Error Messages

The following SYMPAS error messages are meant to
support the program editor, the symbol editor, as well as
general programming of PROCESS-PLC controllers.
The program with its corresponding symbol file is
checked by the syntax check. This will (if activated;
Chapter 3.5.10 The "Special" Menu) be activated before
program transfer into the controller, by the key
combination SHIFT-F9.
Further, there is the possibility in the system editor to
check the symbol text for syntactic correctness by the
key combination ALT-F9.

In another window there will be information on numbers
and categories of errors. After confirming with ENTER ↵ ,
the cursor will be placed at the error position of the
program editor. A red error line will provide further
information.
If several errors have been reported in the window
mentioned above, one error after the other can be
corrected by calling the syntax check function as often
as necessary by SHIFT-F9. A context-related help
messsage per error will appear in the red error line.

The following error messages are possible:

Call the syntaxCall the syntaxCall the syntaxCall the syntax
check bycheck bycheck bycheck by

(SHIFT) (F9).

Check theCheck theCheck theCheck the
symbol text bysymbol text bysymbol text bysymbol text by

(ALT) (F9)

Programming

Programming 91

Error Messages of Symbol Errors:Error Messages of Symbol Errors:Error Messages of Symbol Errors:Error Messages of Symbol Errors:

1 Symbol not found1 Symbol not found1 Symbol not found1 Symbol not found

A symbol placed in the program text has not been
defined in the symbol file.

2 Symbol already exists2 Symbol already exists2 Symbol already exists2 Symbol already exists

A symbol has been defined several times; for instance
INPUT 102 twice.

3 Invalid parameter3 Invalid parameter3 Invalid parameter3 Invalid parameter

An invalid parameter has been assigned to a symbol in
the symbol editor: numeric parameter: max. ± 8388606.

4 Exceeds valid value range4 Exceeds valid value range4 Exceeds valid value range4 Exceeds valid value range

The instruction paameter is outside the valid value range.

5 Symbol is not a register5 Symbol is not a register5 Symbol is not a register5 Symbol is not a register

One symbol has been defined for both a numeric and a
text parameter.

6 Invalid string constant6 Invalid string constant6 Invalid string constant6 Invalid string constant

An invalid string parameter has been defined.
String parameters must stand between " or ' or '
characters. Their length can be 24 Bit as a maximum.

PROCESS-PLC

 Programming 92

Error Messages in the Syntax-Check:Error Messages in the Syntax-Check:Error Messages in the Syntax-Check:Error Messages in the Syntax-Check:

9 Function definition (X) not found9 Function definition (X) not found9 Function definition (X) not found9 Function definition (X) not found

A function called in the program text has not been
defined in the program heading.

10 Function call does not match10 Function call does not match10 Function call does not match10 Function call does not match

The number of parameters is not equal in call-up and
definition

11 Too many labels11 Too many labels11 Too many labels11 Too many labels

There are too many relative flags (managed by SYMPAS
itself)

13 First instruction has to be TASK 013 First instruction has to be TASK 013 First instruction has to be TASK 013 First instruction has to be TASK 0

The first instruction in a PROCESS-PLC program must be
TASK 0.

14 TASK(X) already exists14 TASK(X) already exists14 TASK(X) already exists14 TASK(X) already exists

Task number "X" has already been defined in the
program.

15 LABEL (X) exists already15 LABEL (X) exists already15 LABEL (X) exists already15 LABEL (X) exists already

Flag number "X" has already been defined in the
program.

Programming

Programming 93

16 TASK not found16 TASK not found16 TASK not found16 TASK not found

A task defined as TASKBREAK, TASKCONTINUE,
TASKRESTART does not exist.

17 TASK (X) is no endless loop17 TASK (X) is no endless loop17 TASK (X) is no endless loop17 TASK (X) is no endless loop

Task number "X" has not been closed by a GOTO
instruction. Each task must be closed in order to form an
endless loop.

20 GOTO label not found20 GOTO label not found20 GOTO label not found20 GOTO label not found

The LABEL(X) or TASK(X) relating to the GOTO(X) instruction
do not exist.

21 GOTO into another TASK21 GOTO into another TASK21 GOTO into another TASK21 GOTO into another TASK

It is not possible to give GOTO instructions for jumps into
other parallel branches.

22 GOTO into procedure not allowed22 GOTO into procedure not allowed22 GOTO into procedure not allowed22 GOTO into procedure not allowed

GOTOs into functions (from outside) are not permitted.

23 GOTO from procedure not allowed23 GOTO from procedure not allowed23 GOTO from procedure not allowed23 GOTO from procedure not allowed

GOTO out of functions (to the outside) is not permitted.

PROCESS-PLC

 Programming 94

24 Global subroutines only at the end of24 Global subroutines only at the end of24 Global subroutines only at the end of24 Global subroutines only at the end of
program textprogram textprogram textprogram text

There are differences between local and global
subroutines. Local subroutines are only used by one task.
They are placed at the end of a task.
Global subroutines are used by various tasks and have to
be placed at the end of t he entire program text, that is,
after the text of the last task. If this structure cannot, or is
not to be maintained, the syntax check can be
deactivated with the help of the respective switch

25 Only 20 subroutine levels valid25 Only 20 subroutine levels valid25 Only 20 subroutine levels valid25 Only 20 subroutine levels valid

20 subroutine levels are permitted.

26 26 26 26 RETURN without SUBROUTINERETURN without SUBROUTINERETURN without SUBROUTINERETURN without SUBROUTINE

A RETURN instruction that has not been preceded by
CALL has been found by SYMPAS.

27 27 27 27 Main routine runs into subroutineMain routine runs into subroutineMain routine runs into subroutineMain routine runs into subroutine

The main program will turn into a subroutine.

28 CALL not found28 CALL not found28 CALL not found28 CALL not found

There is no FLAG(X) corresponding to a CALL(X).

30 WHEN not allowed here30 WHEN not allowed here30 WHEN not allowed here30 WHEN not allowed here

No WHEN instruction is permitted by the program syntax at
this position.

Programming

Programming 95

31 31 31 31 IF not allowed herenot allowed herenot allowed herenot allowed here

No IF instruction is permitted by the program syntax at
this position.

32 32 32 32 ELSE withoutwithoutwithoutwithout IF..THEN

ELSE without a preceding IF..THEN instruction has
been detected by SYMPAS.

33333333 ELSE, IF, WHEN, THEN too far fromtoo far fromtoo far fromtoo far from IF

The program text in a conditioned decision, this is,
between IF and THEN, or between IF and ELSE or to
the final instruction belonging to IF - THEN, IF, WHEN - is
too long. This problem can be solved by shortening the
respective program text.

34 34 34 34 IF, , , , WHEN, , , , THEN too far fromtoo far fromtoo far fromtoo far from
ELSE

The program text in a conditioned decision, here
between ELSE and the corresponding final instruction -
THEN, IF, WHEN - is too long.

35 35 35 35 THEN expectedexpectedexpectedexpected

At this point, the instruction THEN is waited for by the
compiler.

PROCESS-PLC

 Programming 96

37 Allowed only in input condition37 Allowed only in input condition37 Allowed only in input condition37 Allowed only in input condition

These operators are only allowed between IF (WHEN)
and THEN.

38 Allowed only in output instruction38 Allowed only in output instruction38 Allowed only in output instruction38 Allowed only in output instruction

These operators are only allowed after THEN and ELSE.

39 Form syntax error39 Form syntax error39 Form syntax error39 Form syntax error

The operators =, +, -, *, /, WOR, WAND, WXOR,
ACTUALPOS, ND, NB, NH have been used in a wrong
context in this operation.

41 Numeral or variable expected41 Numeral or variable expected41 Numeral or variable expected41 Numeral or variable expected

At this point a numeral or variable is expected by the
compiler.

42 "=" expected42 "=" expected42 "=" expected42 "=" expected

At this point an equal sign is expected by the compiler.

43 Boolean expression expected43 Boolean expression expected43 Boolean expression expected43 Boolean expression expected

At this point a Boolean expression is expected by the
compiler.

Programming

Programming 97

44 Arithmetic compare operator expected44 Arithmetic compare operator expected44 Arithmetic compare operator expected44 Arithmetic compare operator expected

At this point an arithmetic compare operator is expected
by the compiler.

45 ")" without "("45 ")" without "("45 ")" without "("45 ")" without "("

Parentheses have not been set completely

46 ")" expected46 ")" expected46 ")" expected46 ")" expected

Brackets have not been set completely.

47 Only 3 parenthesis levels valid47 Only 3 parenthesis levels valid47 Only 3 parenthesis levels valid47 Only 3 parenthesis levels valid

3 parenthesis levels are valid as a maximum.

50 Function definition only allowed before50 Function definition only allowed before50 Function definition only allowed before50 Function definition only allowed before
TASK0

Functions must be defined before the first task (TASK 0).

51 51 51 51 END_DEF without without without without DEF_FUNCTION

END_DEF has been specified without DEF_FUNCTION. In
END_DEF, a function is concluded by DEF_FUNKTION.

52 52 52 52 END_DEF expectedexpectedexpectedexpected

A function definition has not been concluded by
END_DEF.

53 53 53 53 RETURN expectedexpectedexpectedexpected

Before an END_DEF, RETURN is missing.

PROCESS-PLC

 Programming 98

1

Miscellaneous Errors:Miscellaneous Errors:Miscellaneous Errors:Miscellaneous Errors:

55 Unknown instruction55 Unknown instruction55 Unknown instruction55 Unknown instruction

An unknown instruction has been detected by the
compiler.

56 Program too large for controller memory56 Program too large for controller memory56 Program too large for controller memory56 Program too large for controller memory

The program memory of the controller is too small for the
program that is to be transferred.

57 "}" without "{"57 "}" without "{"57 "}" without "{"57 "}" without "{"

Commentary parentheses have not been set
completely.

58 "}" not found58 "}" not found58 "}" not found58 "}" not found

Commentary parentheses have not been set
completely.

59 Cannot open file59 Cannot open file59 Cannot open file59 Cannot open file

DOS error in the context of INCLUDE-files ("File not found"
or "Too many open files").

60 Insufficient RAM space60 Insufficient RAM space60 Insufficient RAM space60 Insufficient RAM space

In the PC memory there is not enough space for the
INCLUDE file.

Programming

Programming 99

61 61 61 61 Only single nesting depth allowed forOnly single nesting depth allowed forOnly single nesting depth allowed forOnly single nesting depth allowed for
INCLUDE filesINCLUDE filesINCLUDE filesINCLUDE files

In an INCLUDE file, there is another #INCLUDE.

62 Only 8 include files allowed62 Only 8 include files allowed62 Only 8 include files allowed62 Only 8 include files allowed

Not more than 8 INCLUDE files may be defined in one
main file.

63636363 INCLUDE files only allowed if main fileINCLUDE files only allowed if main fileINCLUDE files only allowed if main fileINCLUDE files only allowed if main file
defineddefineddefineddefined

INCLUDE files can only be defined in a main file.

64 Unexpected end of file64 Unexpected end of file64 Unexpected end of file64 Unexpected end of file

System error message.

65 GOTO distance larger than 32 kByte65 GOTO distance larger than 32 kByte65 GOTO distance larger than 32 kByte65 GOTO distance larger than 32 kByte

A label handled by SYMPAS is too far from the GOTO
instruction. Reduce distance.

66 Controller version x.xx needed66 Controller version x.xx needed66 Controller version x.xx needed66 Controller version x.xx needed

An instruction has been used, for which a later operating
system version is needed than the one that has been
defined in "Settings...".

PROCESS-PLC

 Programming 100

3.9 Files, Extensions, etc.3.9 Files, Extensions, etc.3.9 Files, Extensions, etc.3.9 Files, Extensions, etc.

Please find the compilation of files, which are provided
by SYMPAS, in the up-to-date README file, which can be
found on the SYMPAS disk to be read on DOS level.

All files generated by SYMPAS while working in it, will be
shown in the survey below.

NAME.PPENAME.PPENAME.PPENAME.PPE (PASE-E), NAME.PPMNAME.PPMNAME.PPMNAME.PPM (MIKRO),
NAME.PPDNAME.PPDNAME.PPDNAME.PPD (DELTA), NAME.PNANAME.PNANAME.PNANAME.PNA (NANO-A),
NAME.PNBNAME.PNBNAME.PNBNAME.PNB (NANO-B)

These are the names of the program files, in which the
program text is to be stored.

NAME.BKENAME.BKENAME.BKENAME.BKE (PASE-E), NAME.BKMNAME.BKMNAME.BKMNAME.BKM (MIKRO),
NAME.BKDNAME.BKDNAME.BKDNAME.BKD (DELTA), NAME.BNANAME.BNANAME.BNANAME.BNA (NANO-A),
NAME.BNBNAME.BNBNAME.BNBNAME.BNB (NANO-B)

This way, the backups for the corresponding program
files are named.

NAME.SYMNAME.SYMNAME.SYMNAME.SYM

These are the symbol files of the corresponding program
files. The name of the program file need not be identical
with the name of the symbol file. The symbol files must
be found in the directory of the corresponding program
files.

NAME.BKSNAME.BKSNAME.BKSNAME.BKS

The backups of the symbol files are named this way.

Programming

Programming101

SYMPAS.CFGSYMPAS.CFGSYMPAS.CFGSYMPAS.CFG

This is the configuration file, where all the settings are
stored, which are selected in the "Special" pull-down
menu "Save Settings".

SYMPAS.DSKSYMPAS.DSKSYMPAS.DSKSYMPAS.DSK

This desk file will be considered by SYMPAS during startup,
when the switch "auto save environment" has been
stored in activated state in the SYMPAS.CFG file.
According to the design of SYMPAS.DSK, the environment
will be restored after startup.

NAME.DSKNAME.DSKNAME.DSKNAME.DSK

In this desk file, all settings have been stored, which can
be addressed by the selection line "save environment in
the "file" pull-down menu. Besides the SYMPAS.DSK file,
the user can still create further files to store the
configuration of the environment.

NAME.SUENAME.SUENAME.SUENAME.SUE (PASE-E), NAME.SUMNAME.SUMNAME.SUMNAME.SUM (MIKRO),
NAME.SUDNAME.SUDNAME.SUDNAME.SUD (DELTA), NAME.SNANAME.SNANAME.SNANAME.SNA (NANO-A),
NAME.SNBNAME.SNBNAME.SNBNAME.SNB (NANO-B)

In this file, the settings of the setup screen will be stored.

NAME.LSTNAME.LSTNAME.LSTNAME.LST

In this file, printer outputs will be stored, which are to be
transferred into a file.

PROCESS-PLC

 Programming 102

NAME.RTNAME.RTNAME.RTNAME.RT

System file, the existence of which is essential for the
functioning of the index window in the setup screen.

NAME.EPNAME.EPNAME.EPNAME.EP (PASE-E), NAME.EPRNAME.EPRNAME.EPRNAME.EPR (PASE-M),
NAME.EPDNAME.EPDNAME.EPDNAME.EPD (DELTA), NAME.ENANAME.ENANAME.ENANAME.ENA (NANO-A),
NAME.ENBNAME.ENBNAME.ENBNAME.ENB (NANO-B)

This object file is created with the help of the "Editor ->
File.EP" in the "Transfer" pull-down-menu.

NAME.DANAME.DANAME.DANAME.DA

Register and flag range file. With the help of the "Register
-> File.DA..." selection line in the "Transfer" pull-down-
menu you can store register and flag ranges, which you
have defined yourself, in the above mentioned files on
floppy or hard disk.

NAME.SITNAME.SITNAME.SITNAME.SIT

Sympas Include Table contains already included
symbols in binary form.

Programming

Programming103

3.10 Miscellaneous3.10 Miscellaneous3.10 Miscellaneous3.10 Miscellaneous

3.10.1 Indirect Addressing3.10.1 Indirect Addressing3.10.1 Indirect Addressing3.10.1 Indirect Addressing

Indirect addressing will be defined in the opened
window, where one, or more than one, instruction
parameters are defined. For this purpose, press the CTRL-
R key combination or the SPACE key. Now, an "R" will
appear in front of the parameter line, or - after pressing
the keys twice - "RR" will appear, if doubly indirect
addressing is possible in this instruction.

3.10.2 Commentaries3.10.2 Commentaries3.10.2 Commentaries3.10.2 Commentaries

There are three ways of inputting commentaries into the
program editor:

• press the ";" key and input the respective
commentary as a program line. Confirm by
pressing ENTER <┘.

• to add a commentary at the right hand side of the
program text, press the cursor key → and input the
respective commentary.

• Further, it is possible to integrate commentaries into
the program text by writing them in braces { ... }.
All characters in braces will be interpreted as
belonging to a commentary and will thus not be
compiled (commenting of program passages).

Activate theActivate theActivate theActivate the
indirect levelindirect levelindirect levelindirect level

in thein thein thein the
definitiondefinitiondefinitiondefinition

window bywindow bywindow bywindow by
(CTRL) (R) or or or or

(SPACE)

PROCESS-PLC

 Programming 104

3.10.3 Call-up by the /o Switch (Laptop, Notebook)3.10.3 Call-up by the /o Switch (Laptop, Notebook)3.10.3 Call-up by the /o Switch (Laptop, Notebook)3.10.3 Call-up by the /o Switch (Laptop, Notebook)

SYMPAS has been programmed in overlay technique
and thus needs minimum space in the working storage
of the PC. On the other hand, frequent access to the
hard disk of the PC will be necessary when this technique
is used. Normally, this is no problem, as those activities
will hardly be realised.

If you have installed SYMPAS on a disk drive (access time
is problematic), or in a laptop or a notebook (in case of
battery operation, operation time will be reduced),
though, SYMPAS can be called by

SYMPAS /o

on DOS level. Now the overlay-buffer in the working
storage of the PC will be enlarged, so that no access to
hard disk will be necessary any more, as all SYMPAS
program parts will continuously be in the RAM. Thus, the
problems mentioned above will be solved from their very
roots.

SYMPAS /oxxxx

Expand overlay range by xxxx Bytes.

As an alternative to using the switch, 20 free 16 kByte
blocks EMS can be installed on the PC (see DOS
manual).

Programming

Programming105

3.10.4 The NOSYMPAS.EXE Program3.10.4 The NOSYMPAS.EXE Program3.10.4 The NOSYMPAS.EXE Program3.10.4 The NOSYMPAS.EXE Program

The NOSYMPAS.EXE program is a reduced version of the
SYMPAS.EXE program.
The programs are meant for end users, who are to be
granted only very restricted possibilities of manipulation.
Programs can be loaded from hard disk and out of the
controller RAM), yet they cannot be edited. As usual,
access to the setup screen has been provided, although
data manipulation is not possible after call-up. After
release of the disable in the "settings" dialogue, register
values, inputs, outputs, etc. of the PLC controller can be
changed.

If a customer is to be supported, the following aspect
might be helpful: Program name (e.g. *.PNB) and/or
setup file name (e.g. *.SNB) can already be defined on
DOS level, when SYMPAS is started.

NOSYMPAS /NANOB PROG01.PPE SETUP05.SUE

NOSYMPAS.EXE will function in the following order:

• load *.PNB
• load *.SNB
• activate setup screen, after value input resp.

change have been disabled first (release with the
help of selection line "disable input" in the
"Special/Settings..." pull-down menu).

PROCESS-PLC

 Programming 106

3.10.5 Switching to DOS3.10.5 Switching to DOS3.10.5 Switching to DOS3.10.5 Switching to DOS

By the Alt-F5 key combination the DOS screen is moved
into the foreground, that has been active before SYMPAS
call-up, respectively after leaving the DOS shell by EXIT. By
pressing any key, the SYMPAS screen can be called
again.

3.10.6 Password3.10.6 Password3.10.6 Password3.10.6 Password

ActivationActivationActivationActivation

In order to define a password, SYMPAS is to be given the
call-up parameter /p (/pv). In this case, the password is
input by a window at the beginning of SYMPAS. A choice
between two varieties can be made:
/p = the characters that have been input will not be

readable in the display; for the sake of security, the
input must be repeated once more.

/pv =the characters that have been input can be read;
thus, repetition of the input is not necessary.

DefinitionsDefinitionsDefinitionsDefinitions

• a password can have a maximum length of 8
characters, and it must have a minimum length of
5 characters.

• if there is no error report after password input, the
password is valid.

Programming

Programming107

ApplicationApplicationApplicationApplication

• the coded keyword will be written into the program
header or directly into the controller (Ctrl-F9).

• if by the "File.ENB -> Editor" selection line a
program is recompiled, and if a password has
been defined and taken up into the program
head, this must be input now, otherwise no
compilation of the program out of an EPROM file
will be possible. If the password, which has been
input at the program start of SYMPAS, is identical
with the password in the program header of the
control program, a second password input will not
be needed.

3.10.7 SYMPAS Version 3.09 ff, and MIKRO up to 2.103.10.7 SYMPAS Version 3.09 ff, and MIKRO up to 2.103.10.7 SYMPAS Version 3.09 ff, and MIKRO up to 2.103.10.7 SYMPAS Version 3.09 ff, and MIKRO up to 2.10

If SYMPAS from version 3.09 onwards is executed together
with any MIKRO of an operating system version earlier
than 2.10, the syntax check belonging to SYMPAS will not
be able to recognise an excession of the 3 subroutine
levels that are permitted as a maximum.

3.10.8 SYMPAS and PASE-J3.10.8 SYMPAS and PASE-J3.10.8 SYMPAS and PASE-J3.10.8 SYMPAS and PASE-J (up to version 4.04)

If a controller of the PASE-J type is used, SYMPAS must be
started by the following call line:

SYMPAS /J/J/J/J

PROCESS-PLC

 Programming 108

3.10.9 SYMPAS in the Network3.10.9 SYMPAS in the Network3.10.9 SYMPAS in the Network3.10.9 SYMPAS in the Network (PASE-E up to version 4.04)

If SYMPAS is used in the network, the path to the
SYMPAS(_M).CFG configuration file is to be defined by the
DOS command line

SET SYMPAS_CONFIG=Path.

3.10.10 Further Command Line Parameters (Call-Up Switches)3.10.10 Further Command Line Parameters (Call-Up Switches)3.10.10 Further Command Line Parameters (Call-Up Switches)3.10.10 Further Command Line Parameters (Call-Up Switches)

/L/L/L/L high contrast colour chart for laptops

/S/S/S/S symbols in selection windows, in alphabetic
order.

/B/B/B/B input windows appear under the cursor line.

/Bxxxx/Bxxxx/Bxxxx/Bxxxx input of a fixed baud rate (which has been
set in the controller).

/PASEE+/PASEE+/PASEE+/PASEE+ SYMPAS setting: PASE-E PLUS

/MIKRO/MIKRO/MIKRO/MIKRO SYMPAS setting: MIKRO

/DELTA/DELTA/DELTA/DELTA SYMPAS setting: DELTA

/NANOA/NANOA/NANOA/NANOA SYMPAS setting: NANO-A

/NANOB/NANOB/NANOB/NANOB SYMPAS setting: NANO-B (Default, if no
controller has been defined).

Programming

Programming109

II. SYMPAS ProgrammingII. SYMPAS ProgrammingII. SYMPAS ProgrammingII. SYMPAS Programming

1. Overview1. Overview1. Overview1. Overview

For the execution of a controller taskcontroller taskcontroller taskcontroller task with the help of a
PROCESS-PLC, a program adapted to the problem is
needed besides an apt hardware configuration. The
controller is caused by the program to execute the
respective controller task.

The PROCESS-PLC programming language is
unconventional in a certain sense. It is adapted to the
motion sequence of the machine to be controlled,
respectively of the process to be controlled, and not to a
contact plan, as this would usually be the case.

This makes a vast difference: For programming a
controller task it is notnotnotnot necessary to consider traditional
means first (contactors, contactor relays ...). The motion
sequence can be transferred almost directly into the
programming language of the PROCESS-PLC.

In addition to the mere descriptive language, there is
also floating point arithmetic, data management and
multitasking of up to 32 tasks.

During program execution, the PROCESS-PLC differs from
conventional controllers in so far, as no cyclic storage run
takes place. This way, the reaction time is independent
of the program length, as only those input conditions,
which are necessary for continuation of the controlling
process, yet not any other condition, will permanently be
tested.
.

SYMPASSYMPASSYMPASSYMPAS
followsfollowsfollowsfollows

the motionthe motionthe motionthe motion
sequences ofsequences ofsequences ofsequences of
the machinethe machinethe machinethe machine

The process isThe process isThe process isThe process is
described bydescribed bydescribed bydescribed by

plain-textplain-textplain-textplain-text
languagelanguagelanguagelanguage

PROCESS-PLC

110 Programming

2. Fundamentals of Programming2. Fundamentals of Programming2. Fundamentals of Programming2. Fundamentals of Programming

2.1 Principles of Program Setup2.1 Principles of Program Setup2.1 Principles of Program Setup2.1 Principles of Program Setup

The clear difference between the programming
language and the standard PLC languages has a
certain effect on the basic program structure.

Normally, several parallel partial processes have to be
controlled, which, in general, will run sequentially.

Thus, the program structure should follow the
arrangement of the parallel programs as closely as
possible. It is helpful to define a basic program, which is
to function as a main program and which will activate
and connect the "sub"-programs, called subroutines, via
flags.

In addition, parallel programs for execution of
asynchronous instructions given by, for example, user
elements, by the central controller or by VIADUKT, will
normally be needed.

In this language, the processing time is not dependent
on the program length, but on the number of parallel
programs (tasks) that have been used. Thus, not too
many of them should be running simultaneously.

Programming

Programming111

The basic instruction WHEN...(condition)... THEN
...(output).. can thus be used very well for direct process
description, as (in contrast to the IF/THEN instruction for
BASIC or PASCAL) meeting the condition is waited forwaited forwaited forwaited for,
and only then the output is carried out. This means, that,
other than with the known PLC languages, the order of
inputs corresponds to the program sequence.

If meeting the condition is not to be waited for, but if only
a logic decision is to be made, IF...THEN...(ELSE)...
must be used. This directly corresponds to the BASIC
instruction IF..THEN...(ELSE))))... , i.e. depending on
the logic state of the condition, one of the two outputs
will be made, which can also be blank. (The ELSE
branch can be left out totally, even including the "ELSE".)

BasicBasicBasicBasic
InstructionInstructionInstructionInstruction

WHEN
...
THEN
...

PROCESS-PLC

112 Programming

A basic program structurebasic program structurebasic program structurebasic program structure can, for example, be made
up as follows:

TASK 0
.... ; Initialising:
.... ; (Modules, axes,
.... ; registers, flags)
....

FLAG 40 ; inquiry - loop
IF

.... ; condition, e.g.
THEN ; automatic condition
CALL 41

IF
.... ; condition, e.g.

THEN ; for manual mode
CALL 42

IF
.... ; condition procedure3

THEN
CALL 43

THEN
....
.... ; further inquiries
.... ; with IF -
.... ; THEN - ELSE
....
GOTO 40

LABEL 41
FLAG 1
.... ; call
.... ; automatic
RETURN

LABEL 42
....
.... ; call
.... ; manual mode
RETURN

LABEL 43
....
.... ; execution
.... ; procedure 3
RETURN

Programming

Programming113

 TASK 1
WHEN ; main program e.g

FLAG 1 ; automatic
THEN ; started by flag
....
.... ; execution
.... ; main program

THEN
FLAG 10 ; possibly call-up of a

; parallel process, via
WHEN ; flag

-FLAG 10
THEN ; then wait, until this
.... ; is finished
.... ; further execution
.... ; main program
....
GOTO 1

TASK 2
WHEN ; parallel process,

FLAG 10 ; started from the
; main program via

THEN ; flag 10
....
.... ; execution
.... ; parallel program

THEN
-FLAG 10 ; report run is finished
GOTO 2

Program end

PROCESS-PLC

114 Programming

Description of the individual parallel tasks and of their co-
ordination:

TASK 0

In TASK 0, first an initialisation of additional boards and
of the outputs, flags and registers is made. Normally, a
reference run is necessary for axis control, which can also
be programmed at this stage.

After this, there will be a number of IF conditions. This
way, inputs can be enquired on. This enquiry loopenquiry loopenquiry loopenquiry loop will
continuously be run through; in consequence, no WHEN -
instruction must be written there. This way it is possible to
recognise a met condition and to react immediately.

Then a jump to the respective flag will be made at once
(FLAG 41, FLAG 42 etc.), where those instructions,
which must be executed, are written. Those can also be
instructions for an automatic control task or something
similar. Yet, there must not any instructions be given at
this position, which will need a long time for execution.
Otherwise, the inquiry loop will not be run through any
more, neither will any new inputs be considered further.

In the case of "call-up automatic" a task could be
started, for example, by which automatic controlling
could be carried out. The same way another task could
be started under "call-up manual mode", by which a
manual controlled task could be carried out.

TASK 0
must alwaysmust alwaysmust alwaysmust always
be presentbe presentbe presentbe present

TASK 0::::
Initialisation,Initialisation,Initialisation,Initialisation,

requestrequestrequestrequest
loop forloop forloop forloop for

inputs, keys,inputs, keys,inputs, keys,inputs, keys,
etc.etc.etc.etc.

Programming

Programming115

TASK 1

In this task the main controller programmain controller programmain controller programmain controller program has been written.
This main program will be started by FLAG 1. This could
be started out of TASK 0 (LABEL 41). Thus, the
condition for this process could be a start key (input). As
soon as this input has been activated by pressing the
key, FLAG 1 will be set and thus the start function be
triggered.

Then the main program will carry out the instructions,
possibly start another parallel program (here by FLAG
10), and will then come to an end by defined conditions.
This main program must be seen as an endless loop, if it
really is in automatic mode. By certain interrupt
conditions, for example by a stop key or an error report,
this endless loop will be left and the end will be reached.

From the end a jump will be made to the beginning of
the task, for the task to be ready to be called again. If
FLAG 1 has not been reset in the meantime, the
controller will be restarted immediately, which might
even have been desired. Otherwise the flag would have
to be reset to the beginning before GOTO.

TASK 2

This is an example of a simple task called via flag to, for
instance, control operator guidance.

TASK 1::::
AutomaticAutomaticAutomaticAutomatic

task,task,task,task,
control of thecontrol of thecontrol of thecontrol of the

main functionsmain functionsmain functionsmain functions

PROCESS-PLC

116 Programming

2.1.1 Rules for Program Structure - Task Structure2.1.1 Rules for Program Structure - Task Structure2.1.1 Rules for Program Structure - Task Structure2.1.1 Rules for Program Structure - Task Structure

Definition of a Parallel Branch (Tasks)Definition of a Parallel Branch (Tasks)Definition of a Parallel Branch (Tasks)Definition of a Parallel Branch (Tasks)

For programming more complex processes and for the
realisation of subroutines, there is the possibility in
PROCESS-PLC to write several parallel program parts.
Altogether, 32 independent program parts are possible.
These can also be connected via FLAG oder REGISTER,
which means they are made dependent on one
another. One of these program parts can be called
"parallel branch" or "task"."parallel branch" or "task"."parallel branch" or "task"."parallel branch" or "task".

A parallel branch always has to start with a TASK
instruction. The TASKs for parallel branches have
got numbers 0 to 31 (inclusively). TASK 0 is always there.
If no further TASK of a number smaller than 32 is input,
"parallel branch" 0 will remain the only one; thus, no
parallel processing will be carried out by the controller.

If a parallel branch is needed, a TASK number 1 must
be input. For all parallel branches that are needed
further, the next number must be selected in ascending
order and without leaving one number out.

In the editor, TASKS are marked by a line. This line is to
distinguish between two programs.

By 32 tasksBy 32 tasksBy 32 tasksBy 32 tasks
parallelparallelparallelparallel

program partsprogram partsprogram partsprogram parts

TASK 0
must alwaysmust alwaysmust alwaysmust always

be therebe therebe therebe there

AscendingAscendingAscendingAscending
and completeand completeand completeand complete

numberingnumberingnumberingnumbering

Programming

Programming117

A parallel branch is a program that is complete in itself.
This means, that out of a parallel branch there must not
be a GOTO to a LABEL, which is also used by another
parallel branch. At the end of a parallel branch, a GOTO
to a LABEL must be part of a parallel branch. Otherwise,
the parallel branch will run "into the next one", which will
lead to malfunctioning of the program.

Subroutines ("calls") and functions are an exception. They
can be called from another parallel branch without any
problems. Basically, even simultaneous call-up of the
same subroutine is possible from several parallel
branches - yet, it should be placed at the end of the last
task (place global calls at the end of the entire program
text).

TASKS, which have been positioned at the beginning of
a parallel task (0..31) can be used - as any other lable -
as destinations for GOTO instructions (GOTO).

A program without multitasking, i.e. without parallel
branches, can be structured as follows:

TASK 0 -----------------------------------
...
...
... ; Program Text
...
...

LABEL 50
...
... ; Program Text
...
GOTO 50

GOTO
destinationsdestinationsdestinationsdestinations

only in theonly in theonly in theonly in the
context of onecontext of onecontext of onecontext of one

task; nevertask; nevertask; nevertask; never
exceedingexceedingexceedingexceeding

one taskone taskone taskone task

Place globalPlace globalPlace globalPlace global
calls at thecalls at thecalls at thecalls at the
end of theend of theend of theend of the

program textprogram textprogram textprogram text

PROCESS-PLC

118 Programming

This means, that at the end a jump to label 50 has been
made. This label can, of course, be given any number
from 32 to 999 or a symbolic name. The jump at the end
must be made to a LABEL that is already available. A
jump can also be made to TASK 0 directly.

Example of structuring a program with three parallel
branches:

TASK 0 -----------------------------------
...

LABEL 101 ; All set labels are, of course,; All set labels are, of course,; All set labels are, of course,; All set labels are, of course,
; only meaningful,; only meaningful,; only meaningful,; only meaningful,

LABEL 105 ;.if they are jumped to.;.if they are jumped to.;.if they are jumped to.;.if they are jumped to.
; The jumps can be programmed to; The jumps can be programmed to; The jumps can be programmed to; The jumps can be programmed to

LABEL 102 ; go in all directions to your liking,; go in all directions to your liking,; go in all directions to your liking,; go in all directions to your liking,
; even forward,; even forward,; even forward,; even forward,

... ; yet only inside; yet only inside; yet only inside; yet only inside
; of one; of one; of one; of one

... ; parallel branch (Task).; parallel branch (Task).; parallel branch (Task).; parallel branch (Task).
GOTO 101

TASK 1 -----------------------------------
...

LABEL 200
LABEL 201

...
GOTO 201
...
GOTO 1

TASK 2 -----------------------------------
...
...
...
GOTO 2

The parameterThe parameterThe parameterThe parameter
numbers ofnumbers ofnumbers ofnumbers of

thethethethe
TASK or FLAGTASK or FLAGTASK or FLAGTASK or FLAG

instructionsinstructionsinstructionsinstructions
can be givencan be givencan be givencan be given

symbolicsymbolicsymbolicsymbolic
namesnamesnamesnames

Programming

Programming119

Parallel Processing (Task Switching)Parallel Processing (Task Switching)Parallel Processing (Task Switching)Parallel Processing (Task Switching)

Parallel processing of individual parallel user program
branches is managed by the operating system of the
controller. There are certain rules, according to which the
processing of individual program parts is started and
changes from one parallel branch to another can be
made. To know these rules might be interesting for the
advanced programmer:

Rule 1Rule 1Rule 1Rule 1: Processing of the user program always starts
with TASK 0.

Rule 2Rule 2Rule 2Rule 2: Switching between parallel branches will
always be carried out after the following
instructions or in the following situations:

· DELAY

· USER_INPUT

· In case of aIn case of aIn case of aIn case of a WHEN - - - - condition, which hascondition, which hascondition, which hascondition, which has
 not been met not been met not been met not been met

Rule 3Rule 3Rule 3Rule 3: The following three further conditions for task
switch can be influenced by the user with the
help of the flag (flag number in the controller
manual). The default value after reset will be
written in square brackets.

· After a certain timeAfter a certain timeAfter a certain timeAfter a certain time
 (Task switch-Timeout) [active](Task switch-Timeout) [active](Task switch-Timeout) [active](Task switch-Timeout) [active]

· AfterAfterAfterAfter GOTO - - - - instruction [active]instruction [active]instruction [active]instruction [active]

· After anAfter anAfter anAfter an IF condition that hascondition that hascondition that hascondition that has
 not been fulfilled [deactivated not been fulfilled [deactivated not been fulfilled [deactivated not been fulfilled [deactivated]]]]

RulesRulesRulesRules
for taskfor taskfor taskfor task

switchingswitchingswitchingswitching

PROCESS-PLC

120 Programming

Remarks on Rule 3Remarks on Rule 3Remarks on Rule 3Remarks on Rule 3

a) Task Switch Timeout (Flag 2056)a) Task Switch Timeout (Flag 2056)a) Task Switch Timeout (Flag 2056)a) Task Switch Timeout (Flag 2056)

After a certain time the task will be
changed, when the present instruction has been carried
out, without meeting any other requirement.
The time, which has been stored in the "task-timeout
time" register (in units of ms), can be changed by the
user.

After reset if flag 2056 = 1, (if it is set)
the "task timeout time" is loaded with 20
(ms)

Without changing flag 2056 and special register "task
timeout time" this task switch timeout is activated. Thus,
switch to another task will be made after 20 ms as the
latest.

Note:Note:Note:Note:

An output instruction cannot be terminated by timeout
and will thus be processed completely.

b) Afterb) Afterb) Afterb) After GOTO - - - - instruction (flag 2057)instruction (flag 2057)instruction (flag 2057)instruction (flag 2057)

If flag 2057 has been set, the task will be changed after
each GOTO instruction.

This flag is also = 1 after reset, this means, it has been
set.

c) c) c) c) IF condition, not fulfilled (flag 2058)condition, not fulfilled (flag 2058)condition, not fulfilled (flag 2058)condition, not fulfilled (flag 2058)

Task switchTask switchTask switchTask switch
after aafter aafter aafter a

defined timedefined timedefined timedefined time

Task switchTask switchTask switchTask switch
before before before before GOTO

instruction

Programming

Programming121

If flag 2058 has been set, task switch will be carried out
after each IF condition, if it has not been met (This
means, that the THEN branch will be preferred to the
ELSE branch.

This flag will be = 0 after reset, this means, it will not be
set.

d)d)d)d) Flag 2056 to 2058Flag 2056 to 2058Flag 2056 to 2058Flag 2056 to 2058
<---> Special register "task switch cond<---> Special register "task switch cond<---> Special register "task switch cond<---> Special register "task switch conditions"itions"itions"itions"

These three flags are overlapping with the "task switch
conditions", where the three bits represent the three
register bits of lowest value (flag 2056 <--> Bit 0, etc.),
while the register bits of higher value are not being used.

The defined values after reset result in value 3 for the
special register "task switch conditions".

By the instruction

REGISTER_LOAD [Task switch conditions with 0]

the three conditions can make an exception from rule 3.

2.1.2 Special Registers / Flags for Task Control2.1.2 Special Registers / Flags for Task Control2.1.2 Special Registers / Flags for Task Control2.1.2 Special Registers / Flags for Task Control

Flag 2056Flag 2056Flag 2056Flag 2056

If this flag has been set, the task will be changed after a
certain time, which has been written into the "task
timeout time" special register, without any other condition
having come true. Of course task switch during execution
of an instruction cannot be made, yet immediately after
this. After reset, this flag is set; this means, the task switch
condition is active.

Task switchTask switchTask switchTask switch
beforebeforebeforebefore

IF conditionconditionconditioncondition
that has notthat has notthat has notthat has not

been metbeen metbeen metbeen met

OverlappingOverlappingOverlappingOverlapping
flags 2056 toflags 2056 toflags 2056 toflags 2056 to

2058 with2058 with2058 with2058 with
specialspecialspecialspecial
registerregisterregisterregister

PROCESS-PLC

122 Programming

Special Register "Task-Timeout Time"Special Register "Task-Timeout Time"Special Register "Task-Timeout Time"Special Register "Task-Timeout Time"

In this register, the task-timeout time is defined in ms
(milliseconds). After reset, this register will be set on 20
with the consequence, that the task will be changed
after 20 ms as a maximum.

Flag 2057Flag 2057Flag 2057Flag 2057

If this flag is set, the tasks will be switched after eachthe tasks will be switched after eachthe tasks will be switched after eachthe tasks will be switched after each
GOTO instruction. instruction. instruction. instruction. This flag is set after reset; this means,
that without changing the flag, the tasks will be switched
after each GOTO instruction.

Flag 2058Flag 2058Flag 2058Flag 2058

If this flag has been set, the tasks will be switched afterthe tasks will be switched afterthe tasks will be switched afterthe tasks will be switched after
each each each each IF condition that has not been fulfilled. condition that has not been fulfilled. condition that has not been fulfilled. condition that has not been fulfilled. This
means that the THEN branch is preferred to the ELSE
branch.
After reset, the flag will not be set.

The special register "taskswitch conditions"special register "taskswitch conditions"special register "taskswitch conditions"special register "taskswitch conditions" is
overlapping with flags 2056 to 2063, flags 2059 to 2063
excluded. Thus, only the three bits of lowest value are
used. By assigning a certain value to this register, all task
switch conditions can be defined as desired. After reset,
the register value will be 3, as can be concluded from
the values of the flags mentioned above.

In the following example the same task switch conditions
are set in two different ways:

Programming

Programming123

Example:Example:Example:Example:

REGISTER_LOAD [61467 with 4] -FLAG 2056
-FLAG 2057
FLAG 2058

At the left, values 0, 0 and 1 will be written into flags
2056, 2057 and 2058 of register 61467. At the right, the
same is done with the help of the three FLAG instructions.

ExemplaryExemplaryExemplaryExemplary
numberingnumberingnumberingnumbering

DELTADELTADELTADELTA

PROCESS-PLC

124 Programming

2.2 Symbolic Programming

The numeric parameters of the programming language
can be replaced by symbolic names. This helps for
clarity of the program and makes getting acquainted
with the source text easier. It is important to replace only
the numeric part of the parameter by symbolism. All
other parameter components stay the same.
Thus, for example,

Input 101Input 101Input 101Input 101 can be namedcan be namedcan be namedcan be named Input StartInput StartInput StartInput Start

or

Register 100Register 100Register 100Register 100 can be namedcan be namedcan be namedcan be named Register No.OfPiecesRegister No.OfPiecesRegister No.OfPiecesRegister No.OfPieces

Instead of the numeric parameters, which are not very
meaningful, symbol names can be used to make the
program easier to understand.
See also the explanations on the symbol editor in

SymbolicSymbolicSymbolicSymbolic
namenamenamename

instead ofinstead ofinstead ofinstead of
numericnumericnumericnumeric

parameter:parameter:parameter:parameter:

IN iStartIN iStartIN iStartIN iStart

instead ofinstead ofinstead ofinstead of

IN 101IN 101IN 101IN 101

Programming

Programming125

2.2.1 Recommendations on Symbolic Notation

It is helpful to set up some rules for the choice of
symbolic names. Standardising of symbols for inputs,
outputs, flags, registers, etc. should be made in the
symbolic name, for example:

iStartiStartiStartiStart for a start input, or

rDestinationPositionrDestinationPositionrDestinationPositionrDestinationPosition for a destination position
register of an axis

Placing standardising small letters in front of the actual
symbolic names has got two important advantages:

• Readability of the program code is improved, as in
each symbolic name there is information not only
on its meaning resp. function, which is given by the
naming itself, but also on its type (input, output,
flag, register, etc.).

• It is possible to have, for example, all inputs
displayed in the dialogue window by inputting i?.i?.i?.i?.
You need not print or memorize the symbols any
more; instead, you will be given uncomplicated
online help.

StandardisingStandardisingStandardisingStandardising
of symbolicof symbolicof symbolicof symbolic

namesnamesnamesnames

ImprovedImprovedImprovedImproved
readabilityreadabilityreadabilityreadability

List of allList of allList of allList of all
symbolssymbolssymbolssymbols

of the sameof the sameof the sameof the same
typetypetypetype

PROCESS-PLC

126 Programming

The following pre-posed small letters are recommended
for standardising:

ContractionContractionContractionContraction TypeTypeTypeType Sub-TypeSub-TypeSub-TypeSub-Type
i input -
o output -
f
fs

flag -
special flag

r
rs
rf
rm

rt
rv

register -
special register
floating point reg
slave register on
modules, boards
text registers
VIADUKT registers

l
lm
le

labels -
for WHEN_MAX
error subroutines

t task -
n
ne
nc
nb

nv

number -
error report
commands
definition of a register bit
call-up of VIADUKT masks

ax axes

2.2.2 Examples of Symbolic Notation2.2.2 Examples of Symbolic Notation2.2.2 Examples of Symbolic Notation2.2.2 Examples of Symbolic Notation

The following program sequence is to illustrate the
recommendations on symbolic notation:

RecommendedRecommendedRecommendedRecommended
contractions forcontractions forcontractions forcontractions for

standardisingstandardisingstandardisingstandardising
the symbolicthe symbolicthe symbolicthe symbolic

namesnamesnamesnames

Programming

Programming127

0: ; ***************************************
1: ;
2: ; Example 1: Conditioned activating of outputs
3: ;
4: ; ;**************************************
5: ;
6: TASK 0
7: WHEN ;Wait for
8: IN iStart ;Input 10 activated
9: THEN

10: OUT oValve1 ;Set output 8
11: IF ;Input 11 aktive?
12: IN iTempTooHigh
13: THEN
14: OUT oRefrig ;Set output 9
15: ELSE
16: -OUT oRefrig ;Reset output 9
17: THEN
18: DELAY 15 ;Wait for 1,5 seconds
19: -OUT oValve1 ;Reset output 8
20: -OUT oAddition ;Reset output 9
21: DELAY 10 ;Wait for 1 second
22: GOTO 0 ;Close the task
Program end

The following symbol definitons have been made

iStart 10 ;Input: Start input
iTempAddHigh 11 ;Input: Temperature sensor
oAddition 9 ;Output: Refrigerating set
oValve1 8 ;Output: Suction valve

PROCESS-PLC

128 Programming

2.3 Remarks on the Program Examples

Note:Note:Note:Note:

In the following program and instruction examples, both
symbolic and numeric programming will be applied.
Symbolism is not used, if it is better to communicate with
the hardware directly via register number, or for didactic
purposes, if symbolic presentation would complicate the
description.

In case of numeric presentation the register numbers of
the NANO-B PROCESS-PLC will be used; exceptions will be
marked.

Programming

Programming129

3. The Programming Language3. The Programming Language3. The Programming Language3. The Programming Language

In this chapter all instructions, which are available for
programming the controller will be described (by one
example or more), then it will be demonstrated (by one
example or more), how they can be used.

3.1 Overview over Instructions3.1 Overview over Instructions3.1 Overview over Instructions3.1 Overview over Instructions

The instructions have been listed in the following table:

Arithmetic and Boolean Characters:Arithmetic and Boolean Characters:Arithmetic and Boolean Characters:Arithmetic and Boolean Characters:

> = < + - * / () #

(Chapter 3.3 Boolean Expressions and Chapter 3.4
Arithmetic)

Commentary Characters:Commentary Characters:Commentary Characters:Commentary Characters:

 ; ; ; ; (Chapter 3.11.3)

PROCESS-PLC

130 Programming

PROCESS-PLCPROCESS-PLCPROCESS-PLCPROCESS-PLC

Ins t ruct ion SetIns t ruct ion SetIns t ruct ion SetIns t ruct ion Set

DRDRDRDR DISPLAY_REG output of register contents onto LCD or
printer

DTDTDTDT DISPLAY_TEXT output of texts onto LCD or printer
D2D2D2D2 DISPLAY_TEXT_2 depending on a register, one of two

texts can be chosen
OUOUOUOU OUTPUT NUMBER setting, resetting, querying of a digital

output
UUUU USER_INPUT input of register values by the user, with

the help of the LCD
BCBCBCBC BIT_CLEAR the bit of a register is cleared or

queried for zero
BSBSBSBS BIT_SET the bit of a register is set or queried for

1
THTHTHTH THEN IF..THEN..ELSE, WHEN..THEN

DFDFDFDF DEF_FUNCTION the beginning of a function definition is
marked

EDEDEDED END_DEF the end of a function definition is
marked

ININININ INPUT NUMBER a digital input is queried
IFIFIFIF IF IF..THEN..ELSE

LILILILI LIMITS 1. it is queried, whether the register is
inside certain limits (query)

2. a register is placed between
certain limits by force (assignment)

AXAXAXAX AXARR 1. it is queried, whether the axis has
been stopped (query)

2. axis is stopped (assignment)
APAPAPAP ACTUAL_POS the actual axis position is queried

Programming

Programming131

COCOCOCO COPY a register area is copied
NPNPNPNP NOP this command is of no effect, yet, a

processing time is needed (test
purposes)

CFCFCFCF CLEAR_FLAGS a flag area is cleared
RLRLRLRL REGISTER_LOAD a value is written into a register (direct,

indirect, doubly indirect)
LALALALA LABEL GOTO label for program flow
FFFF FLAG setting, resetting, querying a flag

NGNGNGNG N-GET-REGISTER a register of a slave controller is
loaded into the memory of a master
controller,
JETWay, fieldbus

NONONONO NOT logic NOT (an input condition is
inverted)

NSNSNSNS N-SEND-REGISTER a register of a master controller is
loaded into the memory of the slave
controller, JETWay, fieldbus

OROROROR OR logic OR (input condition)
PPPP POS an axis is positioned with speed v onto

position pos
RDRDRDRD REGDEC a register value is decremented by 1
RERERERE REG register command, e.g. REG 100 =

1234

RIRIRIRI REGINC a register value is incremented by 1
RCRCRCRC REG_CLEAR a register area is set to 0
RZRZRZRZ REGZERO a register is set to zero, or a register is

queried for zero
RTRTRTRT RETURN a subroutine or a function is finished
WHWHWHWH WHEN WHEN..THEN

PROCESS-PLC

132 Programming

SFSFSFSF specialfunction call-up of certain special functions,
e.g. trigonometry

WMWMWMWM WHEN_MAX WHEN_MAX..THEN; additionally a
time can be input, after which a
subroutine (e.g. bugfix) can be called

ELELELEL ELSE IF..THEN..ELSE

GGGG GOTO control of program flow
STSTSTST START-TIMER a time register is started
TATATATA TASK label for task start
TBTBTBTB TASKBREAK a task is breaked
TCTCTCTC TASKCONTINUE a breaked task is continued
TRTRTRTR TASKRESTART breaked task is started from the

beginning
CACACACA CALL a subroutine is called up
DEDEDEDE DELAY task-processing is breaked for a certain

time
WOWOWOWO WOR OR linkage of registers
WAWAWAWA WAND AND linkage of registers
WXWXWXWX WXOR exclusive OR linkage of registers
TETETETE TIMER-END? time-register is queried

PROCESS-PLCPROCESS-PLCPROCESS-PLCPROCESS-PLC
NumbersNumbersNumbersNumbers

Abbr.Abbr.Abbr.Abbr. CommandCommandCommandCommand RemarksRemarksRemarksRemarks
NBNBNBNB number (binary) the numbers are input as binary

numbers:
b010101010101010101010101

NDNDNDND number (decimal) the numbers are input as decimal
numbers:
1234

NHNHNHNH number (hexadecimal) the numbers are input as hexadecimal
numbers:
hFA23CD

Programming

Programming133

3.2 Basic Instructions3.2 Basic Instructions3.2 Basic Instructions3.2 Basic Instructions

3.2.1 Waiting Condition3.2.1 Waiting Condition3.2.1 Waiting Condition3.2.1 Waiting Condition WHEN ... THEN

Syntax:Syntax:Syntax:Syntax:
WHEN

<Condition>
THEN

Meaning:Meaning:Meaning:Meaning:

Fulfilling the <condition> is waited for. Only then the next
instruction will be given (after THEN).

The condition can either be a flag, an input, an output, a
certain register bit or the result of an arithmetic
comparison.

These "elementary conditions" can be combined into a
Boolean expression, the result of which is to be the
condition. For those expressions brackets can also be
used. If the sequence has not been defined otherwise by
brackets, the Boolean expression will be processed from
the beginning to the end, while the result can be
interpreted as a condition. (See also Boolean Expressions
Chapter 3.3 Boolean Expressions).

Examples:Examples:Examples:Examples:

1) WHEN
IN iStart
Flag fTaskEnable

THEN

WHEN
waits, untilwaits, untilwaits, untilwaits, until

condition hascondition hascondition hascondition has
been metbeen metbeen metbeen met

ElementaryElementaryElementaryElementary
conditions:conditions:conditions:conditions:

InputInputInputInput
output,output,output,output,

flag,flag,flag,flag,
register bit,register bit,register bit,register bit,
arithmeticarithmeticarithmeticarithmetic

comparisoncomparisoncomparisoncomparison

PROCESS-PLC

134 Programming

When the input IN iStart is active, and when FLAG
fTaskEnable has been set, the program will be
continued by the instruction following after THEN.

Note:Note:Note:Note:

If in a Boolean expression nothing has been written
between two or more elementary conditions, this will
automatically be interpreted as an AND operation.

2) WHEN
REG rVoltage
=
50

THEN

When the register REG rVoltage has got value 50,
processing of the program is continued. (The value of
REG rVoltage can, for example, be changed in
another task, or it can represent an analogue voltage
value.)

Programming

Programming135

3.2.2 Waiting Condition3.2.2 Waiting Condition3.2.2 Waiting Condition3.2.2 Waiting Condition WHEN_MAX ... THEN

Syntax:Syntax:Syntax:Syntax:

WHEN_MAX [Max.Time=<Time>, Subroutine= <Subroutine>]
<Condition>

THEN

Meaning:Meaning:Meaning:Meaning:

Fulfilment of <condition> is waited for; only then the next
instruction will be given (after THEN).
If the maximum time has run out before the condition
has been met, the subroutine will be called.

The condition is either a flag, an input, an output, a
certain register bit, or the result of an arithmetic
comparison.

Example:Example:Example:Example:

1) WHEN_MAX[Max.time=z5s, Subroutine.=leError]
REG rPressureInCylinder
>
50

THEN
...
...

LABEL leError
-OUT oHydraulicPump
DISPLAY_TEXT[#0,cp=1,"_fix error"]
DISPLAY_TEXT[#0, cp=25, "after this F1"]

WHEN
FLAG fKeyF1

THEN
OU oHydraulicPump
DISPLAY_TEXT[#0, cp=1, "_"]
RETURN

WHENWHENWHENWHEN
Fulfilment ofFulfilment ofFulfilment ofFulfilment of
condition iscondition iscondition iscondition is
waited for.waited for.waited for.waited for.

In addition:In addition:In addition:In addition:
Timeout timeTimeout timeTimeout timeTimeout time

PROCESS-PLC

136 Programming

When the register REG rPressureInCylinder is
greater than 50, the instruction after THEN will be
continued. If the task remains at the WHEN condition that
has not been met, the error routine leError will be
called up. After the error routine has been processed, it
will return to the WHEN condition by the GOTO instruction.
This means REG rPressureInCylinder is waited for
by the task to become greater than 50 - what should be
the case now, as the error has been corrected by the
error routine.

Note:Note:Note:Note:

After execution of the error routine, the program will return
to the WHEN-condition by the RETURN instruction.

2) WHEN_MAX[Max.time=n2s, subrout.=leEmergStop]
IN iPneuAxis

THEN
...
...
...

LABEL leEmergStop
-OUT oPneuAxis
AXARR Axis=X
AXARR Axis=Y
AXARR Axis=Z
OUT oWarningTone
DISPLAY_TEXT[#0, cp=1,"_EmergStop"]
...
...
RETURN

When the input iPneuAxis is activated, further
instructions will be given after THEN. If the task remains at
the unfulfilled WHEN condition longer than 2 seconds
8max. time = n2s), the error routine leEmergStop will be
called up. After being processed, the error routine will
return to the WHEN condition by the RETURN instruction.

Programming

Programming137

3.2.3 Branch Condition3.2.3 Branch Condition3.2.3 Branch Condition3.2.3 Branch Condition IF ... THEN ... (ELSE)

Syntax:Syntax:Syntax:Syntax:
IF

<Condition>
THEN
<First instruction>

ELSE
<Second instruction>

THEN or WHEN or IF

MeaningMeaningMeaningMeaning

If <condition> has been fulfilled, the first instruction will
be carried out. If <condition> has not been fulfilled, the
second instruction will be carried out.
After another THEN, a following WHEN or another IF,
processing of the program will be continued.

For <condition> another Boolean expression - similar to
the WHEN instruction must be written.

Both the first and the second instruction can consist of
several sub-instructions. Yet, they can also be left out.

Note:Note:Note:Note:

• The THEN branch will be closed by ELSE, or THEN,
WHEN, IF.

• The ELSE branch will be closed by THEN, WHEN,
IF.

• Both will notnotnotnot be closed by FLAG.

PROCESS-PLC

138 Programming

Examples:Examples:Examples:Examples:

1) IF
IN iStopper

THEN
FLAG fPartPosOK

ELSE
-FLAG fPartPosOK

THEN (or IF or WHEN)
...

In this example it is demonstrated, what the IF - THEN
- ELSE - structure normally looks like.
If input IN iStopper active (<condition> is fulfilled),
FLAG fPartPosOK is set, the instruction in the ELSE
branch is left out and the process continued after the
second THEN.
If IN iStopper is not active (<condition> not fulfilled),
the instruction in the THEN branch is left out, the flag is
reset and the process continued by the instruction after
the second THEN.

2) IF
FLAG fsKeyF1
OR
FLAG fsKeyF2

THEN
ELSE
OU oLamp

THEN (or IF or WHEN)
...

If the condition has been met, (FLAG fsKeyF1 or FLAG
fsKeyF2 have been set) no steps are taken (THEN
branch is not used). If the condition has not been met,
output OU oLamp is switched on (ELSE branch).

3) IF
IN iStart

THEN
OU oHydAxis
OU oWarningTone
REGISTER_LOAD [rLength with 25]

ELSE
THEN (or IF or WHEN)
...

Programming

Programming139

If input IN iStart is active, the outputs OU oHydAxis
and OU oWarning tone are set, while value 25 is
loaded into register REG rLength.
If IN iStart is not active, though, the program will
jump to the second THEN to continue with the next
instruction.

4) WHEN
FLAG fStation1

THEN
IF

IN iKey1
THEN
OUT oPump
DELAY 5seconds
-OUT oPump

ELSE
OU oSignalTone
DELAY 2Seconds
-OUT oSignalTone

IF
FLAG fError
IN iStopper

THEN
OUT RelaisOFF

ELSE
WHEN

-IN iStopper
THEN
GOTO 100

In Example 4) a small program part is shown, where the
structure of the WHEN-THEN instruction and of the IF-
THEN-ELSE branch have been illustrated.

Recognition of these structures is supported by different
indentation positions of the instructions in the SYMPAS
editor.

PROCESS-PLC

140 Programming

3.2.4 The3.2.4 The3.2.4 The3.2.4 The DELAY InstructionInstructionInstructionInstruction

The

DELAY <Time of delay>

instruction

serves for programming of a defined time, while
processing of the task is to be held for this time. The
program is simply to be inactive during the delay time.
The time of delay is the only parameter which must be
input.

The delay time can also be defined indirectly via register.

Generally, the DELAY parameter parameter parameter parameter is defined in units of
100 ms100 ms100 ms100 ms. A delay value of 10 means one second.
This unit can be defined by changing the "users' time
base". Please be careful not to use too small units, as the
operating system would be occupied with too many
management functions. These mechanisms can be
looked up at the description of the time registers. At this
place they shall not be dealt with any further, as they will
only be needed for very special applications.

Example:Example:Example:Example:

DISPLAY_TEXT [#0, cp=0, "_Wonderful !"]
DELAY 50
DISPLAY_TEXT [#0, cp=0, "_"]

In this example, a text is displayed in the user interface,
then there is a delay of 5 seconds before the display is
cleared again.

IndirectIndirectIndirectIndirect
addressingaddressingaddressingaddressing

of the delayof the delayof the delayof the delay
is possibleis possibleis possibleis possible

Unit of Unit of Unit of Unit of DELAY
parameter:parameter:parameter:parameter:

100ms100ms100ms100ms

Programming

Programming141

Time RegistersTime RegistersTime RegistersTime Registers

In connection with the DELAY instruction it is important to
mention the time registers as well: These are the registers
the parameter value of the delay instruction is written
into. When such a register is not zero any more, it will be
decremented by one after each time unit. The delay
instruction only serves the purpose of loading this register
and then to wait, until its value is zero.

Please note about the time registers: Each task has got its
individual time register (the number of which can be
looked up in the respective controller manual). In the
following example the task-time registers are shown as
examples of the NANO-B.

Example: Task-Time RegisterExample: Task-Time RegisterExample: Task-Time RegisterExample: Task-Time Register

Task 0 Register 2300
Task 1 Register 2301
...
...
Task 31 Register 2331

In some applications a time register is to be activated,
while still further instructions are being executed by the
program. This can be managed by writing into the
respective register using the REGISTER_LOAD instruction.
Later the time register can be integrated into a
comparison by simple enquiry.

Note:Note:Note:Note:

Please be careful not to use the DELAY instruction
simultaneously with the time register of the same task, as
this might cause situations, where there is no time for the
delay to expire any more.

ExemplaryExemplaryExemplaryExemplary
numbering innumbering innumbering innumbering in

the NANO-Bthe NANO-Bthe NANO-Bthe NANO-B

PROCESS-PLC

142 Programming

This danger can easily be avoided: Just take a time
register of a task instead, in which a DELAY instruction will
never occur. This way, both the instruction and one (or
even more) time register can be used in the same task.

Examples:Examples:Examples:Examples:

1a) TASK 0 --------------------------
...
...
DELAY 10
...

1b) TASK 0 --------------------------
...
...
REGISTER_LOAD[rsTaskTimeReg with 10]

WHEN
REGZERO rsTaskTimeReg

THEN
...

In their function, both programs are identical. First, the
time register is set and then it is waited for to become
zero. That is exactly the function of the DELAY instruction.

Programming

Programming143

3.3 Boolean Expressions

All those expessions are conditions which have either
been fulfilled or not. If the condition has been fulfilled,
value 1, if it has not been fulfilled, value 0 is assigned. The
Boolean expressions always appear in a WHEN or IF
branch as input conditions, this means, never after THEN
or ELSE!

Everything that is written between IF or WHEN and the
next THEN, will be understood by the controller as a
Boolean expression

These are very simple expressions, which can consist of
only one instruction, and which in the following will be
called Elementary ConditionsElementary ConditionsElementary ConditionsElementary Conditions. Some of them are:

· flags
· inputs
· outputs
· single register bits
· arithmetic comparisons (this means, REGZERO)
· AXARR

Flags, inputs, outputs, and register bits can be (logically)
connected with each other.

For elementary conditions, the following characters are
also permitted:

= < > () #

and the following instructions for connections:

NOT OR XOR AND

BooleanBooleanBooleanBoolean
expressionsexpressionsexpressionsexpressions

are eitherare eitherare eitherare either
true (1)true (1)true (1)true (1)

or false (0)or false (0)or false (0)or false (0)

ElementaryElementaryElementaryElementary
ConditionsConditionsConditionsConditions

PROCESS-PLC

144 Programming

If there is no link instruction between two elementary
conditions, they will automatically connected by AND! In
output conditions, AND must be used.

Note:Note:Note:Note:

Three levels of brackets are allowed for Boolean
expressions.

3.3.1 Phrasing Elementary Conditions3.3.1 Phrasing Elementary Conditions3.3.1 Phrasing Elementary Conditions3.3.1 Phrasing Elementary Conditions

FlagsFlagsFlagsFlags

Generally spoken, a flag is a one-bit registerone-bit registerone-bit registerone-bit register.... It can have
value 1 or 0. A set flag corresponds to value 1. A flag that
has not been set corresponds to value 0. By input of a
negative sign in front of the flag number into the input
field, easy access can be made onto:

Examples:Examples:Examples:Examples:

1) IF
FLAG fStartTask

FLAG fStartTask set? (= 1 ?)

2) IF IF
-FLAG PosOk NOT

FLAG PosOK

FLAG PosOK not set? (= 0 ?)
Both phrasings have got the same result.

ElementaryElementaryElementaryElementary
conditionsconditionsconditionsconditions
as default,as default,as default,as default,

connected byconnected byconnected byconnected by
AND

Flags have gotFlags have gotFlags have gotFlags have got
the value 1the value 1the value 1the value 1

or 0or 0or 0or 0

Programming

Programming145

Inputs and OutputsInputs and OutputsInputs and OutputsInputs and Outputs

These have either got value 1 or 0 (set or not set). As it is
the case for flags, access to the deactivated input,
respectively output, can also be made here by
preposing a negative sign.

Examples:Examples:Examples:Examples:

1) IF
IN iStart

Input IN iStart active? (=1 ?)

2) IF IF
-OUT oLamp NOT

OUT oLamp

Output OU oLamp not active? (= 0 ?)
Both phrasings have got the same meaning.

Individual Register BitsIndividual Register BitsIndividual Register BitsIndividual Register Bits

Access to registeer bits can be made by the BIT_SET
and BIT_CLEAR instructions (see also chapter 3.6.4
Register Bit for these instructions).
BIT_SET is 1, if the defined bit has got value 1, otherwise
it is 0.
BIT_CLEAR is 1, if the defined bit has got value 0 (if it is
cleared), otherwise it is 0.

Example:Example:Example:Example:

Register 1 is to have (binary) value 100110 = 38.

BIT_SET [Reg.1, Bit 2] is 1 (Bit is set)
BIT_CLEAR [Reg.1, Bit 2] is 0 (Bit has not been cleared)
BIT_CLEAR [Reg.1, Bit 4] is 1 (Bit is cleared)
BIT_SET [Reg.1, Bit 0] is 0 (Bit has not been set)

Access toAccess toAccess toAccess to
inputs andinputs andinputs andinputs and

outputs, e.g.outputs, e.g.outputs, e.g.outputs, e.g.
withwithwithwith

IN 101
orororor

-OU 108

Access toAccess toAccess toAccess to
register bits byregister bits byregister bits byregister bits by
the instructionsthe instructionsthe instructionsthe instructions

BIT_SET
andandandand

BIT_CLEAR

PROCESS-PLC

146 Programming

Arithmetic ComparisonsArithmetic ComparisonsArithmetic ComparisonsArithmetic Comparisons

Arithmetic comparisons are also always either true or
false. They are given value 1 for true and value 0 for
false.

Examples:Examples:Examples:Examples:

1) IF IF
REG rCounter REGZERO rCounter
= THEN
0

THEN

If the register REG rCounter has got value 0, this
expression is true (= 1). If REG rCounter is not 0, the
expression is false (= 0). This example exactly
corresponds to REGZERO rCounter, as it is queried by
the counter, whether the value of the given register is 0.

2) IF
REG rNumber
>
10
THEN

If the content of register REG rNumber is greater than
10, this expression is true. If the register value is smaller
than or equals 10, the expression will become false (= 0).

ArithmeticArithmeticArithmeticArithmetic
comparisonscomparisonscomparisonscomparisons

are also eitherare also eitherare also eitherare also either
true or falsetrue or falsetrue or falsetrue or false

Programming

Programming147

Note:Note:Note:Note:

The REG instruction or arithmetic and logic connections
of registers or results of functions without a comparison
operator are implicitely compared with 0.

Example:

IF IF
REG rTestReg REG rTestReg

THEN #
0

THEN

Remark:Remark:Remark:Remark:

In arithmetic comparisons it is possible to use arithmeticarithmeticarithmeticarithmetic
expressionsexpressionsexpressionsexpressions and word processing instructionsword processing instructionsword processing instructionsword processing instructions right and
left of the comparison operator (see to this aspect
Chapter 3.4 Arithmetic).

Example:Example:Example:Example:

WHEN
REG 100
>
REG 1000
*
135
+
REG 1001
WAND
h00F080
THEN

At this part of the program the value of register 100 is
waited for to become greater than the result of the
arithmetic and logic connections on the right hand side.

PROCESS-PLC

148 Programming

Note:Note:Note:Note:

The combinations ">=" resp. "<=" are notnotnotnot permitted.

Programming

Programming149

3.3.2 Examples of Connected Expressions3.3.2 Examples of Connected Expressions3.3.2 Examples of Connected Expressions3.3.2 Examples of Connected Expressions

1) IF
FLAG 1
FLAG 2
OR
IN 101

THEN

Boolean Expression:
(FLAG 1 AND FLAG 2) OR IN 101.
This expression is true, if both flag 1 and flag 2 have been
set, or if input IN 101 is active.

2a)

REGISTER_LOAD [rCounter with 10]
LABEL lLoop

...
REGDEC rCounter

IF
NOT
REGZERO rCounter

THEN
GOTO lLoop

THEN
...

2b)

REGISTER_LOAD [rCounter with 10]
LABEL lLoop

...
REGDEC rCounter

IF
REGZERO rCounter

THEN
ELSE
GOTO lLoop

THEN
...

PROCESS-PLC

150 Programming

In this example a loop has been realised, which is being
run through 10 times. For this purpose, first the loop
counter (Register REG rCounter) is loaded with the
number of loop runs and is decremented by 1 in a loop
(REGDEC rCounter). At the end of a loop, the loop
counter (REG rCounter) is checked, whether 0 has
already been reached. If this is not the case, the loop
must be run through once more (Go to LABEL lLoop).
In this case the comparison is made on two different
ways: In one case the condition is negated and thus the
jump is made from the THEN branch, in the other case
the loop is closed from the ELSE branch. Both programs
are identical referring to their function.

3a) WHEN
NOT
(
IN 101
OR
-IN 102
)
REG 100
<
20

THEN

If the Boolean expression is '1' (this means, it is true) the
program can be continued by THEN.

The expression:

NOT (IN 101 OR IN -102) AND REG 100 < 20

To let this expression be true, both partial expressions
(before and after AND) must be true.

Although the first partial expression is a little confusing, it
becomes clear after more detailed investigation: This
partial expression is true, if (IN 101 OR IN -102) is
false, if - IN 101 is deactivated and is deactivated and is deactivated and is deactivated and IN 102 is active.is active.is active.is active.

Programming

Programming151

The second partial expression is fulfilled, if the content of
registerregisterregisterregister REG 100 is smaller thanis smaller thanis smaller thanis smaller than 20. 20. 20. 20.

To let the entire expression become true, both partial
expressions (before and after the AND) must be true.

IN 101=0 AND IN 102=1 AND REG 100<20

3b) WHEN
-IN 101
IN 102
REG 100
<
20

This program part has got exactly the same function as
the former one.

Thus it can also be realised that by simplifying such
expressions a better overview can be acquired. If, on the
other hand the machine is considered, it is easier to
understand, if the more complicated expression is kept.

PROCESS-PLC

152 Programming

3.4 Arithmetic Expressions

These instructions can be used for making an input
condition after WHEN or IF (arithmetic comparison; see
former Chapter 3.3 Boolean Expressions), as well as in
an output instruction (assignment of a calculation result
to a register).

The design and the evaluation of a formula is identical in
both cases, except the fact, that in an arithmetic
comparison left of the comparison operator, a number
or connection may, assignment to a register can, only
be made to one register.

A value is assigned by an equal sign.

Assignment:Assignment:Assignment:Assignment: =

The following instructions serve the description of
arithmetic / logical expressions:

arithmetic operators:arithmetic operators:arithmetic operators:arithmetic operators: + - * /

logic operators:logic operators:logic operators:logic operators: WAND, WOR, WXOR

Numbers:Numbers:Numbers:Numbers: Binary Numbers
Decimal Numbers
Hexadecimal Numbers

Variable:Variable:Variable:Variable: REG <Reg.Number>

Programming

Programming153

3.4.1 Numbers3.4.1 Numbers3.4.1 Numbers3.4.1 Numbers

Numbers can be input in three different ways:

1. Decimal numbers by NDNDNDND (Number Decimal)

2. Binary numbers with NBNBNBNB (Number Binary)

3. Hexadecimal numbers NHNHNHNH (Number
Hexadecimal)

In the program text differentiation of the three number
formats is made by writing 'b' in front of binary numbers
and 'h' in front of hexadecimal numbers.

Only integersintegersintegersintegers can be input. Direct input of a floating
point constant is not possible.

Referring to the internal integer format (23 Bit and signs),
numbers of seven decimal places, numbers of six
hexadecimal places and numbers of twenty-four binary
places can be input.

Floating pointFloating pointFloating pointFloating point
numbers arenumbers arenumbers arenumbers are

input ininput ininput ininput in
indirectindirectindirectindirect

modemodemodemode

PROCESS-PLC

154 Programming

3.4.2 Arithmetic Expressions3.4.2 Arithmetic Expressions3.4.2 Arithmetic Expressions3.4.2 Arithmetic Expressions

The characters + - / * can be directly selected on
the keyboard and input this way.

Note:Note:Note:Note:

10 levels of brackets can be used for arithmetic
expressions !

Syntax:Syntax:Syntax:Syntax:
REG x
=
REG y
+
REG z
/
5
-
20

Meaning:Meaning:Meaning:Meaning:

Register x is assigned the value of the following
operation:

((Register y + Register z) / 5) - 20.

It can be seen that calculations are not madenot madenot madenot made
according to the "./: before +/- "according to the "./: before +/- "according to the "./: before +/- "according to the "./: before +/- " rule, instead, one step
after the other will be carried out following the sequence
of operations.

An operator with the following number (operand) will
always be selected by the controller to evaluate this

Programming

Programming155

"partial calculation" in order to gain an intermediate
result. Basing on this intermediate result, the next operator
and operand will be selected in order to evaluate this
partial calculation now. This procedure will be followed,
until the last number value will have been selected.

Thus, an expression like X = A + B - C / D - E * F
has got the following
meaning:

X = (((A + B - C) / D) - E) * F

In the following examples a difference is made between
integer registers and floating point registers, as partiallly
different possibilities are offered.

3.4.3 Assignment to Integer Registers3.4.3 Assignment to Integer Registers3.4.3 Assignment to Integer Registers3.4.3 Assignment to Integer Registers

When a number is assigned to an integer register, the
decimal places are simply omitted, i.e. the numbers will
not be rounded!

This means: Reg 0 = 10 / 3 = 3,333...

-> Reg 0 contains value 3

Reg 0 = - 10 / 3 = - 3,333...

-> Reg 0 contains value -3

DecimalDecimalDecimalDecimal
places areplaces areplaces areplaces are

omitted, whenomitted, whenomitted, whenomitted, when
a number isa number isa number isa number is

assigned to anassigned to anassigned to anassigned to an
integerintegerintegerinteger
registerregisterregisterregister

PROCESS-PLC

156 Programming

Examples:Examples:Examples:Examples:

1) REG 100
=
h0000A8
+
b000000000000001001001110

Register REG 100 is given the sum of hA8 (=168) and
b1001001110 (=590). The result is 758, what will then be
the value of REG 100. (REG 100 = 758)

2) REG 200
=
100
/
3

Register REG 200 is assigned the value 100 / 3 (=
33.333.... As in REG 200 only integers can be stored, the
decimal places will be omitted. After this, the register
value will be 33. (REG 200 = 33).

3)

The assignment A = A - (B + C) / 2 is to be calculated,
which cannot be achieved by following the "./: before"./: before"./: before"./: before
+/- "+/- "+/- "+/- " rule.

Solution:Solution:Solution:Solution:

An alternative expression (operation) must be phrased for
the controller to calculate the expression step by step in
the desired sequence.

Transformation:Transformation:Transformation:Transformation: A - (B + C) / 2 = 0 - B - C / 2 + AA - (B + C) / 2 = 0 - B - C / 2 + AA - (B + C) / 2 = 0 - B - C / 2 + AA - (B + C) / 2 = 0 - B - C / 2 + A
The expression at the right hand side exactly corresponds
to the needed expression

Programming

Programming157

(REG 1 = A, REG 2 = B, REG 3 = C). An operation
cannot be started by "-" (negative sign), thus, a small trick
has been applied (0 - ...).

REG 1
=
0
-
REG 2
-
REG 3
/
2
+
REG 1

REG 1 (A) is decremented by the value (REG 2 + REG
3) / 2 (average between B and C). Again, the new value
is stored in register REG 1.

3.4.4 Assignment to a Floating Point Register3.4.4 Assignment to a Floating Point Register3.4.4 Assignment to a Floating Point Register3.4.4 Assignment to a Floating Point Register

More detailed description of floating point registers can
be found in Chapter 3.6 Registers and and Chapter
4.1). Below, there are just some short remarks:

Numbers from -1015 to +1015 are stored in the floating
point register.

The preciseness of operations is 7 post-comma places,
as the numbers are stored in a 32 Bit wide store.

The following floating point register ranges are supplied
by various PROCESS-PLC:

PROCESS-PLC

158 Programming

PROCESS-PLCPROCESS-PLCPROCESS-PLCPROCESS-PLC Floating Point RegisterFloating Point RegisterFloating Point RegisterFloating Point Register
RangeRangeRangeRange

PASE-E Plus 8960 to 9215
DELTA 62208 to 62463
NANO C 65024 to 65279
NANO B ? to ?
NANO A -
MIKRO -

In a program, no floating point numbers can be input,
though (e.g. DELTA register: REG 62208 = 1,456 can notnotnotnot
be input directly.)

Note:Note:Note:Note:

Value 1,456 can be loaded into a floating point register
by the assignment REG x = 1456 / 1000.

The rules for the calculation of floating-point expressions
are exactly the same as for integer registers. 10 bracket
levels, no "./: before +/-""./: before +/-""./: before +/-""./: before +/-" operation.

Examples :Examples :Examples :Examples :

1) REG 62208
=
12345
/
1000

Value 12,345 (= 12345 / 1000) is assigned to the floating
point register (DELTA) REG 62208.

2) REG 62248
=

NumberingNumberingNumberingNumbering
of registersof registersof registersof registers

demonstrateddemonstrateddemonstrateddemonstrated
bybybyby

DELTADELTADELTADELTA

Programming

Programming159

REG 0
/
REG 1
+
100
*
REG 62208

The value of the following operation is assigned to
floating point register (DELTA) 62248.

REG 0
REG 62248 = (─────── + 100) * REG 62208

REG 1

PROCESS-PLC

160 Programming

3.5 Tasks, Labels, Jumps and Subroutines

3.5.1 Tasks, Flags and Jumps3.5.1 Tasks, Flags and Jumps3.5.1 Tasks, Flags and Jumps3.5.1 Tasks, Flags and Jumps

The following instructions belong together and serve
unconditioned jumps in a program. With the help of the
IF instruction they can be turned into conditioned
jumps.

TASK LABEL GOTO

The labels are to mark certain program points, which can
be accessed by a GOTO instruction.

TASKS 0 to 31TASKS 0 to 31TASKS 0 to 31TASKS 0 to 31

These labels serve the marking of parallel branchesmarking of parallel branchesmarking of parallel branchesmarking of parallel branches. In
the program they must be applied in ascending order;
this means, start with TASK 0, then mark TASK 1 etc.
Tasks must not be left out. They are presented as follows:

TASK 0 ──────────────────

LABELS 32 to 999LABELS 32 to 999LABELS 32 to 999LABELS 32 to 999

These labels serve as mere junctions, or - in connection
with subroutines - to mark the start of a subroutine. They
are displayed without the horizontal line:

LABEL 32

Tasks mustTasks mustTasks mustTasks must
start with 0start with 0start with 0start with 0

and beand beand beand be
numbered innumbered innumbered innumbered in

continuouscontinuouscontinuouscontinuous
andandandand

ascendingascendingascendingascending
orderorderorderorder

Labels serveLabels serveLabels serveLabels serve
as markers foras markers foras markers foras markers for
jumps, or theyjumps, or theyjumps, or theyjumps, or they

mark themark themark themark the
beginning of abeginning of abeginning of abeginning of a

subroutinesubroutinesubroutinesubroutine

Programming

Programming161

JumpsJumpsJumpsJumps

After a GOTO instruction, processing of the program will
be continued at the label the number of which is defined
as a parameter in the GOTO instruction. The number of
the label can also be defined indirectly, this means, by
REG x, causing the jump to go to the label the number
of which has been stored in register REG x.
Please be especially careful not to jump to a label,
which has been allotted to another task.

Note:Note:Note:Note:

Define special label numbers for each task, for example

TASK 0: Labels 100 to 199
TASK 1: Labels 200 to 299
TASK 2: Labels 300 to 399
. . . .

Syntax:Syntax:Syntax:Syntax:
TASK 0 ──────────────────────
...
LABEL 100
...
...
GOTO 100
...
...
GOTO 0

GOTO
instructionsinstructionsinstructionsinstructions

can becan becan becan be
defineddefineddefineddefined

indirectlyindirectlyindirectlyindirectly

PROCESS-PLC

162 Programming

MeaningMeaningMeaningMeaning

Program execution starts with TASK 0 and then executes
the instructions, until the GOTO 100 instruction will have
been reached. This way Label 100 is jumped to. If this
GOTO instruction stands in the output branch of an IF
condition, the GOTO instruction will be carried out, while
the program is going on, until GOTO 0 will be reached.

Note:Note:Note:Note:

Please be careful not to leave out this second jump for
any reason. If there are more than one tasks, this could
mean that TASK 0 would go over into TASK 1.

Example:Example:Example:Example:
1) REGISTER_LOAD [rCounter with 10]

LABEL lLoop
...
...
...
REGDEC rCounter

IF
NOT
REGZERO rCounter

THEN
GOTO lLoop

THEN
...

In this example, a loop has been realised, which is run
through 10 times.

Register REG rCounter, which was assigned value 10 in
the beginning, is decremented by one in each loop
(REGDEC rCounter). After this, a comparison will be
made to find out, whether value 0 has already been
reached. If it has not, another jump to the beginning of
the loop (LABEL lLoop) is made. If value 0 has been
reached, the program will be continued after the second
THEN.

ProgramProgramProgramProgram
executionexecutionexecutionexecution

always startsalways startsalways startsalways starts
with with with with TASK 0

Programming

Programming163

3.5.2 Subroutines3.5.2 Subroutines3.5.2 Subroutines3.5.2 Subroutines

The instructions

CALL CALL CALL CALL RETURNRETURNRETURNRETURN

also belong together and serve the realisation of
subroutines.

SubroutinesSubroutinesSubroutinesSubroutines are program parts which can be jumped to
from any position in the program. Then, these partial
programs will be processed. After completion the
program will return to the position the subroutine has
been called from.

Note:Note:Note:Note:

20 subroutine levels are permitted.

PROCESS-PLC

164 Programming

As a return from a
subroutine is
always made to
the program
position the
subroutine has
been called
from, the
program parts,
which are
needed often
and at various
positions in the
program, only
need to be
written once.
Thus, memory
can be saved
and the program
design becomes
clearer.

Syntax:Syntax:Syntax:Syntax:
THEN
CALL leErrorHandling

...

...

LABEL leErrorHandling
...
...
...
RETURN

Figure 13: Subroutines

UsingUsingUsingUsing
subroutinessubroutinessubroutinessubroutines

makemakemakemake
program textsprogram textsprogram textsprogram texts

clearer andclearer andclearer andclearer and
moremoremoremore

compactcompactcompactcompact

Programming

Programming165

InterpretationInterpretationInterpretationInterpretation

When the subroutine reaches the CALL
leErrorHandling, an immediate jump will be made
to LABEL leErrorHandling. There, the instructions will
be carried out, until the RETURN instruction will be
reached to go back immediately to the position, where
the subroutine has been called up and then to continue
with the next instruction.

The difference between RETURN and GOTO instruction is,
that, in the RETURN instruction, the call-up position is
memorised by the program, in order to return there after
execution of the subroutine.

Indirect addressing is also possible after giving the CALL
instruction. Thus, a subroutine can be called up as
follows:

CALL R(100)

or

CALL R(rPointer)

In this case, the program starting at the label the number
of which has been stored in register REG 100 resp. REG
rPointer.

The subroutineThe subroutineThe subroutineThe subroutine
will return towill return towill return towill return to
the call-upthe call-upthe call-upthe call-up

position afterposition afterposition afterposition after
execution.execution.execution.execution.

Indirect call-Indirect call-Indirect call-Indirect call-
up ofup ofup ofup of

subroutinessubroutinessubroutinessubroutines

PROCESS-PLC

166 Programming

Rules in Connection with SubroutinesRules in Connection with SubroutinesRules in Connection with SubroutinesRules in Connection with Subroutines

1. 20202020 subroutine levelssubroutine levelssubroutine levelssubroutine levels are permitted.

2. Jumps out of subroutines are not permitted. A
subroutine must always be finished with a RETURN
instruction, otherwise new subroutines cannot be
called up any more.

3. One subroutine can be jumped to from several
parallel branches. Depending on the program, this
can even be done simultaneously.

Example:Example:Example:Example:

TASK Initialising ────────────────────
...
...
CALL lGlobal
...
...

TASK Automatic ──────────────────────────
...
...
...
CALL lGlobal
...

TASK Input/Output ───────────────────────
...
CALL lGlobal
...
GOTO 2

LABEL lGlobal
...
... * Subroutine Text *
...
RETURN
End of program

Programming

Programming167

In this example, the subroutine is called once out of
each of the three branches at the end of the last task
(TASK In-/Output). This is absolutely legal, as has
been mentioned before, yet, depending on the
subroutine, it can lead to unwanted results in the case of
simultaneoussimultaneoussimultaneoussimultaneous call-ups.

To give an example, display of a "false" register can be
caused, if in a subroutine various registers are to be
displayed, which should not be a problem, when indirect
register definition is used (by the DISPLAY_REG
instruction).

Note:Note:Note:Note:

Global subroutines, i.e. subroutines, which can be called
up by several tasks, must be written at the end of the last
task.

Thus, special care should be applied, if the same
subroutine is called up several times simultaneously. If
necessary, subroutine calls can also be coordinated with
the help of flags.

PROCESS-PLC

168 Programming

3.5.3 Functions3.5.3 Functions3.5.3 Functions3.5.3 Functions

The instructions

DEF_FUNCTION[<Function>, xy] END_DEF

As it is common for high level languages, the function is
defined by the programmer in the program header, in
order to call it up in the program text whenever it is
needed.

• Functions can be called up by transfer parameters.
• Functions can be defined by return parameters.
• Functions have got local variables and labels.
• Functions can be applied as Booleans or in output

instructions.
• Functions do not differ in their call-up from system

instructions.

The programmer can create his own application specific
instruction libraries with the help of the functions.

Definition of a FunctionDefinition of a FunctionDefinition of a FunctionDefinition of a Function

The functions are defined at the beginning of the
program (before TASK 0). First, the data framework is
specified in a definition window (call-up by hotkey (D),
then (F)).

Functions areFunctions areFunctions areFunctions are
defined in thedefined in thedefined in thedefined in the

programprogramprogramprogram
headerheaderheaderheader

InstructionInstructionInstructionInstruction
libraries canlibraries canlibraries canlibraries can

be set up withbe set up withbe set up withbe set up with
the help of thethe help of thethe help of thethe help of the

functionsfunctionsfunctionsfunctions

Functions areFunctions areFunctions areFunctions are
defineddefineddefineddefined

before before before before TASK
0

Programming

Programming169

Definition of the Function TextDefinition of the Function TextDefinition of the Function TextDefinition of the Function Text

After confirming with (¢), the function header will be
displayed on the screen; after this, the function text can
be input. It must be closed by END_DEF.

Function Call-Up in the Program TextFunction Call-Up in the Program TextFunction Call-Up in the Program TextFunction Call-Up in the Program Text

Using the contraction of the function name, which has
been input in the definition window (see figure above),
the function is called up in the program text.

Figure Figure Figure Figure 14141414: With the help of the definition windows the: With the help of the definition windows the: With the help of the definition windows the: With the help of the definition windows the
functions are parameterisedfunctions are parameterisedfunctions are parameterisedfunctions are parameterised

Functions areFunctions areFunctions areFunctions are
closed byclosed byclosed byclosed by
END_DEF....

With the helpWith the helpWith the helpWith the help
of theof theof theof the

instructioninstructioninstructioninstruction
contraction,contraction,contraction,contraction,
the functionsthe functionsthe functionsthe functions

are called upare called upare called upare called up
in thein thein thein the

program textprogram textprogram textprogram text

PROCESS-PLC

170 Programming

Example 1 (in an output condition):Example 1 (in an output condition):Example 1 (in an output condition):Example 1 (in an output condition):

0: DEF_FUNCTION [Exchange Tools, ET]
Par: ProgramNo., PositionNo,

ToolNo
1: REG rToolNo
2: =
3: REG rProgramNo
4: +
5: REG rPositionNo
6: THEN
7: OUT oEject
8: WHEN
9: IN iEjectOK
10: THEN
11: OUT oFeedTool
12: RETURN
13: END_DEF
14: TASK tInitialisation ---------------------
15: WHEN
16: IN iFeedback
17: THEN
18: POS [Axis=axHorizontal,

Pos=R(rPut_Down),v=R(rAutomatic)]
19: WHEN

Figure Figure Figure Figure 15151515: The call-up is made with the help of function: The call-up is made with the help of function: The call-up is made with the help of function: The call-up is made with the help of function
(instruction) contractions the same way as in instruction call-(instruction) contractions the same way as in instruction call-(instruction) contractions the same way as in instruction call-(instruction) contractions the same way as in instruction call-
upsupsupsups

The functionThe functionThe functionThe function
begins withbegins withbegins withbegins with

DEF_FUNCTION

The functionThe functionThe functionThe function
definition endsdefinition endsdefinition endsdefinition ends
with with with with END_DEF

Programming

Programming171

20: ACTUAL_POS Axis=axHorizontal
21: >
22: REG rIntermediatePos
23: THEN
24: WHEN
25: AXARR Axis=axHorizontal
26: THEN
27: POS [Axis=axVertical,Pos=R(rPutDown)

v=R(rAutomatic)]
28: WHEN
29: AXARR Axis=axVertical
30: THEN
31: ExchangeTool

[ProgramNo=R(rCounter),
PositionNo=R(rPutDown),
ToolNo=R(rPunchingTool)]

32: WHEN
33: IN iExchangeOK
34: THEN
35: POS [Axis=axVertical,

Pos=R(rPunchingPositionY),
v=R(rAutomatic)]

36: POS [Axis=axHorizontal,
Pos=R(rPunchingPositionX),
v=R(rAutomatic)] 37: WHEN

38: AXARR Axis=axVertical
39: AXARR Axis=axHorizontal
40: THEN
41: OUT oPunch1
42: ...
End of program

Example 2 (in an input condition):Example 2 (in an input condition):Example 2 (in an input condition):Example 2 (in an input condition):

In this example enquiry is made, whether the starting
condition StartCondFulf has been fulfilled. When the
condition has been fulfilled, the task TASK tPunchHole
is started.

The function isThe function isThe function isThe function is
called up bycalled up bycalled up bycalled up by
Exchange-

Tool

PROCESS-PLC

172 Programming

0: DEF_FUNCTION [StartCondMet, SE]
Par: rMinimumPos

1: IF
2: IN iDoorLocked
3: IN iStartSignal
4: FLAG fGlobalEnable
5: REG rMinimumPos
6: >
7: 1000
8: THEN
9: REG StartCondMet
10: =
11: 1
12: ELSE
13: REG StartCondMet
14: =
15: 0
16: THEN
17: RETURN
18: END_DEF
19: TASK tPunchHole ----------------------
20: WHEN
21: StartCondMet

[rMinimumPos=rActualPosition]
22: THEN
23: ...
End of program

Programming

Programming173

3.6 Registers and Flags3.6 Registers and Flags3.6 Registers and Flags3.6 Registers and Flags

The following instructions serve dealing with registers and
flags. They will be explained in this chapter.

REGISTER_LOAD

COPY

specialfunction no.x

REGDEC

REGINC

REGZERO

REG_CLEAR

BIT_SET

BIT_CLEAR

FLAG

CLEAR_FLAGS

PROCESS-PLC

174 Programming

3.6.1 Basic Information on Registers3.6.1 Basic Information on Registers3.6.1 Basic Information on Registers3.6.1 Basic Information on Registers

The registers are the numeric stores of the PROCESS-PLC.
They can be used like variables. A value can be
assigned to, and later be read from, them. A difference
is made between integer registers, floating point registers
and special registers. All registers are marked by a
number or a symbolic variable name.

With all registers there is the possibility of indirect
addressing. This means, that the number of a required
register is in another register. On this subject, please see
the REGISTER_LOAD instruction.

Integer Register:Integer Register:Integer Register:Integer Register:

All these registers are 24 Bit wide registers, in which an
integer numberinteger numberinteger numberinteger number between -8388608 and 8388607-8388608 and 8388607-8388608 and 8388607-8388608 and 8388607 is
stored.

The following integer register ranges are supplied by the
various PROCESS-PLC:

PROCESS-PLCPROCESS-PLCPROCESS-PLCPROCESS-PLC Integer Register InstructionInteger Register InstructionInteger Register InstructionInteger Register Instruction
PASE-E Plus 0 to 8191

with additional memory expansionwith additional memory expansionwith additional memory expansionwith additional memory expansion

MEM128:
200000 to 232767

MEM512:
200000 to 331071

MEM1024:
200000 to 462143

RegisterRegisterRegisterRegister
definition bydefinition bydefinition bydefinition by

numericnumericnumericnumeric
parameter orparameter orparameter orparameter or

symbolicsymbolicsymbolicsymbolic
variable namevariable namevariable namevariable name

Programming

Programming175

DELTA 0 to 20479

NANO-C 0 to 1999
20000 to 27999

NANO-B 0 to 1999

NANO-A 0 to 199

MIKRO 100 to 1099

These integer registers can also be used as parameters
for various instructions. Instead of a certain parameter,
R100 is written, for example. The consequence for the
instruction is, that the present memory content of register
R 100 is used as a parameter.

Floating Point Register:Floating Point Register:Floating Point Register:Floating Point Register:

These registers are 32 Bit wide and can store real
numbers, i.e. floating point numbers in a range between

-10-10-10-1015151515 to + 10 to + 10 to + 10 to + 1015151515....

The smallest possible number has got an amount around
1,2*10-15

Due to the 32 Bit wide display of numbers, a calculation
preciseness of up to 7 decimal places will result.

The following floating point register ranges are supplied
by various PROCESS-PLC:

PROCESS-PLC

176 Programming

PROCESS-PLCPROCESS-PLCPROCESS-PLCPROCESS-PLC Floating Point Register RangeFloating Point Register RangeFloating Point Register RangeFloating Point Register Range
PASE-E Plus 8960 to 9215
DELTA 62208 to 62463
NANO C 65024 to 65279
NANO B -
NANO A -
MIKRO -

Special Registers:Special Registers:Special Registers:Special Registers:

The special registers contain parameters, which are
being used by the operating system. A big range of
possibilities of influencing the functioning of the controller
is offered; thus, it should only be used very carefully!

Slave Registers:Slave Registers:Slave Registers:Slave Registers:

These registers are on intelligent modules resp. boards of
various PROCESS-PLC. They serve the communication
between the CPU and the processor of the module,
respectively of the board. Thus, instructions and
parameters are written into these registers by the
controller program, and the status report is read. Access
to the slave registers is made by the same instructions as
for any other register. In some of these registers
conditions or present values (e.g. the actual axis position)
have been stored and have for this reason only been
designed as read-onlyread-onlyread-onlyread-only memories. Writing into these
registers is not permitted!

The specialThe specialThe specialThe special
registers, andregisters, andregisters, andregisters, and

thus thethus thethus thethus the
functions offunctions offunctions offunctions of

the operatingthe operatingthe operatingthe operating
system are tosystem are tosystem are tosystem are to

be handledbe handledbe handledbe handled
carefullycarefullycarefullycarefully

Programming

Programming177

PROCESS-PLCPROCESS-PLCPROCESS-PLCPROCESS-PLC Slave Register RangeSlave Register RangeSlave Register RangeSlave Register Range
PASE-E Plus Slot 1: 11100 to 11799

Slot 2: 12100 to 12799
...
Slot 32: 42100 to 42799

DELTA Slot 1: 21000 to 24999
Slot 2: 31000 to 34999
Slot 3: 41000 to 44999

NANO-B CPU: 11100 to 11999
Module 2: 12200 to 12999
Module 3: 13300 to 13999
Module 4: 14400 to 14999

NANO-A -

MIKRO 1100 to 1149

PROCESS-PLC

178 Programming

3.6.2 Instructions for Register Loading3.6.2 Instructions for Register Loading3.6.2 Instructions for Register Loading3.6.2 Instructions for Register Loading

The instruction

REGISTER_LOAD [x with a]

serves loading of number values (or contents of other
registers) into a register.

Description:Description:Description:Description:

In the instruction mentioned above, x stands for the
number of the register number a is to be written into.

Indirect and Doubly Indirect AddressingIndirect and Doubly Indirect AddressingIndirect and Doubly Indirect AddressingIndirect and Doubly Indirect Addressing

For the "x" and the "a" in the upper instruction, there
cannot only stand a number, but also a register can be
specified: By pressing the space key, an "R" can be
placed in front of the register number.
If "Ry" is written instead of "x", value "a" is written into the
register, the number of which is written in register y.
If "Rb" has been written instead of "a", the result will be,
that not the value itself, but the content of the specified
register is loaded into register x (or Ry).

If for "a" "RR" (SPACE key twice) and then a number (b) is
input

REGISTER_LOAD [x with RR(b)]

the result will be the following: First the value of register b
is read. This value now serves as a register number. In the
register of this number a new value is written and finally
stored in register x.

By pressingBy pressingBy pressingBy pressing
the the the the (SPACE)

key (one orkey (one orkey (one orkey (one or
two times),two times),two times),two times),

the indirectthe indirectthe indirectthe indirect
levels arelevels arelevels arelevels are
selectedselectedselectedselected

Programming

Programming179

Example:Example:Example:Example:

1) Load a number into a register

REGISTER_LOAD [rNewPosition with 1280]

Value 1280 is loaded into REG rNewPosition.

2) Copy a register onto another one

REGISTER_LOAD [rVoltage with R(rVoltage1)]

The value that is written in REG rVoltage1 is loaded into
REG rVoltage. In other words, the content of REG
rVoltage1 is copied into REG rVoltage.

3a) Load by doubly indirect addressing

REGISTER_LOAD [rVoltage with RR(rU_Pointer)]

The value, which is in the register of the number written in
register REG rU_Pointer, is loaded into REG
rVoltage.

PROCESS-PLC

180 Programming

3b) Example for Double Indirect Addressing Using
Numbers

Register OccupationRegister OccupationRegister OccupationRegister Occupation ValueValueValueValue
REG 64 211
REG 211 70035
REG 5000 4711
REG 4711 arbitrary

with the help of this occupation the following instruction is
carried out:

REGISTER_LOAD [R(5000) with RR(64)]

The following register values will result:

Register 64 = 211 (remains the same)

Register 211 = 70035 (remains the same)

Register 5000 = 4711 (remains the same)

Register 4711 = R5000 = RR64 = R211 = 70035

Graph:Graph:Graph:Graph:

R(5000) RR(64)

REG 5000 REG 64
4711 211

REG 4711 REG 211
arbitrary 70035

70035
will be
copied
into

REG 4711

Programming

Programming181

The instruction

COPY [n=<Numb of Reg> from <SourceReg> to <DestReg>]

serves for copying whole register blocks. Only the
number of registers has to be input: the number of the
first register that has to be copied, and finally the number
of the register, into which the first register is to be copied.

All those three parameters can be input in simplesimplesimplesimple
indirect mode.indirect mode.indirect mode.indirect mode.

Example:Example:Example:Example:

Copy [n=5, from 100 to 200]

Reg.Nr.Reg.Nr.Reg.Nr.Reg.Nr. ContentContentContentContent ExecutionExecutionExecutionExecution Reg.No.Reg.No.Reg.No.Reg.No. ContentContentContentContent
100 77 ────────────> 200 77
101 3198 ────────────> 201 3198
102 791 ────────────> 202 791
103 86320 ────────────> 203 86320
104 13629 ────────────> 204 13629

The above presentation is to illustrate what is happening
after the COPY instruction: Five registers are copied
(n=5). The first register to be copied is REG 100 which is
copied into REG 200. In the example arbitrary values
were assumed for REG 100 to REG 104. It is important
that after the copy instruction the same values appear in
REG 200 to REG 204.

Example:Example:Example:Example:

1) Copy [n=100, from 0 to 1000]

Registers REG 0 to REG 99 are copied onto registers
REG 1000 to REG 1099.

IndirectIndirectIndirectIndirect
parameterparameterparameterparameter

input isinput isinput isinput is
possiblepossiblepossiblepossible

PROCESS-PLC

182 Programming

2) COPY [n=100, from 700 to 650]

REG 700 to REG 799 are copied onto REG 650 to REG
749. Here, registers REG 700 to REG 749 are given new
values, while the former ones get "lost". (Now they are
stored in REG 650 to REG 699.)

Programming

Programming183

The instruction

SPECIALFUNCTION [#1, p1=a, p2=b]

also serves the copying of register contents.

There are two more special functions, which have been
explained in Chapter 3.11.4 Special Functions. Special
function 1 serves for copying and will thus be described
below.

Special function 1 has been developed for the
initialisation of axis cards, as a great number of registers
have to be loaded there. The function has got two
parameters: In the first parameter (p1) the number of the
first register of a description block is defined, in (p2) the
first register to be written into (b) is defined. Parameters p1
and p2 can also be indirectly addressed. In this
description block all details are contained of how many
and which registers are to be copied after the following
standards:

Description BlockDescription BlockDescription BlockDescription Block

Reg.NoReg.NoReg.NoReg.No ContentContentContentContent
a Number of registers to be copied

a + 1 1st offset register number
a + 2 Content of the 1 st registers
a + 3 2nd offset register number
a + 4 Content of the 2nd register
a + 5 etc.

SPECIAL-
FUNCTION 1

for axisfor axisfor axisfor axis
initialisationinitialisationinitialisationinitialisation

PROCESS-PLC

184 Programming

Remark:Remark:Remark:Remark:

For each register to be written into, two registers of the
description block are needed, for example register a+1
and register a+2. Those two numbers result in copying
value R(a+2) into the register of the number b+R(a+1).
This procedure can be illustrated best by an example:

Example:Example:Example:Example:

SPECIALFUNCTION [#1, 100, 1000]

The description block starts with register 100. As an
example the values of register 100 and the following are
to be:

Reg 100 = 4 Reg 103 = 11 Reg 106 = 912
Reg 101 = 10 Reg 104 = 199 Reg 107 = 19
Reg 102 = 4500 Reg 105 = 15 Reg 108 = 9999

After carrying out the special function the following
registers contain the values

Reg 1010 = 4500
Reg 1011 = 199
Reg 1015 = 912
Reg 1019 = 9999

The instruction

REG_CLEAR [from Reg<first reg> to <last reg>]

serves clearing of register contents. Register blocks of any
size can be set to zero. The registers, the first and the last
register being included, are set to zero.

Programming

Programming185

ExampleExampleExampleExample

REG_CLEAR [100 to 200]

All registers from 100 to 200 are set to zero.

3.6.3 Calculating with Registers3.6.3 Calculating with Registers3.6.3 Calculating with Registers3.6.3 Calculating with Registers

Calculating with registers is extensively described in the
chapter on arithmetic expressions (Chapter 3.4
Arithmetic). Here, expecially the instructions

REG <RegNr>

REGNULL <RegNr>

REGDEC <RegNr>

REGINC <RegNr>

are to be explained. In all of those four instructions it is
possible to indirectly specify which is the only parameter
to be defined. Thus, for example, for RegNo., Reg 100
can be written. This means that for the instruction the
register is selected the number of which has been written
into register 100.

PROCESS-PLC

186 Programming

The instruction

REG

By this instruction a register value can be directly
accessed and treated like a variable. In an output
instruction the register that has been written on the left of
the equal sign a value is attributed. In an input condition
the content of the register is read. The register accesses
written at the right of the equal sign result in both cases in
reading of the register.

Example:Example:Example:Example:

1) THEN
REG 1
=
REG 105
*
25

In this example an assignment (output assignment
introduced by THEN) is shown. Register REG 105 is read
and its content multiplied by 25. The result of this
operation will be stored in register 1. The content of REG
105 remains unchanged.

2) IF
REG 1
=
REG 105
*
25

THEN

In this case the expression REG 1 = REG 105 * 25 is
not written in an output instruction, but it serves as an
input condition. In this program part the value of register
1 will not be changed. It will only be compared with the
product REG 105 * 25. (also see Chapter 3.3 Boolean
Expressions)

Programming

Programming187

A register is set to zero by the REGZERO instruction, or an
enquiry is made, whether a register value is zero:

REGZERO <RegNr>

When this instruction is used as an input condition, (after
IF or WHEN) it has got the following meaning, which is to
be explained by the example below:

Example:Example:Example:Example:

IF IF
REGZERO 49 REG 49
THEN =

0
THEN

In both program parts the same function is carried out. At
the right, the comparison is carried out as a general
arithmetic comparison, while at the left the special
instruction REGZERO is used.

The instructions

REGDEC REGINC

These two instructions serve for decrementing a register
by 1, respectively to increment it by 1. These functions
are often used in loops for incrementing or
decrementing counters and pointers.

Examples:Examples:Examples:Examples:

1a) 1b)
THEN THEN
REGDEC 100 REG 100

=
REG 100
-
1

PROCESS-PLC

188 Programming

These two program parts have got the same function. In
both of them the content of register 100 is decremented
by 1.

2a) 2b)
THEN THEN
REGINC 88 REG 88

=
REG 88
+
1

Here both program parts have also got exactly the same
result. Register 88 is incremented by 1.

3) REGISTER_LOAD [rCounter with 10]
LABEL 55

...
REGDEC rCounter

IF
REGZERO rCounter

THEN
ELSE
GOTO 55

THEN

This way a loop can be realised that is carrying out a
certain number of runs. In the loop the counting register is
always decremented by 1, and then it is evaluated by
comparison whether it is zero (REGZERO rCounter). If it
is zero, no step is taken after the first THEN; the program
goes on to the second THEN instead to be continued
from there. If register 1 is not 0, though, a return is made
to the beginning of the loop.

Programming

Programming189

3.6.4 Register Bit Instructions3.6.4 Register Bit Instructions3.6.4 Register Bit Instructions3.6.4 Register Bit Instructions

Using the instructions

BIT_SET

BIT_CLEAR

individual register bits can be queried, set or cleared.

In this case, the instruction

BIT_SET [Reg. <RegNo>, Bit <BitNo>]

means as an output instructionoutput instructionoutput instructionoutput instruction after THEN or ELSE):
The described bit is to be set; it is to be given value
1.

means as an input conditioninput conditioninput conditioninput condition (after IF or WHEN):
Enquiry is made, whether the described bit has
been set; this means, whether it has got value 1.

BIT_CLEAR [Reg. <RegNr>, Bit <BitNr>]

means as an output instructionoutput instructionoutput instructionoutput instruction (after THEN or ELSE):
The described bit is set to zero.

means as an input conditioninput conditioninput conditioninput condition (after IF or ELSE):
Enquiry is made, whether the described bit is zero. If
it is, the expression will be true; otherwise it will be
false.

The register numberegister numberegister numberegister number can also be given here in indirect
mode, but not the bit number.

PROCESS-PLC

190 Programming

Bit Numbering:Bit Numbering:Bit Numbering:Bit Numbering:

Integer Registers (24 Bit):Integer Registers (24 Bit):Integer Registers (24 Bit):Integer Registers (24 Bit):

23 22 21 20 19 18 17 16 15 14 13 12 ...

... 11 10 9 8 7 6 5 4 3 2 1 0

Bit 0 is the bit of lowest value.
Bit 23 is the bit of highest value.
Internal numbering is made by complements of two, for
example:

+10 = 0000...1010
+1 = 0000.....01
0 = 0.........0
-1 = 1111.....11
-10 = 1111...0110

Bit 23 ist bei negativen Zahlen 1.

The value can be calculated as follows: V = 2BitNo

Examples:Examples:Examples:Examples:

1) THEN
BIT_SET [Reg.12, Bit 3]

The fourth bit of register 12 is set, this means, it will have
value 1 after this. If all the other bits of this register are
zero, register 12 will then have value 8.

InternalInternalInternalInternal
numbering isnumbering isnumbering isnumbering is

made bymade bymade bymade by
complementscomplementscomplementscomplements

of twoof twoof twoof two

Bit 23 is 1 forBit 23 is 1 forBit 23 is 1 forBit 23 is 1 for
negativenegativenegativenegative
numbersnumbersnumbersnumbers

Programming

Programming191

2) REGISTER_LOAD [1 with 0]
BIT_SET [Reg.1, Bit 9]
BIT_SET [Reg.1, Bit 8]
BIT_SET [Reg.1, Bit 6]
BIT_SET [Reg.1, Bit 3]
BIT_SET [Reg.1, Bit 2]
...

In this program, certain bits of registe 1 are set. The value
resulting for register 1 can be calculated as follows
(summing up of the "set values"):

29 + 28 + 26 + 23 + 22 = 512 + 256 + 64 + 8 + 4 =
844

3a)

WHEN
BIT_SET [Reg.1, Bit12]

THEN
...

3b)

WHEN
NOT
BIT_CLEAR [Reg.1, Bit12]

THEN
...

These programs have got exactly the same result. It is
waited, until bit 12 of register 1 has been set (not
cleared).

PROCESS-PLC

192 Programming

3.6.5 Flags and Flag Instructions3.6.5 Flags and Flag Instructions3.6.5 Flags and Flag Instructions3.6.5 Flags and Flag Instructions

Basically, flags are memories, which are only one Bit
wide, though. This means they can either have value 1 or
0. For this reason one can say a flag has been set (= 1)
or cleared (= 0). Just as the registers, the flags are also
marked by numbers. The numbering of the flags can be
looked up in the manual on the respective controller.
Numbers 2048 to 2303 have been reserved for special
flags, which are needed by the system. The special flags
that can be helpful to the user have been described in
Chapter 4.1.2 Flags.

Further, there is a flag range overlapped by a register
range. For numbering ,please see the manual on the
respective controller. For further details see Chapter 4.1
Basics on Registers and Flags

The following flag instructions are available:

FLAG

CLEAR_FLAGS

Flags have gotFlags have gotFlags have gotFlags have got
value 1 or 0value 1 or 0value 1 or 0value 1 or 0

OverlappingOverlappingOverlappingOverlapping
flag - registerflag - registerflag - registerflag - register

rangesrangesrangesranges

Programming

Programming193

The instruction

FLAG <FlagNo>

has got the following meaning:

as an output instructionoutput instructionoutput instructionoutput instruction (after THEN or ELSE):
The flag is set, this means it is given value 1.
The flag can be cleared by inputting "-" (negative
sign) in front of the flag number.

as an input conditioninput conditioninput conditioninput condition (after WHEN or IF):
Enquiry is made, whether the flag has been set. The
result of this enquiry corresponds to the flag value
and has got the meaning true (= 1) or false (= 0).

Here, a negative sign can also be input in front of the
flag number to get access to the inversed flag number.
This means, enquiry is made, whether the flag has been
cleared. (Thus, the result is exactly the inverse value of the
flag.)

Example:Example:Example:Example:

1) THEN
-FLAG 2

By this instruction, flag 2 is cleared. After this, the flag
value will be 0.

2) WHEN
-FLAG 61

THEN

PROCESS-PLC

194 Programming

Flag 61 is waited for to be given value 0. This flag can, for
example, be changed by another task; this means, it
can be deleted by this task. If the flag is 0 already, when
the program reaches this instruction, the rest of the
program will be continued immediately.

The instruction

CLEAR_FLAGS

serves for clearing whole blocks of flags. This will be
illustrated by the following example:

Example:Example:Example:Example:

CLEAR_FLAGS [1 to 300]

All flags from 1 to 300 are cleared; this means all flags
from 1 to 300 will afterwards have got value 0.

Programming

Programming195

3.7 Inputs and Outputs3.7 Inputs and Outputs3.7 Inputs and Outputs3.7 Inputs and Outputs

Inputs and outputs serve for inputs and outputs of binary
signals.

3.7.1 Inputs3.7.1 Inputs3.7.1 Inputs3.7.1 Inputs

The inputs can be directly accessed by the program as
a binary signal, this is, as 0 or 1. The inputs can, for
example, be connected to a switch, which can be
queried in the program by the input instruction.

For numbering of the inputs, please see the manual on
the respective controller.

The inputs have only got a function in input conditions.
This means, they cannot be set by the software or be
influenced in any other way. Only enquiries are possible..

This can be easily achieved by the input instruction:

IN 101

Enquiry is made by this instruction, whether input 101 has
been set. If the input number is preposed by a negative
sign, access can be made to the inverted signal, just as
it is the case with flags.

Inputs can beInputs can beInputs can beInputs can be
queried, butqueried, butqueried, butqueried, but

not setnot setnot setnot set

PROCESS-PLC

196 Programming

Example:Example:Example:Example:

WHEN
-IN 108

THEN

In this program part, input 108 is waited for not being set
any more. As soon as the input is not active any more,
the program is continued.

Via special registers, several inputs can be read
simultaneously. The register numbers can be taken from
the respective controller manual. Besides that, they will
be displayed as examples by Chapter 4.1 .

Several inputsSeveral inputsSeveral inputsSeveral inputs
are combinedare combinedare combinedare combined

in registersin registersin registersin registers

Programming

Programming197

3.7.2 Outputs3.7.2 Outputs3.7.2 Outputs3.7.2 Outputs

Outputs are digital switches to control valves, fuses, LED's
or similar devices.

The numbering of the outputs can be taken from the
respective controller manual.

The instruction for switching or querying an output is:

OUT 101

This instruction will have the following effect:

as an output instructionoutput instructionoutput instructionoutput instruction (after THEN or ELSE):
Output 101 will be set (activated)

as an input conditioninput conditioninput conditioninput condition (after IF or WHEN):
Enquiry about the output: Has the output been set?
(This is an internal logical query. This means, that, for
example, short circuits of the voltage output
cannot be recognised that way.)

By input of a negative sign in front of the output number
access can also be made to the inverse value ; this
means, enquiries can be made, whether an output has
not been set, or the output will be deactivated as an
output instruction.

PROCESS-PLC

198 Programming

Here, the output number can also be specified indirectly.

Examples:Examples:Examples:Examples:

1) IF
IN 101

THEN
OUT 201

ELSE
-OUT 201

THEN
...

Here, input 101 is queried first. If this input has been set,
output 201 is to be set as well. If input 101 has not been
set, output 201 is to be reset.

Remark:Remark:Remark:Remark:

Setting an output that is already active, as well as
resetting an output that is not active will be to no effect.

2) WHEN
-OUT 202

THEN

When output 202 is not active any more, the program is
to be continued.

For outputs, there are also registers, by which
simultaneous access to 8, 16 or 24 outputs can be
made. For numbering see the respective controller
manual.

Programming

Programming199

3) Register 2540 (NANO-B) goes together with outputs
OUT 101 to OUT 108.

ExamplesExamplesExamplesExamples

1)

REG 2540
=

b000000000000000011111111 (16 zeros, 8 ones)

2)

REGISTER_LOAD [2540 with 255]

The outputs (1 to 8) are set by these instructions. (After
this, each one of the 8 LED's will be active). By the
assignment of registers, the binary value can directly be
input or - if this is required - the problem can be solved
by one direct instruction like the REGISTER_LOAD
instruction top right. For this purpose, the binary value
must first be transferred into a decimal value. (See also
Chapter 3.11.4 Special Function)

RegisterRegisterRegisterRegister
numbernumbernumbernumber
NANO-BNANO-BNANO-BNANO-B

PROCESS-PLC

200 Programming

3.8 Display Instructions and User Input3.8 Display Instructions and User Input3.8 Display Instructions and User Input3.8 Display Instructions and User Input

In this chapter, the instructions for user interfaces will be
explained. The devices have been described in a
separate manual.

These are the instructions:

DISPLAY_TEXT

DISPLAY_REG

USER_INPUT

3.8.1 Display of Texts3.8.1 Display of Texts3.8.1 Display of Texts3.8.1 Display of Texts

The instruction

DISPLAY_TEXT[#<DeviceNo>,cp=<CursorPos> „<Text>„]

serves for text output on user interfaces or on a printer.

Meaning of the parameters

Device NumberDevice NumberDevice NumberDevice Number

For this parameter, 0 to 9 can be input.

Programming

Programming201

#0 to #4#0 to #4#0 to #4#0 to #4

A user interface will be controlled

#8#8#8#8

By this device number, the control system is caused to
edit the text onto a printer.

#9#9#9#9

Editing is made via the free programmable PRIM
interface.

Separate display on up to 4 simultaneously connected
user interfaces is possible (a description can be ordered).

Cursor PositionCursor PositionCursor PositionCursor Position

In this parameter the cursor position is given, where the
first character of the text is to stand. In this case, values
from 0 to 127 are possible. The respective cursor
positions can be taken from the manual on user
interfaces.

Example on LCD9:Example on LCD9:Example on LCD9:Example on LCD9:

First line of the display: Cursor positions from 1 to 241 to 241 to 241 to 24

Second line of the display: Cursor positions from 25 to 4825 to 4825 to 4825 to 48

Cursor position 0000 has got a special meaning: If cursor
position 0 is set, the text will be attached to the text
edited last. The cursor will stand at exactly the same
position, where it stopped after completing the former
display instruction. (The function of cursor position 0 can
be changed by a special register. Referring to this,

User InterfaceUser InterfaceUser InterfaceUser Interface

PrinterPrinterPrinterPrinter

FreeFreeFreeFree
programm-programm-programm-programm-

ableableableable
interfaceinterfaceinterfaceinterface

PROCESS-PLC

202 Programming

please see the description of the special registers in the
controller manual.)

TextTextTextText

Here the text can be input which is to be displayed. The
two characters "_" and "$" serve as test marks:

"____" This character causes the display to be cleared first
and the input text to be displayed (independently from
the input parameter) then beginning with cursor position
1. This character only makes sense at the beginning of a
text, as otherwise the first part of the text would be
displayed first, yet would immediately be cleared again.
This character has got the meaning DELSCRDELSCRDELSCRDELSCR (Delete
Screen). If this character is to be input, the character
code for DELSCR can be changed in a special register of
the controller.

For printing, this character has got the meaning FORMFORMFORMFORM
FEEDFEEDFEEDFEED.

„$$$$“ This character causes the rest of the line, starting
from the present cursor position, to be cleared. It is also
called DELEOLDELEOLDELEOLDELEOL (delete end of line) and can also be
replaced by another character (see description of
special registers in the user's manual).

For printing, this character has got the meaning LINELINELINELINE
FEED.FEED.FEED.FEED.

_ and $_ and $_ and $_ and $
are test marksare test marksare test marksare test marks

The display isThe display isThe display isThe display is
cleared by _cleared by _cleared by _cleared by _

By $, the endBy $, the endBy $, the endBy $, the end
of the line,of the line,of the line,of the line,

starting fromstarting fromstarting fromstarting from
the cursorthe cursorthe cursorthe cursor

positionpositionpositionposition
will bewill bewill bewill be

clearedclearedclearedcleared

Programming

Programming203

Examples:Examples:Examples:Examples:

1)

DISPLAY_TEXT [#0, cp=0, "_Actual_Pos:"]

First, the whole LC display will be cleared by this
instruction, then "ActualPosition:" will be written on the
upper line of the display (cursor position = 1). Instead of
the cursor position, any other number could be written,
as this will not be considered any more after input of the
Delete Screen mark (DELSCR). The display will then look as
follows:

ActualPos:

2)

DISPLAY_TEXT [#0, cp=25, "NominalPos:$"]

The text "NominalPos" is written, starting from the defined
cursor position 25, which is the beginning of the second
display line; then, the rest of the line is cleared.

3)

DISPLAY_TEXT [#0, cp=0, "FEHLER"]

Beginning at the present cursor position, the text "ERROR"
is written. This means the text is simply attached to the
former text.

PROCESS-PLC

204 Programming

4)

DISPLAY_TEXT [#8, cp=1, "This will be sent to the
printer"]

The result will be, that the text "This will be sent to the
printer" will be printed on the printer, starting from the
beginning of the line. Details on printer output have been
described in the controller manual. For editing on PRIM,
the cursor position will be ignored.

3.8.2 Display of Register Contents3.8.2 Display of Register Contents3.8.2 Display of Register Contents3.8.2 Display of Register Contents

The instruction

DISPLAY_REG[#<DeviceNo>,cp=<CursorPos>Reg=<RegNo>]

serves for output of a register value onto user interfaces,
modules, or a printer.

The parameters device number and cursor positiondevice number and cursor positiondevice number and cursor positiondevice number and cursor position
have got exactly the same function as they have got in
the DIPLAY_TEXT instruction (see above). Further, a
register numberregister numberregister numberregister number must be input here. This is the register
number the value of which is to be displayed. It can also
be input by indirect addressing.

For register display there are two parameters to be
changed, which are stored in the special registers "Field
width for integer display" and "Alignment left/right".
Following, the standard settings (after reset) will be
described:

Programming

Programming205

Special Register "Field Width for Integer Display"Special Register "Field Width for Integer Display"Special Register "Field Width for Integer Display"Special Register "Field Width for Integer Display"
= 1= 1= 1= 1

8 places are used for register display; negative signs are
displayed in the very beginning of the line and numbers
flush right in the other seven places.

Special Register "Direction, Left/Right" = 0Special Register "Direction, Left/Right" = 0Special Register "Direction, Left/Right" = 0Special Register "Direction, Left/Right" = 0

Flush right display

By PROCESS-PLC (not NANO-A) floating point numbers
can also be displayed on user interfaces; special register
"Field Width for Floating Point Display" (value 1..14).

Examples:Examples:Examples:Examples:

1)

DISPLAY_REG [#0, cp=17, Reg=100]

Register 100 is displayed by this instruction. If the special
registers "Field Width for Integer Display" and
"Arrangement; Right/Left" have not been changed since
reset, the register will appear at the end of the first display
line, as it is displayed in the following: (assumptions:
Before the instruction the display was empty, while
register 100 = -3567).

................- 3567

........................

The dots are to mark the places, which, after giving the
instructions, still have got the "old" contents.

Setting afterSetting afterSetting afterSetting after
resetresetresetreset

Setting afterSetting afterSetting afterSetting after
resetresetresetreset

PROCESS-PLC

206 Programming

2)

DISPLAY_TEXT [#0, cp=25, „ActualPos :$“]
DISPLAY_REG [#0, cp=41, Reg=11109]

It is shown here how the two outputs/instructions can be
meaningfully combined. First, the text "Actual Position" is
written into the second line (left), and the rest of the
second line is deleted (Dollar sign „$“). Giving the second
instruction, register 11109 is displayed bottom right in the
display. The actual position of the stepper motor axis on
the basic module NANO-B is stored by this register
(assumptions: The actual position of axis 1 is to have
value 5400.)

........................
Actual position: 5400

The dots are to show the places, which will still have the
"old" content after giving the instructions.

3) The following exemplary program is to demonstrate
how it can become possible to lead a protocol of
values directly to the printer.

Programming

Programming207

TASK 5 ───────────────────────────
REGISTER_LOAD [rField width with 2]
DISPLAY_TEXT [#3, cp=1 "$"]
DISPLAY_TEXT [#3,cp=1 "nominal_pos"]
DISPLAY_TEXT [#3,cp=21 "actual_pos"]
DISPLAY_TEXT [#3, cp=41 "speed$"]

LABEL 100
WHEN

FLAG 1
THEN
DISPLAY_REG [#3, cp=3, Reg=rSollPos]
DISPLAY_REG [#3, cp=23, Reg=rIstPos]
REG 1
=
30
*
REG rActualPos
/
REG NumberEncoderLines
DISPLAY_REG [#3, cp=43, Reg=1]
-FLAG 1
GOTO 100

This program has been programmed in a parallel
branch, which is very practical, as this way printing of a
protocol line can be triggered by setting flag 1 from any
other parallel branch. At the beginning of this task
(parallel branch) the title line is printed. This is done before
the actual loop, so that in this case three columns are
printed. In the first column, there is the nominal position,
in the second one, there is the actual position, while in
the third column there is the present speed in rev./min (if
1000 inkrements per revolution are evaluated).

The protocol printout could look as follows:

 Nominal Pos. Actual Pos. Speed
15000 8433 2450

- 4800 1206 - 1207
250000 250000 0

NANO-A: noNANO-A: noNANO-A: noNANO-A: no
printerprinterprinterprinter

connectionconnectionconnectionconnection

PROCESS-PLC

208 Programming

3.8.3 Reading of Register Values by the Program3.8.3 Reading of Register Values by the Program3.8.3 Reading of Register Values by the Program3.8.3 Reading of Register Values by the Program

The instruction

USER_INPUT[#<DeviceNo>,cp=<Cursor_pos>,Reg=<RegNo>]

serves the writing of register values, which can be input
via the keyboard of the display and keyboard module.

The same as for DISPLAY_TEXT instruction also applies
to the two parameters device number and cursordevice number and cursordevice number and cursordevice number and cursor
positionpositionpositionposition, yet with the following changes: In case of the
device number, there is of course no printer that can be
accessed, thus device number 8 is to be avoided in this
case. If cursor position 0 is input, the value out of special
register "Absolute Cursor Position for USER_INPUT" is
selected as cursor position at the user input. If this value is
also 0, though (which is the value the register has got
after reset), the register will be written into at the present
cursor position.

The register numberregister numberregister numberregister number is the number of the register the
input value is to be assigned to. Here, simple indirect
register addressing is possible as well.

It is important to know, that, for USER_INPUT there are
normally 8 characters available. This value, which has
been stored in the special register "Field width
USER_INPUT" can also be changed. (See Chapter 3.8.4
Special Registers for User Input).

IndirectIndirectIndirectIndirect
addressing ofaddressing ofaddressing ofaddressing of

the destinationthe destinationthe destinationthe destination
register isregister isregister isregister is
possiblepossiblepossiblepossible

Programming

Programming209

Example:Example:Example:Example:

To achieve effective operator guidance, USER_INPUT is
often combined with the DISPLAY_TEXT instruction.

DISPLAY_TEXT [#0, cp=1, "_New Position ?"]
USER_INPUT [#0, cp=17, Reg=100]

After giving those two instructions, the text "New position ?"
will appear, and then the input of a number is waited for.
This number, which is stored in register 100, serves as a
new nominal position for a positioning run.

Combination ofCombination ofCombination ofCombination of
DISPLAY_TEXT

andandandand
USER_INPUT

PROCESS-PLC

210 Programming

3.8.4 Special Registers for User Input3.8.4 Special Registers for User Input3.8.4 Special Registers for User Input3.8.4 Special Registers for User Input

Note:Note:Note:Note:

The special register numbers can be taken from theThe special register numbers can be taken from theThe special register numbers can be taken from theThe special register numbers can be taken from the
respective controller manuals, where a general surveyrespective controller manuals, where a general surveyrespective controller manuals, where a general surveyrespective controller manuals, where a general survey
of the special registers is given.of the special registers is given.of the special registers is given.of the special registers is given.

Special Register "Field Width for Floating PointSpecial Register "Field Width for Floating PointSpecial Register "Field Width for Floating PointSpecial Register "Field Width for Floating Point
DisplayDisplayDisplayDisplay

Field width of the DISPLAY_REG instruction for floating
point numbers. Value range 1..14, value after reset: 8.

Special Register "Field Width for Integer DisplaySpecial Register "Field Width for Integer DisplaySpecial Register "Field Width for Integer DisplaySpecial Register "Field Width for Integer Display

In this register the number of characters has been
defined, which are to be displayed after a
DISPLAY_REG instruction. After reset the value is set to 1,
which corresponds to a display of 7 characters.

Special Register "Field Width for Flush LeftSpecial Register "Field Width for Flush LeftSpecial Register "Field Width for Flush LeftSpecial Register "Field Width for Flush Left
Display"Display"Display"Display"

In this register information is contained, whether a register
to be displayed is to be written on the user interface flush
left or right. The value after reset is 0 here.

In the following tables the various possibilities of
combining the two registers and its effect on the display
format are shown. The "*" (asterisk) will in the following
stand for the output of a space. The "+" stands for a
place holder of a positive sign; actually, a space will be
displayed, though.

Programming

Programming211

a) Special register "Flush Left Number Display""Flush Left Number Display""Flush Left Number Display""Flush Left Number Display" = 0;
default after reset

RegValue 1234 -345 7654321 -1234567
0 ***+1234 ****-345 +7654321 -1234567
1 +***1234 -****345 +7654321 -1234567
2 +**1234 -***345 +654321 -234567
3 +*1234 -**345 +54321 -34567
4 +1234 -*345 +4321 -4567
5 +234 -345 +321 -567
6 +34 -45 +21 -67
7 +4 -5 +1 -7
8 + - + -

b) Special register "Flush Left Number Display""Flush Left Number Display""Flush Left Number Display""Flush Left Number Display" = 1

RegValue 1234 -345 7654321 -1234567
0 +1234 -345 +7654321 -1234567
1 + - + -
2 +1 -3 +7 -1
3 +12 -34 +76 -12
4 +123 -345 +765 -123
5 +1234 -345* +7654 -1234
6 +1234* -345** +76543 -12345
7 +1234** -345*** +765432 -123456
8 +1234*** -345**** +7654321 -1234567

c) For special register "Flush Left Number Display""Flush Left Number Display""Flush Left Number Display""Flush Left Number Display" = 2
see a), yet, no sign will be displayed.

Special Register "Field WidthSpecial Register "Field WidthSpecial Register "Field WidthSpecial Register "Field Width USER_INPUT""""

The value of this register is the field width, which is
presented to the user by the user interface, when the
USER_INPUT instruction is carried out. The value of this
register after reset is 8, which means that 8 characters
are available to the operator for input. The first space for
a character is reserved to the sign and will be occupied
by a sign only.

PROCESS-PLC

212 Programming

3.8.4.1 Control Character for the DISPLAY_TEXT Instruction3.8.4.1 Control Character for the DISPLAY_TEXT Instruction3.8.4.1 Control Character for the DISPLAY_TEXT Instruction3.8.4.1 Control Character for the DISPLAY_TEXT Instruction

Special Register "Delete Characters up to theSpecial Register "Delete Characters up to theSpecial Register "Delete Characters up to theSpecial Register "Delete Characters up to the
End of the Line"End of the Line"End of the Line"End of the Line"

In this register, the ASCII code of the DELEOLDELEOLDELEOLDELEOL (DELDELDELDELete EEEEnd
OOOOf LLLLine) character is contained. After reset it will have
value 36, which is the ASCII code of „$“ (Dollar sign). If, for
example, a Dollar sign is to be used in a text display,
thus, by this register, the function of "$" can be transferred
onto another character by inputting of another number.

Special Register "Clear Character Display"Special Register "Clear Character Display"Special Register "Clear Character Display"Special Register "Clear Character Display"

In this register, the ASCII code of the DELSCRDELSCRDELSCRDELSCR (DELDELDELDELete
SCRSCRSCRSCReen) character is contained. Deactivation of the LC
display is caused by this character. After reset, the
register will have got value 95, which is the ASCII code of
"_" (underline). This character can also be replaced by
any other.

Example:Example:Example:Example:

REGISTER_LOAD [61462 with 38]
DISPLAY_TEXT [#0, cp=0, "&"]

The display is cleared by those two instructions. First, the
DELSCR character will be changed; then the
DISPLAY_TEXT will immediately be activated.

Default afterDefault afterDefault afterDefault after
reset: $reset: $reset: $reset: $

Default afterDefault afterDefault afterDefault after
reset: _reset: _reset: _reset: _

RegisterRegisterRegisterRegister
nunununummmmberingberingberingbering

DELTADELTADELTADELTA

Programming

Programming213

3.8.4.2 Controller Register for Cursor Position on the LC Display3.8.4.2 Controller Register for Cursor Position on the LC Display3.8.4.2 Controller Register for Cursor Position on the LC Display3.8.4.2 Controller Register for Cursor Position on the LC Display

Special Register "Absolute Cursor Position DT, DR"Special Register "Absolute Cursor Position DT, DR"Special Register "Absolute Cursor Position DT, DR"Special Register "Absolute Cursor Position DT, DR"

The value of this register represents the cursor position
after the DISPLAY_TEXT or the DISPLAY_REG
instruction, in case cursor position 0 has been defined in
the instruction. If the value of this register is 0 as well,
which is the case after reset, the text to be displayed is
simply attached to the last display. This means, the
present cursor position is not being changed.

Special Register "Absolute Cursor Position U"Special Register "Absolute Cursor Position U"Special Register "Absolute Cursor Position U"Special Register "Absolute Cursor Position U"

This register has got exactly the same function as the one
mentioned above, but referring to the USER_INPUT
instruction. The cursor position is defined by this register,
where the input is to be made, if, at a user input cursor
position 0 has been defined. This value will also be 0 after
reset, which will result in annexing to the latest input or
output.

Example:Example:Example:Example:

REGISTER_LOAD [61649 with 25]
USER_INPUT [#0, cp=0, Reg=100]

The register for indirect definition of the cursor position for
user input is first loaded with value 25. At the beginning of
the second display line a number, which is then assigned
to register 100 can be input with the help of the following
instruction.

RegisterRegisterRegisterRegister
numberingnumberingnumberingnumbering

DELTADELTADELTADELTA

PROCESS-PLC

214 Programming

3.8.4.3 LCD Display Time3.8.4.3 LCD Display Time3.8.4.3 LCD Display Time3.8.4.3 LCD Display Time

The display of the user interfaces functions on two display
levels. Normally, level one is displayed, which is also
accessed by the user program; this means, here the
DISPLAY_TEXT-, DISPLAY_REG- and USER_INPUT
instructions are displayed.
By pressing the 'R' and 'F' keys, registers, flags, inputs and
outputs can be queried and changed. This is carried out
on level two (called monitor screen).
The time for switching back onto level one can be
defined by the

Special Register "Display Time for MonitorSpecial Register "Display Time for MonitorSpecial Register "Display Time for MonitorSpecial Register "Display Time for Monitor
Functions"Functions"Functions"Functions"

In this register the time of how long a register, a flag, an
input or an output queried via keyboard is to remain on
the display is given in seconds. This is the time before
switching back the display of a user program.
After reset this register has got value 3, that is, three
seconds.

Programming

Programming215

3.8.4.43.8.4.43.8.4.43.8.4.4 Input Enable for Flag and Register Changes via UserInput Enable for Flag and Register Changes via UserInput Enable for Flag and Register Changes via UserInput Enable for Flag and Register Changes via User
Interface KeyboardInterface KeyboardInterface KeyboardInterface Keyboard

A number of special registers serve for definition of
register ranges, which can then be changed via
keyboard. In this case, every two registers following one
another make up a pair, by which a block is defined. The
first three pairs refer to registers, the fourth pair to flags.

Special RegisterSpecial RegisterSpecial RegisterSpecial Register "First Changeable Register - Range 1""First Changeable Register - Range 1""First Changeable Register - Range 1""First Changeable Register - Range 1"
"Last Changeable Register - Range 1""Last Changeable Register - Range 1""Last Changeable Register - Range 1""Last Changeable Register - Range 1"

The lowest register that can be changed is defined in the
special register "First Changeable Register - Range 1"
(value after reset = 0), while the upper register is defined
in the special register "Last Changeable Register - Range
1" (value after reset = 59999) the upper one (first register
- input enable range).

Special RegisterSpecial RegisterSpecial RegisterSpecial Register "First Changeable Register - Range 2""First Changeable Register - Range 2""First Changeable Register - Range 2""First Changeable Register - Range 2"
"Last Changeable Register - Range 2""Last Changeable Register - Range 2""Last Changeable Register - Range 2""Last Changeable Register - Range 2"

The same applies to the same register range (values
after reset: both registers are 0)

Special RegisterSpecial RegisterSpecial RegisterSpecial Register "First Changeable Register - Range 3""First Changeable Register - Range 3""First Changeable Register - Range 3""First Changeable Register - Range 3"
"Last Changeable Register - Range 3""Last Changeable Register - Range 3""Last Changeable Register - Range 3""Last Changeable Register - Range 3"

The same applies to the third register range (values after
reset: both registers are 0)

PROCESS-PLC

216 Programming

Special RegisterSpecial RegisterSpecial RegisterSpecial Register "First Changeable Flag""First Changeable Flag""First Changeable Flag""First Changeable Flag"
"Last Changeable Flag""Last Changeable Flag""Last Changeable Flag""Last Changeable Flag"

In special register "First Changeable Flag" (value after
reset = 0) the lowest flag that can be changed, in
special register "Last Changeable Flag" (value after reset
= 59999) the upper flag that can be changed is
defined.

Note:Note:Note:Note:

The values after reset have been chosen in such a way,
that all registers and flags can be changed via
keyboard. In most cases it is advisable to protect blocks
of registers and flags this way, which contain important
values, in order to avoid loss of important values due to a
typing error on the keyboard.
Input enable for flags, inputs, outputs and registers can
also be generally prohibited. (For this, see "Special Flags"
in the controller manual.)

Example:Example:Example:Example:

REGISTER_LOAD [61697 with 49]
REGISTER_LOAD [61698 with 100]
REGISTER_LOAD [61699 with 199]
REGISTER_LOAD [61703 with 300]

Assuming that the other registers have not been
changed after reset, these attributions result in the
following status:

Register 0 to 49: input permitted
Register 100 to 199: input permitted
Flag 1 to 300: input permitted

RegisterRegisterRegisterRegister
nunununummmmberingberingberingbering

DELTADELTADELTADELTA

Programming

Programming217

All other registers and flags cannot be changed via
keyboard any more. Thus, all special registers, as well as
the axis module registers, are protected.

3.8.4.5 Restriction of the Monitor Functions3.8.4.5 Restriction of the Monitor Functions3.8.4.5 Restriction of the Monitor Functions3.8.4.5 Restriction of the Monitor Functions

Special Register "Restriction of the Monitor Functions"Special Register "Restriction of the Monitor Functions"Special Register "Restriction of the Monitor Functions"Special Register "Restriction of the Monitor Functions"

Flags 2096 (Bit 0) to 2103 (Bit 7) are overlapped by this
register.

0 = Function blocked, 1 = Function available

Bit0 = 0 R, I/O keys without monitor function
(flag will be set, though)

Bit0 = 1 R, I/O key with monitor function

Bit1 = 0 R, I/O key without monitor function
flag input

Bit1 = 1 R, I/O key with function flag input

Bit2 = 0 R, I/O key without function, input of output
number

Bit2 = 1 R, I/O key with function, input of output
number

Bit3 = 0 R, I/O key without function, input of input
number

Bit3 = 1 R, I/O key with function, input of input number

PROCESS-PLC

218 Programming

Bit4 = 0 = register contents cannot be changed by
the key

Bit4 = 1 = register contents can be changed by the
key

Bit5 = 0 = flags cannot be changed by the key

Bit5 = 1 = flags can be changed by the key

Bit6 = 0 = outputs cannot be changed by the key

Bit6 = 1 = outputs can be changed by the key

Bit7 = 0 = no access to inputs by the key

Bit7 = 1 = access to inputs by the key

Programming

Programming219

3.8.4.6 Time for User Input3.8.4.6 Time for User Input3.8.4.6 Time for User Input3.8.4.6 Time for User Input

Special Register "Maximum Time forSpecial Register "Maximum Time forSpecial Register "Maximum Time forSpecial Register "Maximum Time for USER_INPUT""""

The operating system is informed by the register of how
much timetimetimetime there is (in seconds) for the operatoroperatoroperatoroperator to carry
out a USER_INPUT....
After reset, this register will have value 0, which has got
the following meaning: without any condition of time user
input and its confirmation by ENTER is waited for. The
number will be input and the processing of the program
continued then. When the register is set to 10, termination
of the USER_INPUT instruction after 10 seconds will be
caused.

Flag 2053Flag 2053Flag 2053Flag 2053

This flag must be seen in the context of "Maximum time
for USER_INPUT". After USER_INPUT, enquiries can be
made via this flag, whether the input has been finished
properly by the operator, or whether the user input has
been terminated by a 'timeout'.
Flag 2053 = 1 means termination by timeout.

Setting afterSetting afterSetting afterSetting after
reset:reset:reset:reset:

no time limitsno time limitsno time limitsno time limits

PROCESS-PLC

220 Programming

3.9 Instructions for Axis Controlling3.9 Instructions for Axis Controlling3.9 Instructions for Axis Controlling3.9 Instructions for Axis Controlling

In this chapter all available instructions for axis control will
be described. The instructions are

POS

ACTUAL_POS

AXARR

Using these makro instructions for axis control, program
development will be made easier a great deal; the
program will be clearer and easier to read.

3.9.1 Positioning3.9.1 Positioning3.9.1 Positioning3.9.1 Positioning

For axis positioning, that is, running the axis to a certain
location, the following instruction is used:

POS [Axis<AxisNo>, Pos<ActualPos>, v<NomSpeed>]

Three parameters must be input, which serve for
informing the axis board, where, and by which final
speed, the axis is to be driven. Everything further will be
controlled by the axis board on its own. In order to control
the correct axis, the axis number must be input first.

Programming

Programming221

The meaning of the parameters (the parameters can be
indirectly addressed):

Axis NumberAxis NumberAxis NumberAxis Number

Axis numbering can be taken from the respective
manual.

Nominal PositionNominal PositionNominal PositionNominal Position

Here, any number of an integer register can be input (this
means, from -8388608 to 8388607). It depends on the
whole process, whether all those values are useful.
Normally, the range of numbers that is really useful for an
application is smaller. (Please also see the descriptions of
the respective servo controllers.)

In any case, the nominal position is given by this number;
this is the position the axis is to drive to. The position input
in the POS instruction corresponds to directly writing into
the nominal position register.

Nominal SpeedNominal SpeedNominal SpeedNominal Speed

In the number that has been input the maximum speed
for this positioning is defined.

Both for nominal position and for nominal speed there
can be doubly indirect register definition, for example
RR50. For explanations on this doubly indirect register
access see the REGISTER_LOAD instruction, Chapter
3.6.2 .

This way, the meaning of the POS instructions can simply
be the following:

All parametersAll parametersAll parametersAll parameters
can becan becan becan be

indirectlyindirectlyindirectlyindirectly
aaaadddddresseddresseddresseddressed

As an alternativeAs an alternativeAs an alternativeAs an alternative
to the to the to the to the POS----
instruction,instruction,instruction,instruction,

position andposition andposition andposition and
speed registersspeed registersspeed registersspeed registers
can be writtencan be writtencan be writtencan be written
into directly byinto directly byinto directly byinto directly by

thethethethe
REGISTER_LOAD

instructioninstructioninstructioninstruction

PROCESS-PLC

222 Programming

"Axis xAxis xAxis xAxis x : go to position Posposition Posposition Posposition Pos with speed vspeed vspeed vspeed v"
During acceleration the speed will slowly be increased
(sine square shaped) and during deceleration when
heading the destination position it will also be slowly (also
in sine square shape) be decreased.
How fast the meaning of "slowly" is meant to be, that is,
how high the steepness of the sine square function is to
be, can be set using further parameters (start and stop
ramps), which are directly loaded into the registers
provided for this purpose.

In register 1xy05 there is the start rampstart rampstart rampstart ramp.

In register 1xy06 there is the stop rampstop rampstop rampstop ramp.

Remark:Remark:Remark:Remark:

Besides start and stop ramp, further parameter registers
can be initialised on the axis boards in most cases. For
this purpose the following instructions are preferred:

REGISTER_LOAD
SPECIALFUNCTION [#1, . . .]
COPY

These instructions are extensively explained in Chapter
3.6.2 .

For servo axesFor servo axesFor servo axesFor servo axes
sinus-shapedsinus-shapedsinus-shapedsinus-shaped

start and stopstart and stopstart and stopstart and stop
rampsrampsrampsramps

RegisterRegisterRegisterRegister
numbers bynumbers bynumbers bynumbers by

the examplethe examplethe examplethe example
of NANO-Bof NANO-Bof NANO-Bof NANO-B

Programming

Programming223

For positioning the

AXARR Axis<AxisNo>

instruction is also necessary. This instruction can be used
as an input condition and an output instruction. The axis
number can also be defined in simple indirect mode.

As an output instructionoutput instructionoutput instructionoutput instruction (after THEN or ELSE) this means:

The axis is to stop immediately (i.e. without ramp)
and the position is to be controlled at the present
actual position.

As an input conditioninput conditioninput conditioninput condition (after IF or WHEN) this means:

Has the axis reached the destination position
(respectively the destination window)? If so, a 1 as a
Boolean value (true), if not, a 0 (false) will be
returned by the instruction.

If a negative sign is input in front of the negative number,
the meaning of the instruction will be converted into its
opposite.

In an output instructionoutput instructionoutput instructionoutput instruction this means, that an axis
that has been stopped will continue, if its nominal
position has not been reached yet.

In an input conditioninput conditioninput conditioninput condition an enquiry can be made,
whether an axis is still running.

Deceler-
ation with

the help of
the start

ramp is
caused by
the AXARR

instruction

PROCESS-PLC

224 Programming

Remark:Remark:Remark:Remark:

For positioning instruction the following should be
considered: As soon as the instruction has been written
and passed on to the axis board, the processor on the
CPU will have fulfilled its task and thus go on to the next
instruction. Axis positioning itself will independently be
carried out by the micro processor on the axis controller
module.

For this purpose enquiry will normally be made with the
help of the AXARR instruction, whether the axis has
already arrived in the destination window, before the next
positioning is started. It is also definitely permitted,
though, to start further positioning runs during one
positioning run is already carried out. In this case, the axis
will drive onto the nominal position that has been
transferred last without stopping in between.

The destination window is an area that can be defined
around the destination position. It can be set by register
7.

Programming

Programming225

After the power supply of the controller has been
switched on, all registers of the axis controllers will be
loaded with the values they had at the beginning (reset
values). In various SV modules, a relay will be switched off
at this reset, which is going to transfer the analogue
speed - nominal value output to the outside. By loading
the number 1 into the instruction register (1) of the
required module, this relay can be switched on:

Positioning is only possible, after a reference position has
been loaded. For the beginning, this reference position
can simply be defined. This is possible by writing number
3 into the instruction register:

REGISTER_LOAD [rCommand with 3]

Normally, a special, exactly defined reference point is
searched by reference run and then loaded into the
register. In the instruction shown above, the present
position is loaded as a reference point.

InitialisingInitialisingInitialisingInitialising
of the axisof the axisof the axisof the axis
controllerscontrollerscontrollerscontrollers

ReferencingReferencingReferencingReferencing
of the axisof the axisof the axisof the axis

PROCESS-PLC

226 Programming

Example:Example:Example:Example:

1) REGISTER_LOAD [rCommand with 3]
REGISTER_LOAD [rCommand with 1]
POS [axis=21, Pos=10000, v=500]

First the relay is switched on, then the reference point is
set, and finally positioning is carried out:

""""Axis 21 on the first axis module:Axis 21 on the first axis module:Axis 21 on the first axis module:Axis 21 on the first axis module: Go to position 10000Go to position 10000Go to position 10000Go to position 10000
with the speed 500with the speed 500with the speed 500with the speed 500‰!"!"!"!"

Axis 21 is to go to position 10000 with speed 500. This
means that just the nominal position (10000) and the
nominal speed (500) are loaded into the respective
registers on the axis board.
The nominal speed is set on the output of the axis board
as follows:
The speed rises up to its final value of 500 in a sine
square shaped ramp (stepper motor: linear). When the
axis is recognised to be near the nominal position, the
speed is being decreased again, until the nominal
position has been reached. There, the calculated speed
will be 0.

(For a more detailed description, also on start and stop
ramp, please see the servo controller and stepper motor
chapters of the respective controller manual.)

Please findPlease findPlease findPlease find
detaileddetaileddetaileddetailed

information oninformation oninformation oninformation on
the servothe servothe servothe servo

controller incontroller incontroller incontroller in
the respectivethe respectivethe respectivethe respective

controllercontrollercontrollercontroller
mmmmaaaanualnualnualnual

Programming

Programming227

2) REGISTER_LOAD [rStartRamp with 50]
REGISTER_LOAD [rStopRamp with 10]
REGISTER_LOAD [rCommand with 3]
REGISTER_LOAD [rCommand with 1]
POS [axis21, Pos-40000, v1000]

WHEN
AXARR axis21

THEN
POS [axis21, Pos -30000, v200]

First, the ramps are defined (start/stop), then the
reference is set, and finally the relay is switched on.
First, position -40000 is driven to with a speed of 1000‰.
After the position has been reached, the instruction is
given to go to position -30000 with a speed 200‰.

3) REGISTER_LOAD [rCommand with 3]
REGISTER_LOAD [rCommand with 1]
POS [axis=21, Pos100000, v=300]
DELAY 20
AXARR 21

Here, the reference is set first, before the relay is switched
on. Then, axis 21 (axis on the first axis module at slot 2) is
instructed to go to position 100000 by a speed of 300‰.
After a delay of 2 seconds (definition by multiples of 100
ms), the axis run is interrupted by the AXARR instruction.

PROCESS-PLC

228 Programming

3.9.2 Enquiries on the Present Condition3.9.2 Enquiries on the Present Condition3.9.2 Enquiries on the Present Condition3.9.2 Enquiries on the Present Condition

To enquire about the present position, the

ACTUAL_POS

instruction is needed, which allows elegant access to the
present axis position.

This position is in a register of the axis module (register 9)
and could as well be found out by querying this register.
The axis number can also be defined in indirect mode.

Example:Example:Example:Example:

REGISTER_LOAD [rCommand with 3]
REGISTER_LOAD [rCommand with 1]
POS [axis=21, Pos10000, v=500]

WHEN
ACTUAL_POS axis21
>
8000

THEN
OUT 201

First, the reference is set, then the relay is switched on,
and finally the instruction is given to go to position 10000
with a speed of 500‰.
When the actual position is greater than 8000, output OU
201 is set.

Programming

Programming229

3.10 Task Instructions3.10 Task Instructions3.10 Task Instructions3.10 Task Instructions

The instructions described in this chapter serve for mutual
task control.

TASKBREAK this way a task can be interrupted

TASKCONTINUE this way a task can be continued

TASKRESTART this way a task can be restarted

3.10.1 Taskbreak3.10.1 Taskbreak3.10.1 Taskbreak3.10.1 Taskbreak

By the instruction

TASKBREAK #<TaskNo>

processing of the defined parallel branch (task) is
interrupted.

The parameter to be defined together with this instruction
is the number of the parallel branch to be interrupted,
that is, a number from 0 to 31.

Note:Note:Note:Note:

Please mind here, that the controlling/positioning of
intelligent slave modules will notnotnotnot be interrupted! If this
should still be required, positioning must be explicitely
terminated/ controlling must be interrupted.

PROCESS-PLC

230 Programming

With the help of this instruction, an automatic run, for
example, can be interrupted at any position. Then, a
manual mode or EMERGENCY STOP program can be
processed.

3.10.2 Taskcontinue3.10.2 Taskcontinue3.10.2 Taskcontinue3.10.2 Taskcontinue

The instruction

TASKCONTINUE #<TaskNo>

causes an interrupted parallel branch to continue
processing.

3.10.3 Taskrestart3.10.3 Taskrestart3.10.3 Taskrestart3.10.3 Taskrestart

By the instruction

TASKRESTART #<TaskNo>

processing of the defined parallel branch is started
afresh, that is, from the beginning of the task.

Programming

Programming231

3.10.4 Examples of the Task Instructions3.10.4 Examples of the Task Instructions3.10.4 Examples of the Task Instructions3.10.4 Examples of the Task Instructions

TASK 0 -----------------------------------
...
... ;e.g. manual mode

;program
...

TASK 1 -----------------------------------
...
... ;e.g. automatic mode

;program
...

TASK 2 ------------------------------------
... ;reference drive program
...

TASK 3 -----------------------------------
...
... ;e.g. further programs
...

TASK 4 -----------------------------------
WHEN

IN -101 ;Emergency stop switch is
;pressed

THEN
TASKBREAK #0
TASKBREAK #1
TASKBREAK #2
TASKBREAK #3
AXARR axis21
AXARR axis31
AXARR axis41

WHEN
OUT 101 ;Emergency stop switch

;deactivated
THEN
AXARR axis-21
AXARR axis-31
AXARR axis-41
TASKCONTINUE #0
TASKCONTINUE #1
TASKCONTINUE #2
TASKCONTINUE #3
GOTO 4

For further examples and general information on
multitasking see Chapter 2.1

PROCESS-PLC

232 Programming

3.11 Various Instructions3.11 Various Instructions3.11 Various Instructions3.11 Various Instructions

In this chapter, the following instructions will be described:

START-TIMER

TIMER-END?

NOP

;;;;

SPECIALFUNCTION

LIMITS

Word Processing WAND, WOR, WXOR

3.11.1 Time Instructions3.11.1 Time Instructions3.11.1 Time Instructions3.11.1 Time Instructions

3.11.1.1 The Instructions START-TIMER and TIMER-END?3.11.1.1 The Instructions START-TIMER and TIMER-END?3.11.1.1 The Instructions START-TIMER and TIMER-END?3.11.1.1 The Instructions START-TIMER and TIMER-END?

The instructions have got the following syntax:

START-TIMER [register no., value (time)]

TIMER-END? [register no.]

Those two instructions are written into together here, as
they belong to the same function, that is, they depend
on each other.

Programming

Programming233

The parameter of the START-TIMER instruction can be
defined as a number or as a register number using
indirect mode

With the help of START-TIMER and the TIMER-END?
instructions, time can be monitored. In the START-
TIMER instruction the required time, as well as the register
the value is to be stored in, is contained, and the
monitoring time is started in the running program by this
instruction. The TIMER-END? instruction serves querying,
that is, it is defined, whether the time set by the START-
TIMER instruction has expired Unlike after the DELAY
instruction, the program will go on running for the defined
time. even if it is in the same task. This function can, e.g.
be used to limit the duration of processes, as, for
example, warming up an item. There is no direct
connection between the content of a defined register
and a defined time. Thus, it is not easy to check how
much time has already expired, that is, how much still
remains!
All user registers can also serve as time monitoring
registers.

Between the START-TIMER and the corresponding
TIMER-END? instruction, no assignment must be made
to the selected register, as otherwise the the TIMER-
END? instruction will not render a result that is useful!

Internal Processing ofInternal Processing ofInternal Processing ofInternal Processing of START-TIMER, TIMER_END????

In case of the START-TIMER instruction the time given
in the instruction is added to the content of a time base
register that can be selected, while the sum is stored in
the register defined in the instruction. The addition is
carried out as a 22 Bit operation without sign. This means,
that the maximum monitoring time can be 4 million time
increments.

TheTheTheThe
START-TIMER

respectivelyrespectivelyrespectivelyrespectively
TIMER-END?

instructionsinstructionsinstructionsinstructions
can becan becan becan be

parameterisedparameterisedparameterisedparameterised
in indirectin indirectin indirectin indirect

mmmmoooodededede

PROCESS-PLC

234 Programming

In the TIMER-END? instruction the stored value is
compared with the present content of the time base
register. If the time base register is still smaller than the
stored value, the TIMER-END? instruction will have the
result "false" (0). If the time base register is equal with, or
greater than the stored value, bit 23 of the defined
register is set (negative) and the result is "true" (1; time has
expired).

This means that after the START-TIMER instruction, the
TIMER-END? instruction has to render the result "true" at
least once within a time of 4 million time increments, in
order for the register to be set to negative, before
number overflow takes place. On the other hand, the
"timeout" status can be enforced by setting the used
register onto a negative value.

The number of the time base register can be defined in
one register. After switching on, the "runtime register" (in
user increments) is used. Yet, any user register can be
applied.

Example:Example:Example:Example:

POS [Achse=21, Pos=..., v=...]
START-TIMER [Reg=rMonitoring, time=100]

...
DELAY 20

...

...
WHEN

TIMER-END? Reg=rMonitoring
OR
AXARR 21

THEN
...

Programming

Programming235

3.11.1.2 Special Registers for Time Instructions3.11.1.2 Special Registers for Time Instructions3.11.1.2 Special Registers for Time Instructions3.11.1.2 Special Registers for Time Instructions

Special Registers "User Time Base in ms"Special Registers "User Time Base in ms"Special Registers "User Time Base in ms"Special Registers "User Time Base in ms"

In this register, the time incrementstime incrementstime incrementstime increments of the controller are
defined, namely in units of ms (milliseconds). After reset
this value is 100, that is, the time increments is 100 ms by
definition. Into this register, values from 1 to 255 can be
input, whereas values that are smaller than 10 should not
be input.

In case of the DELAY instruction, the respective number is
loaded into the time register of the task, which is then
waited to become zero. The following two program
sequences are to demonstrate this (Example NANO-B):

TASK 0 TASK 0
... ...
REGISTER_LOAD [2300 with 10] DELAY 10

WHEN ...
REGZERO 2300

THEN
...

These two program arts have got exactly the same
function. In some cases it may be useful, though, to use
a time register, as between loading the time register and
querying on zero still further instructions can be carried
out.

PROCESS-PLC

236 Programming

Note:Note:Note:Note:

Using time registers can also be quite tricky! Thus, it is very
dangerous and not to be recommended to directly load
the DELAY function, as well as the time register of the
task, into the very same task. This way, "infinite" delays
may result. For this reason, rather use START-TIMER and
TIMER-END? instructions.

Programming

Programming237

3.11.2 NOP3.11.2 NOP3.11.2 NOP3.11.2 NOP

The

NOP

instruction is only of importance for the operating system.

As NOP is considered to be a "real" instruction, it will be
processed in the program, which helps to have very short
deceleration times in programs implying difficult timing.

3.11.3 The Commentary Character3.11.3 The Commentary Character3.11.3 The Commentary Character3.11.3 The Commentary Character

The ";" (colon)";" (colon)";" (colon)";" (colon) actually is not an instruction, but it only
helps to add a commentary line to the program text.
Thus, more extensive commentaries can be written than
those that can be filled into the commentary column
behind an instruction.

As a mere commentary will follow, the entire line will be
eliminated by the controller compiler during translation of
the source program. Thus, neither memory space nor
program processing time will be needed in the controller.

PROCESS-PLC

238 Programming

3.11.4 Special Functions3.11.4 Special Functions3.11.4 Special Functions3.11.4 Special Functions

Three internal controller functions can be called up by
the

SPECIALFUNCTION

instruction:

Function 1: Initialise axisInitialise axisInitialise axisInitialise axis

Function 4: BCD -> HEX transferBCD -> HEX transferBCD -> HEX transferBCD -> HEX transfer

Function 5: HEX -> BCD transferHEX -> BCD transferHEX -> BCD transferHEX -> BCD transfer

The parameters p1 and p2 can be indirectly defined for
all functions.

Axis InitialisationAxis InitialisationAxis InitialisationAxis Initialisation

For axis initialisation use

SPECIALFUNCTION [#1, p1=<Par1>, p2=<Par2>]

This function is to serve initialisation of axis boards.
Register values are copied from one memory range to
another. This instruction has been described extensively in
Chapter 3.6.2 .

Special-Special-Special-Special-
functionsfunctionsfunctionsfunctions

only for PASE-Eonly for PASE-Eonly for PASE-Eonly for PASE-E
and DELTAand DELTAand DELTAand DELTA

IndirectIndirectIndirectIndirect
addressingaddressingaddressingaddressing
is possibleis possibleis possibleis possible

Programming

Programming239

BCD -> HEX TransferBCD -> HEX TransferBCD -> HEX TransferBCD -> HEX Transfer

The

SPECIALFUNCTION [#4, p1=<Par1> p2=<Par2>]

serves the transfer of binary coded decimal numbers
(BCD) into binary numbers.
This transfer can, for example be used for the location of
values that have been written by BCD switches, that are
connected to an input board.

The two parameters of this function are

Parameter 1 -> Source Register NumberSource Register NumberSource Register NumberSource Register Number

Parameter 2 -> Destination Register NumberDestination Register NumberDestination Register NumberDestination Register Number

The bits of a source register are interpreted as a BCD
number, then they are transferred into a binary number
and written into the destination register. Four bits of the
source register will make up a decimal place. Four
places can be dealt with as a maximum.

BCD number in the source register:

Bit 0 to 3 -> last decimal place ("unit places")

Bit 4 to 7 -> second but last decimal place
("tens places")

Bit 8 to 11 -> third but last decimal place
("hundreds places")

Bit 12 to 15-> fourth but last decimal place
("thousands places")

BCD switches,BCD switches,BCD switches,BCD switches,
for example,for example,for example,for example,

can becan becan becan be
ququququeeeeriedriedriedried

PROCESS-PLC

240 Programming

Example:Example:Example:Example:

Register 100 is to have the following value:
0101 1000 0011 0110 = 22582

but the value of the BCD number stored this way is
5 8 3 6 = 5836

The instruction

SPECIALFUNCTION [#4, p1=100, p2=101]

causes register 101 to have value 5836.

HEX -> BCD TransferHEX -> BCD TransferHEX -> BCD TransferHEX -> BCD Transfer

SPECIALFUNCTION [#5, p1=<Par1> p2=<Par2>]

serves the transfer of binary numbers into binary coded
decimal numbers (BCD). Thus it corresponds to the
reversed special function 4.

Parameter 1 -> source register number
(binary number)

Parameter 2 -> destination register number
(BCD number)

BCD-BCD-BCD-BCD-
controlledcontrolledcontrolledcontrolled

displays, fordisplays, fordisplays, fordisplays, for
example, canexample, canexample, canexample, can
be controlledbe controlledbe controlledbe controlled

this waythis waythis waythis way

Programming

Programming241

3.11.5 The LIMITS Instruction3.11.5 The LIMITS Instruction3.11.5 The LIMITS Instruction3.11.5 The LIMITS Instruction

A very helpful instruction saving program codes:

LIMITS [reg.no, lower limit, upper limit]

This instruction can be applied in many ways:

1. LIMITS after IF or ELSE

Here the value of the register specified by the LIMITS
instruction is checked on being in the interval which is
defined by an upper and lower limit. The result of this
operation is true (1)true (1)true (1)true (1) or false (0)false (0)false (0)false (0).

2. LIMITS after THEN or ELSE

Here the value of the register specified as well by the
LIMITS instruction is checked on being in the interval
which is defined by an upper and lower limit. The result of
this operation is the following, though:

a) The value is lower than the interval:The value is lower than the interval:The value is lower than the interval:The value is lower than the interval:
In this case this value is replaced by the value of
the lower limit.

b) The value is higher than the interval:The value is higher than the interval:The value is higher than the interval:The value is higher than the interval:
In this case this value is replaced by the value of
the upper limit.

c) The value is in between the limits of the interval:The value is in between the limits of the interval:The value is in between the limits of the interval:The value is in between the limits of the interval:
This value is kept.

Limits can also be defined by indirect or double indirect
addressing.

LIMITS in in in in
inputinputinputinput

conditionconditionconditioncondition

LIMITS in the in the in the in the
outputoutputoutputoutput

instructioninstructioninstructioninstruction

PROCESS-PLC

242 Programming

3.11.6 Word Processing3.11.6 Word Processing3.11.6 Word Processing3.11.6 Word Processing

In this chapter, the following instructions will be explained:

WAND

WOR

WXOR

With the help of these three instructions entire registers
can be logically connected with each other bit by bit.

These logic connection instructions can be applied in the
same way as the arithmetic operators + - * / .

They can be used in one and the same operation, yet
there are no differences in priority.

Following, the instructions will be explained with the help
of examples:

Programming

Programming243

WAND

1) REG 0
=
b010101010101010101010101
WAND
b001001001001001001001001

The first bit of the first number is connected by AND with
the first bit of the second number.
The second bit of the first number is connected by AND
with the second bit of the second number.
etc.

In WWWWord-by-word AND-connection, the resulting bit will only
be '1', where the corresponding bits of the first number
andandandand of the second number have been set (= 1).
By the AND-connection of a certain bit with '0', the result
bit is set to '0'; by the AND-connection with '1', the status
of the bit is taken over into the result.

The result of each connection is stored as the
corresponding bit in register REG 0, in order for value
b000001000001000001000001 = 266305 to be written
into REG 0.

2) REG 0
=
REG 1
WAND
h0000FF

In this attribution the eight bits of lowest value (h0000FF =
b000000000000000011111111) that have been written
into REG 1 are taken over into REG 0 just as they are.
The bits of higher value belonging to REG 0 are set to '0'.

Using 0 theUsing 0 theUsing 0 theUsing 0 the
bits are reset.bits are reset.bits are reset.bits are reset.

Using 1 theUsing 1 theUsing 1 theUsing 1 the
bits are kept.bits are kept.bits are kept.bits are kept.

PROCESS-PLC

244 Programming

WOR

1) REG 0
=
REG 1
WOR
b000000000000111100001111

In WWWWord-by-word OR-connection, the resulting bits are set
(=1), where the respective bits of the first number orororor the
bits of the second number orororor the bits of both numbers
are '1'.
In the OR-connection of a certain bit with '0' the status of
the bit is taken over into the result bit; by connection with
'1' the result is set to '1'.

The result, which has been stored in REG 0 is designed
as follows: REG 0 = bxxxxxxxxxxxx1111xxxx1111. x is to
define the bits, which are dependent on REG 1.

WXOR

1) REG 100
=
46398
WXOR
123098

In the WWWWord-by-word EXXXXclusive-OROROROR-connection those
result bits are set to '1', where the respective bits of the
two numbers have got different logic conditions. If the
conditions are the same, the result will be '0'.
When a certain bit is connected with '0' by an exclusive-
OR-connection, the status of this bit is taken over; in a
connection with '1', the inverse bit value is written into the
result bit.

Using 1 theUsing 1 theUsing 1 theUsing 1 the
bits are set.bits are set.bits are set.bits are set.
Using 0 theUsing 0 theUsing 0 theUsing 0 the

bits are keptbits are keptbits are keptbits are kept

The bits areThe bits areThe bits areThe bits are
inverted by 1.inverted by 1.inverted by 1.inverted by 1.

The bits areThe bits areThe bits areThe bits are
kept by 0.kept by 0.kept by 0.kept by 0.

Programming

Programming245

46398 --> 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 0
123098 --> 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 1 0
XOR ──
87524 <-- 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0

In register REG 100 value 87524 will stand in register REG
100 after the attribution.

2) REG 100
=
REG 100
WXOR
hFFFFFF

Every bit of REG 100 is inverted by this attribution.

PROCESS-PLC

246 Programming

3.12 Network Instructions3.12 Network Instructions3.12 Network Instructions3.12 Network Instructions

A network is a connection of several controllers, remote
I/Os or valve blocks. These can communicate with each
other, that is, register values can be transferred from one
unit to another one by the two following instructions. This
network is a "mono-master network". This means, that one
unit is the master (number 1), while the other units are the
slaves (number 2 ...). This number can be defined in a
register. Please note, that the two following instructions
may only be input in the program of the master unit.
Otherwise they will be considered as not defined.

The instructions

N-GET-REGISTER

N-SEND-REGISTER

serve taking register values from any controller into the
master-controller and sending register values from the
master-controller onto another controller.

Network operation by 50000-er numbersNetwork operation by 50000-er numbersNetwork operation by 50000-er numbersNetwork operation by 50000-er numbers ((((Chapter
3.12.3 Network Operation by 50000er Numbers)

Mono-master-Mono-master-Mono-master-Mono-master-
networknetworknetworknetwork

JETWay-RJETWay-RJETWay-RJETWay-R

126 slaves126 slaves126 slaves126 slaves
can becan becan becan be

connectedconnectedconnectedconnected

EasyEasyEasyEasy
networknetworknetworknetwork

access byaccess byaccess byaccess by
50000-er50000-er50000-er50000-er
nunununummmmbersbersbersbers

Programming

Programming247

3.12.1 Sending Register Values to Slave Controllers3.12.1 Sending Register Values to Slave Controllers3.12.1 Sending Register Values to Slave Controllers3.12.1 Sending Register Values to Slave Controllers

This is done by the following instruction:

N-SEND-REGISTER [To <network no.> from
reg.<SourceReg> to Reg.<DestinationReg>]

In this case, the number of the controller that is to be
addressed must stand in the place of network nonetwork nonetwork nonetwork no.... This is
the number of the slave controller, which is to be given
the register value.

Source Register NumberSource Register NumberSource Register NumberSource Register Number is to define the register which
must be read. This is a register belonging to the master
controller. The parameter can also be defined indirectly
(for example R10).

Destination Register NumberDestination Register NumberDestination Register NumberDestination Register Number is to define the slave
controller register, into which the value must be written.
This register number can also be addressed indirectly the
pointer register being in the master controller.master controller.master controller.master controller.

The "Network Timeout" special flag will indicate, whether
an error (transfer error or timeout) occurred in the last
transfer. For this reason, the flag should be checked after
each transfer. If the flag is set, an error must have
occurred, and data transfer can be repeated.

IndirectIndirectIndirectIndirect
addressingaddressingaddressingaddressing
is possibleis possibleis possibleis possible

Network errorsNetwork errorsNetwork errorsNetwork errors
are indicatedare indicatedare indicatedare indicated
by a specialby a specialby a specialby a special

flagflagflagflag

PROCESS-PLC

248 Programming

Example:Example:Example:Example:

FLAG 100
N-SEND REGISTER [To 2 from reg.100 to reg.200]

IF
FLAG fsNetwork-Timeout

THEN
GOTO 100

THEN
...

In this example the value of register 100 is sent from the
master controller to controller no. 2. If an error occurs, the
special flag "network timeout" will be set, otherwise it will
be reset; for this reason the program will return to label
100 to repeat the sending procedure. In this example,
sending of the register value will be repeated over and
over again, until the transfer has been carried out
successfully.

3.12.2 Getting Register Values from a Slave Controller3.12.2 Getting Register Values from a Slave Controller3.12.2 Getting Register Values from a Slave Controller3.12.2 Getting Register Values from a Slave Controller

This is done by the instruction

N-GET REGISTER [from <Net No>Reg.<SourceReg>, Reg
here=<DestinationReg>]

The parameters to be defined have got the following
meaning:

Network No.Network No.Network No.Network No.

is the network number of the slave controller out of which
a register is to be read.

Transfer errorsTransfer errorsTransfer errorsTransfer errors
are indicatedare indicatedare indicatedare indicated

by specialby specialby specialby special
flagflagflagflag

"network"network"network"network
timeout"timeout"timeout"timeout"

Programming

Programming249

Source Register NumberSource Register NumberSource Register NumberSource Register Number

is the number of the slave controller register which is to
be read (indirect addressing is possible).

Destination Register NumberDestination Register NumberDestination Register NumberDestination Register Number

is a register number of the "own" controller, into which the
value is to be written (indirect addressing is possible).

Remark:Remark:Remark:Remark:

In the case of indirect addressing the registers, into which
the source and destination register numbers have been
written, are always on the master controllermaster controllermaster controllermaster controller.

Here "Network-Timeout" will also be set in case of an error.

Examples:Examples:Examples:Examples:

1)
LABEL 100
N-GET-REGISTER [from 2Reg.100, Reg here=200]

IF
FLAG fsNetwork-Timeout

THEN
GOTO 100

THEN
...

Here register 100 is read by the slave controller of network
number 2 before being copied into register 200 of the
master controller. With the help of special flag "network
timeout" enquiry is made, whether an error has occurred.

IndirectIndirectIndirectIndirect
addressingaddressingaddressingaddressing
is possibleis possibleis possibleis possible

Spezial flagSpezial flagSpezial flagSpezial flag
"Network-"Network-"Network-"Network-

Timeout" is toTimeout" is toTimeout" is toTimeout" is to
report networkreport networkreport networkreport network

errorserrorserrorserrors

PROCESS-PLC

250 Programming

If this is the case, register 100 of the slave controller is
read again.

2) REGISTER_LOAD [100 with 1000]
LABEL 100

N-GET REGISTER [from 2Reg.R100, Reg here=R100]
IF

FLAG fsNetwork-Timeout
THEN
GOTO 100

THEN
REGINC 100

IF
REG 100
<
1030

THEN
GOTO 100

THEN

By this program a whole register range (registers 1000 to
1029) are copied by the slave controller of network
number 2 onto the master controller, as well as into
registers ranging from 1000 to 1029.

A "collective report" of whether a transfer error has ever
occurred, can be found in the special flag "Collective
Report of a Network Error", which will be set in case of an
error, yet will not be reset by the operating system.
Resetting can only be done from the user program.

Programming

Programming251

3.12.3 Network Operation by 50000er Numbers3.12.3 Network Operation by 50000er Numbers3.12.3 Network Operation by 50000er Numbers3.12.3 Network Operation by 50000er Numbers

3.12.3.1 Addressing the Registers3.12.3.1 Addressing the Registers3.12.3.1 Addressing the Registers3.12.3.1 Addressing the Registers

Access to control registers by a master controller only
differs from an internal REGISTER_LOAD instruction in
the parameter numbers. Apart from this number the
program sequences for access to an internal register
and a slave register are identical.

Register Number 00...99Register Number 00...99Register Number 00...99Register Number 00...99

The register number has got the following pattern:The register number has got the following pattern:The register number has got the following pattern:The register number has got the following pattern:

┌─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┘
│ │ │ │ │
│ │ │ └─┴═══ Register Number 00...99
│ │ │
│ │ │
│ └─┴────═══Network No. of the Slave 2..99
│
│
└──────────── Digit 5

With the help of these register numbers the master
controller can have access to a window of 100 registers
in the slave controller.

The sameThe sameThe sameThe same
access toaccess toaccess toaccess to

master andmaster andmaster andmaster and
slave rslave rslave rslave reeeegistersgistersgistersgisters

PROCESS-PLC

252 Programming

Example::::

Register 62 of the slave controller with the network
number 32 is addressed by the master controller by the
instruction

REGISTER_LOAD [100 with R(53262)]

If access to a register is to be made, the number of
which is greater than 99, a number offset value is to be
input into the special register "number offset register".
When the registers of the slave controller are accessed
by the master controller, this value is added to the
register number in the program of the master controller.

The instruction

REGISTER_LOAD [100 with R(53262)]

in the program of the master-controller plus a value of
200 in the special register "number offset register" of the
slave-controller of network number 32 has effective
access to register 262 of the slave controller.

Special Register "Register Number Offset"Special Register "Register Number Offset"Special Register "Register Number Offset"Special Register "Register Number Offset"

This value is added to the register number in the
program of the master controller. The sum shows the
number of the register, which, in the slave controller, is
really accessed by the master controller.

Value after reset: 0

By the numericBy the numericBy the numericBy the numeric
offset register,offset register,offset register,offset register,
"windows" for"windows" for"windows" for"windows" for
slave registerslave registerslave registerslave register

access are setaccess are setaccess are setaccess are set

Programming

Programming253

Note:Note:Note:Note:

By the N-SEND REGISTER instruction the "register
window" is set into the required range by the special
register "register number offset". Then, operations can be
made in this "window" with the help of the 50000er-
numbers.

PROCESS-PLC

254 Programming

3.12.3.3 Addressing of Inputs, Outputs and Flags3.12.3.3 Addressing of Inputs, Outputs and Flags3.12.3.3 Addressing of Inputs, Outputs and Flags3.12.3.3 Addressing of Inputs, Outputs and Flags

Addressing of InputsAddressing of InputsAddressing of InputsAddressing of Inputs

Access to inputs of the slave-controller by the master-
controller only differ from an internal master input
instruction in their parameter number. Apart from this
number, the program sequences for an access to a
master input and a slave input are identical.

The input number is designed according to theThe input number is designed according to theThe input number is designed according to theThe input number is designed according to the
following pattern:following pattern:following pattern:following pattern:

┌─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┘
│ │ │ │ │
│ │ │ └─┴═══ Input Number 1..8
│ │ │
│ │ │
│ └─┴────═══Slave Network No. 2..99
│
│
└─────────── Digit 5

The number value out of the corresponding number
offset register for inputs is added to the input number
defined in the input parameter. The resulting input will be
addressed.

Special Register "Input Number Offset":Special Register "Input Number Offset":Special Register "Input Number Offset":Special Register "Input Number Offset":

Number offset for inputs; the register is on the slave
controller.
This value is added to the input number, which is in the
program of the master-controller. The sum makes up the
number of the input in the slave controller, which is
actually accessed by the master controller.

The sameThe sameThe sameThe same
access toaccess toaccess toaccess to

master andmaster andmaster andmaster and
slaveslaveslaveslave

iiiinnnnputsputsputsputs

"Windows" for"Windows" for"Windows" for"Windows" for
the slave inputthe slave inputthe slave inputthe slave input
access are setaccess are setaccess are setaccess are set

with the helpwith the helpwith the helpwith the help
of the numberof the numberof the numberof the number
offset regoffset regoffset regoffset regiiiister!ster!ster!ster!

Programming

Programming255

Example:Example:Example:Example:

Input 108 in the slave controller of network number 5 is
addressed from the master-controller by the input

INPUT 50508

Before this,, value 100 must be written into special register
"input number offset" (on the slave controller).

PROCESS-PLC

256 Programming

Addressing the OutputsAddressing the OutputsAddressing the OutputsAddressing the Outputs

Access by the master controller to outputs of the slave
controller only differ from an internal master output
instruction in the parameter number. Besides this
number, the program sequences for access to both a
master and a slave output are identical.

The output number is made up according to theThe output number is made up according to theThe output number is made up according to theThe output number is made up according to the
following pattern:following pattern:following pattern:following pattern:

┌─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┘
│ │ │ │ │
│ │ │ └─┴═══ Output Number 1..8
│ │ │
│ │ │
│ └─┴────═══ Slave Network No. 2..99
│
│
└─────────── Digit 5

The number value of the number offset register for
outputs is added to the corresponding output number
that has been defined in the output parameter. The
resulting output will be accessed.

Special Register "Output Number Offset“:Special Register "Output Number Offset“:Special Register "Output Number Offset“:Special Register "Output Number Offset“:

Output number offset: the register is on the slave
controller.
This value will be added to the output number in the
program of the master controller. The sum shows the
number of the output, which, in the slave controller, is
really accessed by the master controller.

The sameThe sameThe sameThe same
access toaccess toaccess toaccess to

master andmaster andmaster andmaster and
slave ouslave ouslave ouslave outtttputsputsputsputs

"Windows" for"Windows" for"Windows" for"Windows" for
the slavethe slavethe slavethe slave

output accessoutput accessoutput accessoutput access
are set withare set withare set withare set with

the help of thethe help of thethe help of thethe help of the
number-offsetnumber-offsetnumber-offsetnumber-offset

regregregregiiiister!ster!ster!ster!

Programming

Programming257

Example:Example:Example:Example:

Output 108 in the slave-controller of network number 5 is
addressed by the instruction

OUTPUT 50508

of the master controller.

Before this, value 100 must be written into the special
register "Output Number Offset" (in the slave controller).

PROCESS-PLC

258 Programming

Addressing the FlagsAddressing the FlagsAddressing the FlagsAddressing the Flags

Access to flags of the slave-controller by a master
controller only differs from an internal master-flag
instruction in the parameter number. Apart from this
number, the program sequences for access to a master-
flag and a slave-flag are identical.

The flag number has got the following pattern:The flag number has got the following pattern:The flag number has got the following pattern:The flag number has got the following pattern:

┌─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┘
│ │ │ │ │
│ │ │ └─┴═══ Number of the flag 1...99
│ │ │
│ │ │
│ └─┴────═══ Slave Network No. 2..99
│
│
└─────────── Digit 5

The number value of the number offset register for
outputs is added to the corresponding output number
that has been defined in the output parameter. The
resulting output will be accessed.

Special Register "Flag Number Offset“:Special Register "Flag Number Offset“:Special Register "Flag Number Offset“:Special Register "Flag Number Offset“:

Flag number offset; the register is on the slave controller.
This value will be added to the output number in the
program of the master controller. The sum shows the
number of the output, which, in the slave controller, is
really accessed by the master controller.

The sameThe sameThe sameThe same
access toaccess toaccess toaccess to

master andmaster andmaster andmaster and
slave flagsslave flagsslave flagsslave flags

"Windows" for"Windows" for"Windows" for"Windows" for
the slavethe slavethe slavethe slave

output accessoutput accessoutput accessoutput access
are set withare set withare set withare set with

the help of thethe help of thethe help of thethe help of the
number-offsetnumber-offsetnumber-offsetnumber-offset

regregregregiiiister!ster!ster!ster!

Programming

Programming259

Example:Example:Example:Example:

Flag 154 in the slave controller of network number 12 is
accessed by the master controller with the instruction

FLAG 51254

Before this, value 100 must be written into the special
register "Flag Number Offset" (in the slave controller).

PROCESS-PLC

260 Programming

3.12.4 Special Registers / Flags for Network Operation3.12.4 Special Registers / Flags for Network Operation3.12.4 Special Registers / Flags for Network Operation3.12.4 Special Registers / Flags for Network Operation

Flag 2110Flag 2110Flag 2110Flag 2110

Errors in the latest network instruction are indicated (check
sum or timeout).

Flag 2111 "Collective Report of a Network Error"Flag 2111 "Collective Report of a Network Error"Flag 2111 "Collective Report of a Network Error"Flag 2111 "Collective Report of a Network Error"

Errors that have occurred at a network instruction since
reset of the controller (which is accumulating flag 2110).

Register "Network Number Network 1"Register "Network Number Network 1"Register "Network Number Network 1"Register "Network Number Network 1"

Network number network 1.

Register "Network Number Network 2"Register "Network Number Network 2"Register "Network Number Network 2"Register "Network Number Network 2"

Network number network 2.

Register "Network Reaction Time"Register "Network Reaction Time"Register "Network Reaction Time"Register "Network Reaction Time"

The network reaction time is defined in milliseconds. The
timing is started, when a network instruction is carried out,
and it ends, when the response of the other controller
has arrived via network (this is mostly dependent on the
load of the other controller). Any of these functions refers
to the master network of a controller - this is the network
of a controller to which this master belongs. A controller
can only be master of one network at one time as a
maximum.

Programming

Programming261

Register "Execution Time Network Instruction"Register "Execution Time Network Instruction"Register "Execution Time Network Instruction"Register "Execution Time Network Instruction"

The processing time of the network instruction carried out
last has been written into this register (in milliseconds). This
is the time written in the register "network reaction time"
plus the time it will take, until the response of the other
controller has been processed by the corresponding
program task of the own controller, and until this task is
continued (dependent on the load of the other and the
own controller). Any of these functions refers to the
master network of a controller - this is the controller
network to which these masters belong. A controller can
only be master of one network at one time as a
maximum.

Register "Timeout Network Access"Register "Timeout Network Access"Register "Timeout Network Access"Register "Timeout Network Access"

Timeout time in milliseconds. Presetting: 250. After this
time the network instruction will be terminated, as the
accessed controller has not answered (it might have
switched off).

Register "Number of Check Sum Errors inRegister "Number of Check Sum Errors inRegister "Number of Check Sum Errors inRegister "Number of Check Sum Errors in
Network Reception"Network Reception"Network Reception"Network Reception"

Check sum error. The content is increased by one. To
evaluate the quality of network transfer, this register can
be read from time to time.

PROCESS-PLC

262 Programming

4. Description of the Memory4. Description of the Memory4. Description of the Memory4. Description of the Memory

The memory that is available to the user of the control
system is divided into registers and flags. This chapter is to
inform about the design of the entire memory. Many
registers used by the operating system will also be
described, as they can be useful in some cases. Yet,
please be careful when special registers are to be
changed.

4.1 Basics on Registers and Flags4.1 Basics on Registers and Flags4.1 Basics on Registers and Flags4.1 Basics on Registers and Flags

4.1.1 Registers4.1.1 Registers4.1.1 Registers4.1.1 Registers

Registers are the memories of the controller, where all the
necessary numeric values are stored. The operator can
use part of these registers as well, namely to store values
or to use them for calculating. The registers can either be
loaded from the program, or with the help of SYMPAS by
transferring whole data blocks to the controller via PC This
can be helpful in many cases, as loading registers in a
more complex program can take lots of space.

A difference is made between integer registersinteger registersinteger registersinteger registers, floatingfloatingfloatingfloating
point registerspoint registerspoint registerspoint registers and special registersspecial registersspecial registersspecial registers. All registers are
marked by a number. Below, the three register types will
be explained:

This overviewThis overviewThis overviewThis overview
has been kepthas been kepthas been kepthas been kept

in as generalin as generalin as generalin as general
terms asterms asterms asterms as

possible andpossible andpossible andpossible and
hahahahassss

not beennot beennot beennot been
specified onspecified onspecified onspecified on
any certainany certainany certainany certain

cocococonnnntrollertrollertrollertroller

Registers areRegisters areRegisters areRegisters are
th memories ofth memories ofth memories ofth memories of
the controller,the controller,the controller,the controller,

in which thein which thein which thein which the
data are keptdata are keptdata are keptdata are kept

Programming

Programming263

Integer RegistersInteger RegistersInteger RegistersInteger Registers

These registers are 24 Bit wide registers in which an
integer numberinteger numberinteger numberinteger number between - 8388608 and 8388607- 8388608 and 8388607- 8388608 and 8388607- 8388608 and 8388607 has
been stored. The sign of the number is stored by the Bit of
highest value. The value of these registers can also be
defined as a binary (b) or a hexadecimal number (h
. . . .). For this, see the coding further below.

The register numbers can be taken from the respective
controller manuals. Here a general survey over the
PROCESS-PLC registers is to be given:

The Structure of a Register:The Structure of a Register:The Structure of a Register:The Structure of a Register:

In the 24th Bit the sign, in the other 23 Bits a number is
stored, which corresponds to the binary value of these 23
Bits:

If the sign bit is zero, this value will exactly be the same as
the register value.

If the sign bit is one, though, the number can be
calculated by adding this binary value to -8388608 (= -
h800000).

Register width:Register width:Register width:Register width:
24 Bit ->24 Bit ->24 Bit ->24 Bit ->

23 Bit plus sign23 Bit plus sign23 Bit plus sign23 Bit plus sign

The specificThe specificThe specificThe specific
registerregisterregisterregister

numbers cannumbers cannumbers cannumbers can
be taken frombe taken frombe taken frombe taken from
the respectivethe respectivethe respectivethe respective

manualmanualmanualmanual

PROCESS-PLC

264 Programming

Examples:Examples:Examples:Examples:

Binary Number (24 Bit): Hex Number Dec NumberBinary Number (24 Bit): Hex Number Dec NumberBinary Number (24 Bit): Hex Number Dec NumberBinary Number (24 Bit): Hex Number Dec Number

b000000000000000001101111 h00006F 111

b011111111111111111111111 h7FFFFF 8388607

b100000000000000000000000 h800000 -8388608

b111111111111111111111111 hFFFFFF -1

b100000000000000011010011 h8000D3 -8388397

Floating Point RegistersFloating Point RegistersFloating Point RegistersFloating Point Registers

These registers are 32 Bit wide and serve storing real
numbers, which are, generally spoken, any fractures in
the range of

- 10- 10- 10- 1015151515 to + 10 to + 10 to + 10 to + 1015151515

The amount of the smallest possible number is around
10-15.

The accuracy of calculating is around 7 significant
places, as only this amount of places can be stored in
32-Bit registers.

They serve detailed calculating, even of fractions. When
fractions are assigned to an integer register, the decimal
places will always get lost. If, for example, value -2,5
(result of a division) is loaded into an integer register,
value -2 will be written there.

Another important function of floating point registers is the
calculation of expressions, where results greater than 8
millions must be expected. In an integer register this can

There is noThere is noThere is noThere is no
floating pointfloating pointfloating pointfloating point

register inregister inregister inregister in
NANO-ANANO-ANANO-ANANO-A

Programming

Programming265

lead to actually undefined values. The example below is
to illustrate this problem:

The register numbers can be taken from the respective
controller manuals. Below, a general overview over the
PROCESS-PLC registers is to be given.

Example:Example:Example:Example: Simple assignment

REG 1
=
2
*
5'000'000

When value 10'000'000 is assigned to the integer register
1, there will be the following result:

The number, which is presented as a binary number is
loaded into the register. Yet, as the number is longer than
the register, Bits from the beginning will get lost, or, to put
it differently, Bit 23 (sign) is occupied. The result will be the
following:

10'000'000 = h989680
= b1001'1000'1001'0110'1000'0000

-> Reg 1 = -6'777'216

Special RegisterSpecial RegisterSpecial RegisterSpecial Register

Mainly, there are two kinds of special registers: One kind is
placed on intelligent expansion modules to store
parameters or status information of these modules (these
will be extensively described in the respective controller
manuals in context with the specific modules). Further,

PROCESS-PLC

266 Programming

there are registers which are used by the operating
system of the controller.

The numbers of the special registers can be taken from
the respective controller manuals. Below, a general
survey will be given on the registers of the PROCESS-PLC.

Registers Combining Flags:Registers Combining Flags:Registers Combining Flags:Registers Combining Flags:

The special register numbers combining flags can be
taken from the respective controller manuals. Below,
NANO-B is used as an example. Flags 0 to 255 are
combined in registers 2600 to 2610.

┌──────────────┬───────────────────────────────┐
│ Reg 2600 │ Flags 0 to 23 │
├──────────────┼───────────────────────────────┤
│ Reg 2601 │ Flags 24 to 47 │
├──────────────┼───────────────────────────────┤
│ Reg 2602 │ Flags 48 to 63 │
├──────────────┼───────────────────────────────┤
│ Reg 2603 │ Flags 64 to 87 │
├──────────────┼───────────────────────────────┤
│ . │ . │
│ . │ . │
│ . │ . │
├──────────────┼───────────────────────────────┤
│ Reg 2610 │ Flags 240 to 255 *) │
└──────────────┴───────────────────────────────┘

*) Register 2610:

As all registers, register 2610 consists of 24 Bit. In only theIn only theIn only theIn only the
first 16 Bits of these, flags 240 to 255 are combined.first 16 Bits of these, flags 240 to 255 are combined.first 16 Bits of these, flags 240 to 255 are combined.first 16 Bits of these, flags 240 to 255 are combined.

Please bePlease bePlease bePlease be
careful whencareful whencareful whencareful when
using specialusing specialusing specialusing special

registersregistersregistersregisters

ExemplaryExemplaryExemplaryExemplary
combining iscombining iscombining iscombining is
illustrated byillustrated byillustrated byillustrated by

NANO-BNANO-BNANO-BNANO-B
numberingnumberingnumberingnumbering

Programming

Programming267

Flag-Register combination: Examples of registers 0, 1,2

Register 2600 - Flags 0 to 23:

2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 Bit
3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 Number
│ │
2 Flag
7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 5 5 5 5 Number
9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

The bit- respectively flag numbers must be read from top to
bottom.

Register 2601 - Flags 24 to 47:

2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 Bit
3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 Number
│ │
3 3 3 3 2 Flag
0 0 0 0 9 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 Number
3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

The bit- respectively flag numbers must be read from top to
bottom.

Register 2602 - Flags 48 to 63:

2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 Bit
3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 Number
│ │
3 Flag
2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 Number
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4

The bit- respectively flag numbers must be read from top to
bottom.

PROCESS-PLC

268 Programming

Registers Combining Inputs or OutputsRegisters Combining Inputs or OutputsRegisters Combining Inputs or OutputsRegisters Combining Inputs or Outputs

In various controller registers, 8, 16 or 24 inputs8, 16 or 24 inputs8, 16 or 24 inputs8, 16 or 24 inputs have
been combined in one register. The same applies to
digital outputsoutputsoutputsoutputs.....

The numbers of special registers overlapping with inputs
or outputs can be taken from the respective controller
manuals. Please find an illustration using DELTA below.

These 8 inputs are written into Bits 0 to 7; all the other Bits
(8 bis 23) are 0. This means there is a value range for
these registers from 0 to 255. The 32 registers from32 registers from32 registers from32 registers from
62464 to 6249562464 to 6249562464 to 6249562464 to 62495 have got 8 inputs each:

RegNoRegNoRegNoRegNo InputsInputsInputsInputs RegNoRegNoRegNoRegNo InputsInputsInputsInputs
62464
62465
62466
62467
62468
62469
62470
62471
62472
62473
62474
62475
62476
62477
62478
62479

101 - 108
109 - 116
117 - 124
125 - 132
133 - 140
141 - 148
149 - 156
157 - 164
201 - 208
209 - 216
217 - 224
225 - 232
233 - 240
241 - 248
249 - 256
257 - 264

62480
62481
62482
62483
62484
62485
62486
62487
62488
62489
62490
62491
62492
62493
62494
62495

301 - 308
309 - 316
317 - 324
325 - 332
333 - 340
341 - 348
349 - 356
357 - 364
401 - 408
409 - 416
417 - 424
425 - 432
433 - 440
441 - 448
449 - 456
457 - 464

Easy access toEasy access toEasy access toEasy access to
several inputsseveral inputsseveral inputsseveral inputs

or outputsor outputsor outputsor outputs
combined incombined incombined incombined in

registersregistersregistersregisters

32 registers32 registers32 registers32 registers
of 8 inputsof 8 inputsof 8 inputsof 8 inputs

eacheacheacheach

ExemplaryExemplaryExemplaryExemplary
numbering:numbering:numbering:numbering:

DELTADELTADELTADELTA

Programming

Programming269

These 16 inputs are written into Bits 0 to 15, all the other
bits (16 to 23) are 0. This makes a value range from 0 to
65535 for these registers. The 32 registers from 62528 to32 registers from 62528 to32 registers from 62528 to32 registers from 62528 to
62559625596255962559 correspond to 16 inputs each:

RegNoRegNoRegNoRegNo InputsInputsInputsInputs RegNoRegNoRegNoRegNo InputsInputsInputsInputs
62528
62529
62530
62531
62532
62533
62534
62535
62536
62537
62538
62539
62540
62541
62542
62543

101 - 116
109 - 124
117 - 132
125 - 140
133 - 148
141 - 156
149 - 164
157 - 164
201 - 216
209 - 224
217 - 232
225 - 240
233 - 248
241 - 256
249 - 264
257 - 264

62544
62545
62546
62547
62548
62549
62550
62551
62552
62553
62554
62555
62556
62557
62558
62559

301 - 316
309 - 324
317 - 332
325 - 340
333 - 348
341 - 356
349 - 364
357 - 364
401 - 416
409 - 424
417 - 432
425 - 440
433 - 448
441 - 456
449 - 464
457 - 464

32 registers32 registers32 registers32 registers
of 16of 16of 16of 16

inputs eachinputs eachinputs eachinputs each

ExemplaryExemplaryExemplaryExemplary
numberingnumberingnumberingnumbering

DELTADELTADELTADELTA

PROCESS-PLC

270 Programming

These 24 inputs are written into Bits 0 to 15, all the other
bits (16 to 23) are 0. The sign of the resulting integer value
is determined by Bit 23, which always corresponds to the
input of the highest number. The value range of these
registers equals the value range of all integer registers,
this is, from -8388608 to 8388607. The 32 registers from32 registers from32 registers from32 registers from
62592 to 6262362592 to 6262362592 to 6262362592 to 62623 correspond to 24 inputs each:

RegNoRegNoRegNoRegNo InputsInputsInputsInputs RegNoRegNoRegNoRegNo InputsInputsInputsInputs
62592
62593
62594
62595
62596
62597
62598
62599
62600
62601
62602
62603
62604
62605
62606
62607

101 - 124
109 - 132
117 - 140
125 - 148
133 - 156
141 - 164
149 - 164
157 - 164
201 - 224
209 - 232
217 - 240
225 - 248
233 - 256
241 - 264
249 - 264
257 - 264

62608
62609
62610
62611
62612
62613
62614
62615
62616
62617
62618
62619
62620
62621
62622
62623

301 - 324
309 - 332
317 - 340
325 - 348
333 - 356
341 - 364
349 - 364
357 - 364
401 - 424
409 - 432
417 - 440
425 - 448
433 - 456
441 - 464
449 - 464
457 - 464

Examples:Examples:Examples:Examples:

1)

REGISTER_LOAD [62528 with 255]

Here, value 255 is loaded into the register corresponding
to inputs IN 101 to IN 116. This way, the bits of lowest
value are set, while the other ones are cleared. In
consequence, inputs IN 101 to IN 108 are set (this is,
active), while inputs IN 109 to IN 116 are cleared.

32 registers32 registers32 registers32 registers
of 24 inputsof 24 inputsof 24 inputsof 24 inputs

eacheacheacheach

ExemplaryExemplaryExemplaryExemplary
numberingnumberingnumberingnumbering

DELTADELTADELTADELTA

Programming

Programming271

2)

These registers can also be very useful, in connection with
the register instructions WAND, WOR and WXOR.

REG 62784
=
REG 62784
WAND
b000000001010101010101010

This assignment causes all odd-numbered outputs of
OUT 101 to OUT 116 (OUT 101, OUT 103, OUT 105
etc.) to be blinded out, respectively cleared. The other
outputs will be kept as they are.

Easy maskingEasy maskingEasy maskingEasy masking
of inputs andof inputs andof inputs andof inputs and

outputsoutputsoutputsoutputs

PROCESS-PLC

272 Programming

4.1.2 Flags4.1.2 Flags4.1.2 Flags4.1.2 Flags

Flags are actually one-bit registers; that is, values 1 or 0
can be stored in them. The flags can be used for
marking certain conditions. Thus, very easily
programmable timing of various tasks can be achieved.
For flsgs, a difference will be made between special and
"normal" flags. The special flags are used by the
operating system to store one status each, for example
pressing a key of the input keyboard, error reports, etc.

All flags can be changed by flag instructions - they can
be set, cleared or just queried. A detailed description of
those flag instructions can be found in Chapter 3.6.5
Flags and Flag Instructions.

Special FlagsSpecial FlagsSpecial FlagsSpecial Flags

The special flags are used by the operating system to
indicate certain conditions, or for function control.
The numbers of special flags can be taken from the
respective controller manuals, where a general overview
over registers and flags of the PROCESS-PLC has been
given.

Flags have gotFlags have gotFlags have gotFlags have got
value 1 or 0value 1 or 0value 1 or 0value 1 or 0

Please bePlease bePlease bePlease be
careful whencareful whencareful whencareful when
dealing withdealing withdealing withdealing with

special flags!special flags!special flags!special flags!

Programming

Programming273

5. Realtime Clock5. Realtime Clock5. Realtime Clock5. Realtime Clock

5.1 Overview, Function5.1 Overview, Function5.1 Overview, Function5.1 Overview, Function

A realtime clock has been integrated into various
PROCESS-PLCs, which is battery buffered independently
from the RAM store.

The register numbers used as an example here refer to
the DELTA.

There are two register sets of 8 registers each. Register set
1 (62920 to 62927) can be written into and read. By
these register numbers, writing access is directly made
into the realtime clock module (setting of the time),
reading access is directly made out of the time module.

Besides that, there is register set 2 (62912 to 62919). This
second register set has got the following meaning: If, by
the program, a certain time is waited for, change of the
operands (time, ...) during the comparison operation
must be prevented. For this reason, all realtime data are
copied into the registers of register set 2 at each reading
access to register set 1. There, they will be available
without having been changed, until another reading
access to a register of set 1 is made (see exemplary
program).

For setting the clock the values are written into register set
2 and then completely transferred to the realtime clock
by writing into one of the registers of set 1.

The realtimeThe realtimeThe realtimeThe realtime
clock will beclock will beclock will beclock will be

explained byexplained byexplained byexplained by
the examplethe examplethe examplethe example

of DELTAof DELTAof DELTAof DELTA
registerregisterregisterregister

numbernumbernumbernumberssss

PROCESS-PLC

274 Programming

5.2 Register Description5.2 Register Description5.2 Register Description5.2 Register Description

Register set 1 Register set 2 Data Range
write/read read/write
direct buffer

62920 62912 seconds 0-59
62921 62913 minutes 0-59
62922 62914 hours 0-23
62923 62915 12/24h format 0,128
62924 62916 day of the week 1-7
62925 62917 day (date) 1-31
62926 62918 month 1-12
62927 62919 year 0-99

The following special function has been hidden in register
62924: The content of this register is "Day of the Week"
1=Sunday, 2=Monday, 3=Tuesday, etc.

In order to display, respectively print, the time in the usual
way, the value range of special register 61454614546145461454 has been
expanded. If this register has got value 2, the sign place
is suppressed in a DISPLAY_REG instruction (see
exemplary program).

Programming

Programming275

5.3 Realtime Clock: An Exemplary Program5.3 Realtime Clock: An Exemplary Program5.3 Realtime Clock: An Exemplary Program5.3 Realtime Clock: An Exemplary Program

With the help of a battery buffered register set access
can be made on the realtime clock functions.

Register DescriptionRegister DescriptionRegister DescriptionRegister Description

Register Set: Realtime ClockRegister Set: Realtime ClockRegister Set: Realtime ClockRegister Set: Realtime Clock
2911 .. 29172911 .. 29172911 .. 29172911 .. 2917

RegisterRegisterRegisterRegister FunctionFunctionFunctionFunction
2911 Seconds
2912 Minutes
2913 Hours
2914 Day of the Week
2915 Day
2916 Month
2917 Year

An exemplaryAn exemplaryAn exemplaryAn exemplary
illustration ofillustration ofillustration ofillustration of
the realtimethe realtimethe realtimethe realtime
clock will beclock will beclock will beclock will be

given here bygiven here bygiven here bygiven here by
the NANOthe NANOthe NANOthe NANO

registerregisterregisterregister
nunununummmmbersbersbersbers

PROCESS-PLC

276 Programming

Exemplary Program: Realtime ClockExemplary Program: Realtime ClockExemplary Program: Realtime ClockExemplary Program: Realtime Clock

In the following exemplary program, the data of the
realtime clock will be presented on the user interface.
The following trick has been applied to get leading zeros,
when minutes and seconds are displayed:
In flush left number display with the help of register 8205,
it can be determined how many places are to be
displayed. If less places are permitted than there are
significant places in the number, leadingleadingleadingleading places will be
omitted.
This fact is made use of in the program by adding value
100 to seconds and minutes and not displaying the
leading 1 afterwards.

0: TASK 0 ---
1: ;
2: REGISTER_LOAD [2816 with 1] ;no sign
3: REGISTER LOAD [2812 with 3] ;2-place numbers
4: DISPLAY_TEXT [#0, cp=1, "_The time is now:"]
5: ;
6: LABEL 100
7: SUBROUTINE 900
8: DELAY 5
9: GOTO 100
10: ;
11: LABEL 900 ;-> DISPLAY
12: DISPLAY_TEXT [#0, cp=27, ". .19 , : :"]
13 DISPLAY_REG [#0, cp=25, Reg=2915] ;Day
14: DISPLAY_REG [#0, cp=28, Reg=2916] ;Month
15: DISPLAY_REG [#0, cp=33, Reg=2917] ;Year
16: ;
17: ;------- Time Display -------
18: ;
19: DISPLAY_REG [#0, cp=36, Reg=2913] ;hour
20: REG 900 ;TRICK, to
21: = ;display
22: REG 2912 ;tens place,
23: + ;even if it has
24: 100 ;got value zero
25: DISPLAY_REG [#0, cp=39, Reg=900] ;Minute
26: REG 900 ;TRICK, to
27: = ;display
28: REG 2911 ;tens place,
29: + ;even if it has
30: 100 ;got value zero
31: DISPLAY_REG [#0, cp=42, Reg=900] ;second
32: RETURN

Programming

Programming277

6. Demonstrating Example: Handling-System6. Demonstrating Example: Handling-System6. Demonstrating Example: Handling-System6. Demonstrating Example: Handling-System

6.1 Problem Description6.1 Problem Description6.1 Problem Description6.1 Problem Description

As an example, the controller program for a two axis
machine has been explained below according to the
following figure:

The vertical axis is moved downward by setting output
107 and upward again by resetting (hydraulic cylinder).
Inputs 108 and 107 are active, when the basic position

PROCESS-PLC

278 Programming

(IN 108), respectively the working position (IN 107) of the
vertical cylinder have been reached.
The horizontal cylinder is a servo-NC axis. The gripper is
opened, respectively. closed, with the help of output 2.

Certain parts have to be taken, one after the other, from
the basic position to three different depositing positions,
which are free programmable by the user in teach-in
mode; in manual mode the required position is driven to
and stored by pressing a key on the display module.
Besides the automatic mode all motions are to be
carried out by hand as well.
Further, the process will be supported by interactive input
and output on the user interface.

The following keys on the user interface (LCD9, LCD 10)
can be used for process control:

Key: Function:
F1 Automatic mode ON, manual mode OFF

F2 Gripper OPEN/CLOSED

F7 Manual mode ON, automatic mode OFF

F8 Teach-In; storing the basic position and the
three stacker positions

<- Manual mode "backwards"

-> Manual mode "forward"

The program is divided into three main tasks. On the
following pages an extensive overview over the structure
of the three tasks, over program listing and symbol listing
is to be given. Detailed comments are to explain the
program structure.

Programming

Programming279

6.2 Flow Charts of the Three Tasks6.2 Flow Charts of the Three Tasks6.2 Flow Charts of the Three Tasks6.2 Flow Charts of the Three Tasks

6.2.1 6.2.1 6.2.1 6.2.1 TASK 0 - - - - Control TaskControl TaskControl TaskControl Task

PROCESS-PLC

280 Programming

6.2.2 6.2.2 6.2.2 6.2.2 TASK 1 - - - - Automatic TaskAutomatic TaskAutomatic TaskAutomatic Task

Programming

Programming281

6.2.3 6.2.3 6.2.3 6.2.3 TASK 2 - - - - Display TaskDisplay TaskDisplay TaskDisplay Task

PROCESS-PLC

282 Programming

6.3 Program Listing6.3 Program Listing6.3 Program Listing6.3 Program Listing

NANO-B - Program Listing page 1

JETTER PROCESS-PLC NANO-B

Version# : 1

0: TASK tInitialisation
1: ; ***************************************
2: ; TASK tInitialisation
3: ;
4: ; Initializes controller, carries out
5: ; reference run and scans the function keys.
6: ;
7: ; ***************************************
8: ;
9: THEN
10: DELAY 2 ;Wait 2/10 sec!
11: COPY [n=4, from Start ramp to Start_Offset]
12: ; ----------------------
13: ; Fix registers for start and stop ramp,
14: ; destination window range and offset are
15: ; set.
16: ; ----------------------
17: -FLAG fAutomatic ;manual mode
18: -FLAG fCycleisWorking ;no cycle is working
19: -FLAG fAutoLED ;switch off auto-LED
20: FLAG fManualLED ;switch on manual LED
21: REGISTER_LOAD [rCommandreg with 3] ;set reference point
22: OUT oRelay ;switch relay on
23: REGISTER_LOAD [rSlaveConfig with 3] ;activate servo axis
24: REGISTER_LOAD [rCycleCounter with 1];set cycle counter=1
25: ;
26: ; * * *
27: ; After switching on the cycle counter is
28: ; set to "1", so the machine starts in
29: ; automatic mode with the first position
30: ; for the workpiece put off.
31: ; * * *
32: ;
33: ; ---------------------
34: ; ---------------------
35: ; Loop function key scanning
36: ; ---------------------
37: ;
38: LABEL lFctscan
39: ;
40: ; ---------------------
41: ; Scanning display keys F1 and F7.
42: ; (Automatic/manual mode switching)
43: ; ---------------------
44: ;

Programming

Programming283

45: IF
46: FLAG fKey_F1 ;F1 key pushed?
47: THEN
48: FLAG fAutomatic ;switch on automatic
49: FLAG fAutoLED ;activate auto LED
50: -FLAG fManualLED ;deactivate manual LED
51: IF
52: FLAG fKey_F7 ;F7 key pushed?
53: THEN
54: -FLAG fAutomatic ;switch off automatic
55: -FLAG fAutoLED ;deactivate auto LED
56: FLAG fManualLED ;activate manual LED
57: ;
58: ; ---------------------
59: ; Scanning cursor keys ¬ and ® for axis
60: ; motion in manual mode
61: ; ---------------------
62: ;
63: IF
64: ; ** The following three conditions are **
65: ; ** logically AND-linked. **
66: ;
67: FLAG fKeyBackwards ;<- key pushed?
68: -FLAG fAutomatic ;automatic switched

;off?
69: -FLAG fCycleisWorking ;automatic cycle

;ended?
70: THEN
71: CALL ManualBackwards ;* manual backwards *
72: IF
73: ; ** Following three conditions are **
74: ; ** logically AND linked. **
75: ;
76: FLAG fKeyForward ;-> key pushed?
77: -FLAG fAutomatic ; automatic switched

;off?
78: -FLAG fCycleIsWorking ;automatic cycle

;ended?
79: THEN
80: CALL ManualForwards ;* manual forwards *
81: ;
82: ; ---------------------
83: ; Scanning of F2 key (open/close gripper)
84: ;
85: ; ---------------------
86: ;
87: IF
88: ; ** The following three conditions are **
89: ; ** logically AND linked **
90: ;
91: FLAG fKey_F2 ;F2 key pushed?
92: -FLAG fAutomatic ;automatic switched

;off?
93: -FLAG fCycleisWorking ;automatic cycle

;ended?
94: THEN
95: CALL Gripper ;* Gripper OPEN/CLOSED *
96: ;
97: ; ---------------------
98: ; Scanning F8 key (Teach-In)
99: ; ---------------------
100: ;
101: IF
102: ; ** The following three conditions are **
103: ; ** logically AND-linked **
104: ;
105: FLAG fKey_F8 ;F8 key pushed?
106: -FLAG fautomatic ;automatic switched

;off?
107: -FLAG fCycleIsWorking ;automatic cycle

;ended?
108: THEN
109: CALL Teach_In ;*Teach-In put-off

;pos*

PROCESS-PLC

284 Programming

110: ;
111: THEN ;repeat function key

;scanning
112: GOTO Fctscan ;(end of loop)
113: ;
114: ; *** End of function key scanning! ***
115: ; *** (End of Loop) ***
116: ; ---------------------
117: ; ---------------------
118: ;
119: ;
120: TASK tAutomaticCycle
121: ; **********************************
122: ; TASK tAutomaticCycle
123: ;
124: ; Automatic cycle:
125: ; the workpieces are put down

; sequentially
126: ; at the put-down positions 1 to 3.
127: ; ***************************************
128: ;
129: WHEN
130: FLAG fAutomatic ;Automatic mode

;switched on?
131: ; * * *
132: ; The switching on procedure automatic
133: ; ON/OFF is programmed in TASK
134: ; "Initialisation" (0).
135: ; * * *
136: THEN
137: ;
138: ; -------------------------
139: ; Drive to home position
140: ; -------------------------
141: ;
142: FLAG fCycleIsWorking ;automatic cycle

;starts
143: ; * * *
144: ; This flag is reset at the end of this
145: ; task, which is the end of the automatic cycle.
146: ;
147: ; If the user switches off the automatic
148: ; during and working automatic cycle,
149: ; the cycle is operated until its end,
150: ; before manual operations can be started.
151: ;
152: ; (This flag is scanned in the TASK "Ini-
153: ; tialisation" during the scanning of the
154: ; function keys several times!)
155: ; * * *
156: -OUT oDriveVertical ;drive vertical

;cylinder
157: -OUT oGripperOpenClose ;upwards and open

;gripper
158: NOP ;(home position!)
159: NOP ;
160: WHEN
161: IN iHomePosition ;vertical cylinder

;above?
162: THEN
163: ; * * *
164: ; Drive axis with automatic speed to
165: ; home position!
166: ; * * *
167: POS [axis=1, pos=R(Homepos), v=R(SpeedAutomatic)]
168: WHEN ;Horizontal axis

;reached
169: AXARR axis=1 ;home position?
170: THEN
171: ;
172: ; -----------------
173: ; Pick up workpiece at home position
174: ; -----------------

Programming

Programming285

175: ;
176: ; * * *
177: ; Drive the vertical cylinder
178: ; downwards!
179: ; * * *
180: OUT oDriveVertical ;cylinder downwards
181: WHEN
182: IN iWorkingPosition ;vertical cylinder

;down?
183: THEN
184: OUT oGripperOpenClose ;close gripper
185: DELAY 5 ;wait 0.5 seconds
186: -OUT oDriveVertical ;drive vertical axis
187: NOP ;upwards!
188: WHEN
189: IN iHomePosition ;vertical cylinder

;above?
190: THEN
191: ;
192: ; -----------------------
193: ; Drive to put-off position, which cor-
194: ; responds to the register "CycleCounter".
195: ;
196: ; -----------------------
197: ;
198: ; * * *
199: ; With the help of the put-off position number
200: ; (content of register "CycleCounter") the
201: ; register number is calculated, in which
202: ; the nominal position is stored.
203: ;
204: ; * * *
205: ;
206: REG rPositionReg ;Calculation of

;register
207: = ;number which contains
208: REG rCycleCounter ;the nominal position
209: + ;of the corres. put

;down pos.
210: RegrOffset_1
211: ;
212: ; * * *
213: ; Drive horizontal axis to put-off position
214: ; with the number, which is stored in re-
215: ; gister "CycleCounter".
216: ; * * *
217: ;
218: POS [axis=1, pos=RR(PositionReg), v=R(SpeedAutomatic)]
219: WHEN
220: AXARR axis=1 ;axis reached put off
221: NOP ;position?
222: THEN
223: ;
224: ; -----------------------
225: ; Put off workpiece at the actual put-off
226: ; position.
227: ; -----------------------
228: ;
229: ; * * *
230: ; Drive vertical cylinder downwards!
231: ;
232: ; * * *
233: OUT oDriveVertical ;cylinder downwards
234: WHEN
235: IN iWorkingPosition ;vertical cylinder

;down?
236: THEN
237: -OUT oGripperOpenClose ;open gripper
238: DELAY 5 ;wait 0.5 seconds
239: -OUT oDriveVertical ;drive vertical

;cylinder

PROCESS-PLC

286 Programming

240: NOP ;upwards
241: WHEN
242: IN iHomePosition ;vertical cylinder

;above?
243: THEN
244: ;
245: ; -----------------------
246: ; Drive back to home position
247: ; -----------------------
248: ;
249: ; * * *
250: ; Drive back horizontal axis to home
251: ; position
252: ; * * *
253: ;
254: POS [axis=1, pos=R(HomePos), v=R(SpeedAutomatic)]
255: WHEN
256: AXARR axis=1 ;axis reached home
257: NOP ;position?
258: THEN
259: ;
260: ; -----------------------
261: ; Prepare next cycle
262: ; -----------------------
263: ;
264: ; * * *
265: ; The sequence of the three put-off positions,
266: ; which is realized during automatic mode
267: ; is: 1-2-3-1-2-3-1-....
268: ; The following instructions secures, that
269: ; the value of the register "CycleCounter"
270: ; represents this sequence of put-off pos.
271: ; * * *
272: ;
273: IF
274: REG rCycleCounter ;the third put-off

;position
275: < ;of the cycle was

;served?
276: 3 ;
277: NOP ;
278: THEN
279: REGINC CycleCounter ;increment cycle counter
280: NOP ;by one!
281: ELSE
282: REGISTER_LOAD [CycleCounter with 1] ;repeat from the

;beginning
283: NOP ;
284: THEN
285: ;
286: ; -----------------------
287: ; End of cycle
288: ; -----------------------
289: FLAG fCycleIsWorking
290: ; * * *
291: ; The meaning of this flag is described
292: ; at the beginning of this task (TASK
293: ; "AutomaticCycle")
294: ; * * *
295: GOTO AutomaticCycle ;repeat from the beginning
296: ;
297: ;
298: TASK tDisplay
299: ; **************************************
300: ; TASK Display
301: ;
302: ; Displays the operation of automatic
303: ; or manual mode and the nominal and
304: ; actual position additionally.

Programming

Programming287

305: ;
306: ; **************************************
307: ;
308: IF
309: FLAG fAutomatic ;automatic selected?
310: THEN
311: ;
312: ; ----------------
313: ; If automatic is selected the LCD
314: ; displays "AUTOMATIC".
315: ;
316: ; $ = erases up to end of line!
317: ; ----------------
318: ;
319: DISPLAY_TEXT [#0, cp=1, "AUTOMATIC$ "]
320: ELSE
321: ;
322: ; ------------------
323: ; If manual mode is selected the LCD
324: ; displays "MANUAL".
325: ;
326: ; $ = erases rest of the first line!
327: ; ------------------
328: ;
329: DISPLAY_TEXT [#0, cp=1, "MANUAL$ "]
330: THEN
331: ;
332: ; ------------------
333: ; Both cases display the values
334: ; of the nominal and actual position
335: ; in the second line.
336: ; ------------------
337: ;
338: DISPLAY_TEXT [#0, cp=25, "NP: "]
339: DISPLAY_REG [#0, cp=28, reg=NominalPosition]
340: DISPLAY_TEXT [#0, cp=37, "AP: "]
341: DISPLAY_REG [#0, cp=41, reg=ActualPosition]
342: ;
343: ; ------------------
344: ; Additionally there is a delay of 0.1 se-
345: ; conds inserted. Without this delay the
346: ; this task would consume to much CPU time,
347: ; because it would refresh the display content
348: ; steadily. This capacities would not be
349: ; available for the other tasks.
350: ;
351: ;
352: ; ------------------
353: ;
354: DELAY 1
355: GOTO Display
356: ;
357: ;
358: ; ***************************************
359: ; S U B R O U T I N E S
360: ; ***************************************
361: ;
362: LABEL lManualBackwards
363: ; ---------------------
364: ; CALL ManualBackwards
365: ;
366: ; In manual mode the horizontal axis is
367: ; moved backwards, until the key <-
368: ; is released.
369: ; ---------------------

PROCESS-PLC

288 Programming

370: ;
371: THEN
372: ;
373: ; * * *
374: ; Drive backwards with manual
375: ; speed!
376: ; * * *
377: ;
378: POS [axis=1, pos=Backwards, v=R(SpeedManual)]
379: WHEN
380: -FLAG fKeyBackwards ;key <- released?
381: THEN
382: AXARR axis=1 ;stop axis
383: RETURN
384: ;
385: ;
386: LABEL lManualForwards
387: ; ---------------------
388: ; CALL ManualForwards
389: ;
390: ; In manual mode the horizontal axis is
391: ; moved forward until the -> key
392: ; is released.
393: ; ---------------------
394: ;
395: THEN
396: ;
397: ; * * *
398: ; Drive forward with manual
399: ; speed!
400: ; * * *
401: ;
402: POS [axis=1, pos=Forward, v=R(SpeedManual)]
403: WHEN
404: -FLAG fKeyForwards ;key <- released?
405: THEN
406: AXARR axis=1 ;stop axis
407: RETURN
408: ;
409: ;
410: LABEL lGripper
411: ; ---------------------
412: ; CALL Gripper
413: ;
414: ; The gripper is closed respectively
415: ; opened by the subroutine.
416: ; ---------------------
417: ;
418: ; * * *
419: ; Because this manual routine displays
420: ; the opening or closing of the gripper
421: ; on the LCD display, the task "Display"
422: ; has to be stopped, else the LCD is
423: ; filled with the character output
424: ; of the "Display" task.
425: ;
426: ; * * *
427: ;
428: IF
429: OUT oGripperOpenClose ;gripper closed?
430: THEN
431: TASKBREAK #Display ;interrupt display
432: DISPLAY_TEXT [#0, cp=1, "_ Opening gripper"]
433: -OUT oGripperOpenClose ;open gripper
434: ELSE

Programming

Programming289

435: TASKBREAK #Display ;interrupt display
436: DISPLAY_TEXT [#0, cp=1, "_ Closing gripper"]
437: OUT oGripperOpenClose ;close gripper
438: WHEN
439: -FLAG fKey_F2 ;key F2 released?
440: THEN
441: DISPLAY_TEXT [#0, cp=1, "_ "]
442: TASKCONTINUE #Display ;activate display
443: RETURN
444: ;
445: ;
446: LABEL lTeach_In
447: ; -------------------------
448: ; CALL Teach_In
449: ;
450: ; With the help of this subroutine the user
451: ; defines the three put-off positions
452: ; and the home position.
453: ; -------------------------
454: ;
455: ; * * *
456: ; The home position and the three put-off
457: ; positions are defined by the user by
458: ; driving to the positions manually and
459: ; defining with the display keys
460: ; which of the four positions is to be set.
461: ;
462: ; Because also in this subroutine the
463: ; communication is managed with the LCD
464: ; the "Display" task has to be interrupted
465: ; for teach-in time.
466: ;
467: ; * * *
468: ;
469: THEN
470: TASKBREAK #Display ;interrupt display
471: ;
472: ; * * *
473: ; The user is asked for position definition
474: ; following the pattern:
475: ;
476: ; 1 = home position
477: ; 2 = 1. put-off position
478: ; 3 = 2. put-off position
479: ; 4 = 3. put-off position
480: ; * * *
481: ;
482: DISPLAY_TEXT [#0, cp=1, "Input position no. (1-4)"]
483: DISPLAY_TEXT [#0, cp=25, "1=HomePos.)$ "]
484: USER_INPUT [#0, cp=40, reg=WorkingRegister]
485: ;
486: ; * * *
487: ; The validity of the user defined
488: ; position numbers is checked (range
489: ; between 1 and 4).
490: ; * * *
491: ;
492: IF
493: LIMITS [reg=WorkingRegister, low=1, up=4]
494: THEN
495: ;
496: ; * * *
497: ; Now the register number, in which the
498: ; actual position should be stored, is
499: ; calculated using the user defined

PROCESS-PLC

290 Programming

500: ; position number.
501: ; * * *
502: ;
503: REG rWorkingRegister ;Calculation of the
504: = ;register number
505: REG rWorkingRegister
506: +
507: RegOffset_2
508: ;
509: ; * * *
510: ; Then the actual position is stored in
511: ; the register calculated before.
512: ; Now the user is informed about correct
513: ; data input with the help of the display.
514: ; After a delay of 0.5 seconds the task
515: ; "Display" is activated again.
516: ;
517: ;
518: ; * * *
519: ;
520: REGISTER_LOAD [R(rWorkingRegister) with R(rActualPositon)]
521: DISPLAY_TEXT [#0, cp=1, "_ok! "]
522: DELAY 5 ;wait 0.5 seconds
523: TASKCONTINUE #Display ;activate display
524: RETURN
525: ELSE
526: ;
527: ; * * *
528: ; E r r o r m e s s a g e !
529: ;
530: ; The display signals unvalid data
531: ; input for 1 second, then the user is
532: ; asked for data input again.
533: ; * * *
534: ;
535: DISPLAY_TEXT [#0, cp=1, "_Invalid Pos.No.,"]
536: DISPLAY_TEXT [#0, cp=25, "Please repeat!"]
537: DELAY 10 ;wait 1 second
538: THEN
539: GOTO Teach_In ;begin again
540: ;
541: ;
542: ; ***************************************
543: ; E N D O F P R O G R A M
544: ; ***************************************
545: ; ***************************************

The following registers have to be initialized before
program start in the setup screen:

• Register 100 (start ramp) with 10
• Register 101 (stop ramp) with 10
• Register 102 (destination window range) with 0
• Register 103 (digital offset) with 32
• Register 110 (speed in automatic mode) with

10000
• Register 111 (speed in manual mode) with 1000

Programming

Programming291

6.4 Symbol Listing6.4 Symbol Listing6.4 Symbol Listing6.4 Symbol Listing

The corresponding symbol listing is carried out as follows:

NANO-B - Symbol listing of "DEMOPROG" V1 page 1

JETTER Automation Technique, NANO-B

**
S Y M B O L E D I T O R

**

T A S K S

tInitialisation 0 The controller is initialised,
the reference run is managed
and the function keys are
scanned.

tAutomaticCycle 1 The workpieces are picked from
the home position by the auto-
matic task and put down at the
put-down positions 1 to 3.

tDisplay 2 Activation of the automatic or
manual mode and the current
values of nominal and actual
position are displayed.

S U B R O U T I N E S

--

ManualBackwards 200 Drives the horizontal axis in
manual mode backwards, until
the <- key is released.

ManualForwards 201 Drives the horizontal axis in
manual mode forwards, until
the -> key is released.

Gripper 202 If the gripper is open, it
will be closed by the
subroutine.
If the gripper is closed, it
will be opened by the
subroutine.

Teach_In 203 With the help of this
subroutine the user defines the
home position and the
three put-down positions.

--

--
L A B E L S

--

lFctscan 40 This label is the entrance
into the task "Initialisation",
which is jumped to at the end
of this task again; so endless
function key scanning is
secured.

PROCESS-PLC

292 Programming

--
I N P U T S

--

iHomePosition 10 The input is active, if the
vertical axis is placed at home
position (above).

iWorkingPosition 7 The input is active, if the
vertical axis is placed
at working position (down).

--

--
O U T P U T S

--

oDriveVertical 7 After the output is set, the
hydraulic cylinder moves
downwards, after reset of the
output the hydraulic
cylinder moves upwards.

oGripperOpenClose 2 If the output is set the
gripper closes, if the output
is reset the gripper opens.

oRelay 1 This output switches the relay
for the servo driver output
in the MSP1 simulator ON.

--

--
R E G I S T E R S

--

rStartRamp 100 start ramp register
rStopRamp 101 stop ramp register
rDestWindow 102 destination window range

register
rDigitalOffset 103 digital offset value register
rSpeedAutomatic 110 automatic mode axis speed

register
rSpeedManual 111 manual mode axis speed

register
rHomepos 120 position value of home

position
(Teach-In!)

rWorkingPos_1 121 position value of the 1st

put-off position (Teach-In!)
rWorkingPos_2 122 position value of the 2nd

put-off position (Teach-In!)
rWorkingPos_3 123 position value of the 3rd

put-off position (Teach-In!)
rCycleCounter 130 cycle counter (put-off

positions 1-2-3-1-2-3-1-2...)
rPositionReg 131 This register contains the

value of the current
put-down (working) position

rWorkingRegister 200 Into this register the user
can input the position numbers
(1 to 4, 1 = home position) in
Teach-In mode.

--

Programming

Programming293

--

F I X E D R E G I S T E R S

--

rCommandReg 1101 command register (the reference
point is set with value 3)

rNominalPosition 1102 contains the value of the
current nominal position, which
is used in the task "Display"

rStart_Offset 1105 This register is used as offset
between the number of the
registers, in which the slave
parameters and the
corresponding slave registers
themselves are stored (100...)

rActualPosition 1109 Contains the value of the
.......................................actual position of the axis.
.......................................(The value is used in the

Teach-In task)
rSlaveConfig 1200 To activate the slave process

servo controller of the PASE-
Mikro this register is
initialized with value 3 at
the beginning of the program

PROCESS-PLC

294 Programming

--

F L A G S

--

fAutomatic 1 Set, if automatic mode is
selected.

fCycleIsWorking 2 Set, during operation of the
automatic cycle.

--

F L A G S F O R K E Y B O A R D
S C A N N I N G

--

fKey_F1 221 flag for key F1 scanning
(automatic mode ON)

fKey_F2 222 flag for key F2 scanning
(gripper open/close)

fKey_F7 227 flag for key F7 scanning
(automatic mode OFF)

fKey_F8 228 flag for key F8 scanning
(Teach-IN)

fKeyBackwards 217 flag for <- key scanning
fKeyForwards 218 flag for -> key scanning
fAutoLED 201 flag for activation of the F1

key LED
fManualLED 207 flag for activation of the F7

key LED

--

N U M B E R S

--

Regoffset_1 120 Difference value, which is
added to the value of
CycleCounter (register 130) to
calculate the value of the put
off position value register.

Regoffset_2 119 Difference value, which is used
for calculation of the
register, in which the position
number (1 to 4) of the user
input is stored.

Backwards -500000 Nominal position for manual
mode driving backwards. See
subroutine "ManualBackwards".

Forwards 500000 Nominal position for manual
mode driving forwards. See
subroutine "ManualForwards".

 --

Programming

Programming295

IndexIndexIndexIndex

50000er Numbers
Addressing the Flags 255
Addressing the Inputs 251
Addressing the Outputs 253
Addressing the Registers 248

Arithmetic Comparison 143
Arithmetic Expressions 149
AUTOEXEC.BAT 10; 13

Block 47
SYMPAS in the Network 105

Block 47
Input AUTOEXEC.BAT 47

Menu 45
Boolean Expressions 140
Change Directory 41
Change Environment 41
Change scale 64
Combined Flags 263
Combined Inputs 265
Combined Outputs 265
Command Line Parameters 105
Commentaries 100
Controller Type 7
Convert Symbol Language 37
Copy (Ctrl K-C) 46
Copy Tools 7
DA-File 51; 52

Setup 52
Destination Directory 7
Dialogue Language 8; 66
Display ref. file ... 64
DOS surface 42
Edit view box 62
Editor -> File.ENB 48
Editor -> NANO-B 51
Elementary Conditions 140
Erase (Ctrl K-Y) 46
Erase ref. display 64
Error Messages 87

Miscellaneous Errors 95
Symbol Errors 88
Syntax Check 89

Example
CLEAR_FLAGS 191

Field
Text Register Field 33

Fields 28
File 54
File.DA -> Register ... 51
File.ENB -> Editor ... 49
File.ENB -> NANO-B ... 51
Files

Program and System Files Sympas 50
Files (in General) 97

Backup Program File 97
Backup Symbol File 97
Configuration File 98

Configuration Setup 98
Desk file 98
Object File 99
Print File 98
Program File 97
ReverseTable 99
Symbol File 97

Find 43
Find Text 44
Flags 141; 269

Combined 263
Special Flags 269

Floating point register
Assignment 154

Form feed 55
Functions 165

Definition 165
Definition of the Function Text 166
Example

Input Condition 168
Example Output Instruction 167
Function Call-Up 166

Hardware Installation 5
Hardware Requirements 4
INCLUDE Files 81

in the Program Editor 81
in the Symbol Editor 84
INCLUDE Instruction 81
Main File 36; 82
Pick List 83

Indirect Addressing 100
Input 141
Input Field 29
INSTALL.EXE 6
Installation 6

Start 8
Instructions

50000er Numbers 248
AXARR 220
BIT_CLEAR 186
BIT_SET 186
Boolean Expressions 140
CALL (Subroutine) 160
COPY 178
Delay 20; 137
Destination

GOTO 21
DISPLAY_REG 201
DISPLAY_TEXT 197
FLAG 190
Flags 141
Functions 165
Input 142; 192
Instruction Set 127
Instructions IF..THEN..ELSE 134
LABEL 157
LIMITS 238

PROCESS-PLC

296 Programming

N-GET REGISTER 245
NOMINALPOS 225
NOP 234
N-SEND REGISTER 244
Numbers 150
Output 142; 194

Reset 20
Output Parameter 18
REG 183
REGDEC 184
REGINC 184
Register Bit 142
REGISTER_LOAD 175
REGZERO 184
SPECIALFUNCTION 180; 235
START-TIMER 229
SUBROUTINE 157
Subroutine (CALL) 160
Task 17; 157
TASKBREAK 226
TASKCONTINUE 227
TASKRESTART 227
TIMER-END? 229
USER_INPUT 205
WAND 240
WHEN..THEN 130
WHEN_MAX...THEN 132
WOR 241
WXOR 241

Instructions Input 16
Interface 66
JETWay-H 9; 10

Board for the PC 10
Setting in SYMPAS 12

JETWay-H Board for the PC
AUTOEXEC.BAT 10
DIL Switches 11

Left margin 55
Listing 46
Load block 46
Load Environment 42
Main File 36; 82
Menu 34

Edit 43
File 39
Listing 54

File ... 54
Form feed 55
Left margin 55
Page settings ... 55
Printer 54
Sheet length 55

Monitor 56
NANO-B continue 57
NANO-B start 56
NANO-B stop 56
Setup 56

Project 35
Pull-down Menus 15
Scope 58

Display ref. file ... 64
Edit view box ... 62
Erase ref. display 64
PCX-File 64
Scale Y-axis ... 63
Stop recording 61

Transfer data ... 62
Trigger setup 61
Zoom 63

Scope
Module Configuration 59
Start Recording... 60

Special 65
Transfer 48

Compare Editor -> NANO-B 51
Editor -> File.ENB 48
File.DA -> Register ... 51
File.ENB -> Editor ... 49
File.ENB -> NANO-B ... 51
NANO-B -> File.ENB 48
Register -> File.DA ... 51

Menu Block
Block on/off 45
Copy (Ctrl K-C) 46
Erase (Ctrl K-Y) 46
Listing 46
Load block ... 46
Move (Ctrl K-V) 45
Save block ... 47

Menu Edit
Find 43
Find Text ... 44
Next 44
Program 43
Replace ... 44
Replace Text ... 44
Restore Line 44
Symbol 43

Menu File
Change Directory 41
Change Environment 41
DOS surface 42
Load Environment 42
New Program 40
New Project 39
Open 39
Pick List 41
Program Editor 41
Save 40
Save all 40
Save as ... 40
Setup Screen 42
Symbol Editor 41
Sympas 42

Menu Scope
Change scale 64

Module Configuration 59
Monitor Functions 214

Restriction of 214
Move (Ctrl. K-V) 45
NANO-B -> File.ENB 48
NANO-B continue 57
NANO-B stop 56
New Program 40
New Project 39
Next 44
Numbers 150
Object File 50
Open 39
Output 141
Page settings 55
Password 103

Programming

Programming297

PCX-File 64
Pick List 41; 83
Printer 54
Program 43
Program Editor 14; 41

Block Operations 23
Functions 22
Keys 22
Miscellaneous 24
Program Transfer 25
Storage of Cursor Position 24

Program Input 16
Program Language 67
Program Setup 107
Program Structure

Rules 113
Program Transfer 25
Programming

Exemplary Creation 16
Programming Language 8

Functions 165
Pull-Down Menu 34

Functions 34
Keys 34

README 4
Realtime Clock

An Exemplary Program 272
Realtime Clock

Overview 270
Recording ... 60
Register -> File.DA ... 51
Register Bit 142
Registers

Basics 259
Floating Point Registers 261
Integer Registers 260
Integer Registers - Assignment 152
Special Registers 173; 262

Registers in General
Basics 171
Combined Flags 263
Combining Inputs 265
Combining Outputs 265
DA-file 99
Floating Point Registers 172
Include Table 99
Instructions - REGISTER_LOAD 175
Integer Registers 171
Slave Registers 173

Replace 44
Replace Text 44
Requirements 4
Restore Line 44
Save 40
Save all 40
Save as ... 40
Scale Y-axis ... 63
Scope Function 58
Scope Screen 59

Screens
Definition 14

Settings 68
Setup 56
Setup Screen 14; 42

Axis Field 30
Binreg Field 32
Display Field 32
Fields 28
Flag Field 30
Functions 27
Index Field 30
Input Field 1 29
Keys 27
Output Field 30
Overview 26
Refresh Cycle 33
Text Register Field 33

Sheet length 55
Software 4
Software Installation 6
Stop recording 61
Symbol 43
Symbol Editor 14; 41
Symbolic Notation 122
Symbolic Programming 74; 121

Example 123
Symbol Editor 74
Symbol Editor - Creating a Symbol File

78
Symbol Editor - Example of a Symbol

File 80
Symbol Editor - Functions 75
Symbol Editor - Keys 75
Symbol File 78
Symbolic Notation 122
Symbolic Notation - Example 123

SYMPAS 42
Programming Environment 2

SYMPAS Programming Environment
AUTOEXEC.BAT 13
Start 13

Syntax Check
(ON/OFF) 71
Error Messages 89

Tasks
Definition 113
Parallel Tasks 113
Program Structure - Rules 113
Rules for Task Switching 116
Task Structure 113

Transfer data ... 62
Trigger setup 61
User Interfaces

Cursor Position 198
Device Number 197
Display Text 199

Zoom 63

	Programming Manual
	Table of Contents
	I. SYMPAS Programming Environment
	1. Survey
	2. The SYMPAS System
	2.1 Hardware (Requirements)
	2.2 Software
	2.3 Hardware Installation
	2.4 Software Installation
	2.4 SYMPAS for Several Networked Controllers (JETWay-H)

	3. Operation of the SYMPAS Programming Environment
	3.1. Starting of the SYMPAS Programming Environment
	3.2 Description of the Screens
	3.3 Program Input
	3.3.1 Keys and Functions in the Program Editor
	3.3.2 Program Transfer

	3.4 The Setup Screen (Setup Mode)
	3.4.1 Keys and Functions in the Setup Screen
	3.4.2 Description of the Fields

	3.5 Description of the Menus
	3.5.1 Keys and Functions in the Pull-Down Menus
	3.5.2 The "Project" Menu
	3.5.3 The "File" Menu
	3.5.4 The "Edit" Menu
	3.5.5 The "Block" Menu
	3.5.6 The "Transfer" Menu
	3.5.7 The "Listing" Menu
	3.5.8 The "Monitor" Menu
	3.5.9 The "Scope" Menu
	3.5.10 The "Special" Menu

	3.6 Symbolic Programming - the Symbol Editor
	3.6.1 Keys and Functions in the Symbol Editor
	3.6.2 Creating a Symbol File (in the Symbol Editor)

	3.7 INCLUDE Files
	3.7.1 INCLUDE Files in the Program Editor
	3.7.2 INCLUDE Files in the Symbol Editor

	3.8 Error Messages
	3.9 Files, Extensions, etc.
	3.10 Miscellaneous
	3.10.1 Indirect Addressing
	3.10.2 Commentaries
	3.10.3 Call-up by the /o Switch (Laptop, Notebook)
	3.10.4 The NOSYMPAS.EXE Program
	3.10.5 Switching to DOS
	3.10.6 Password
	3.10.7 SYMPAS Version 3.09 ff, and MIKRO up to 2.10
	3.10.8 SYMPAS and PASE-J (up to version 4.04)
	3.10.9 SYMPAS in the Network (PASE-E up to version 4.04)
	3.10.10 Further Command Line Parameters (Call-Up Switches)

	II. SYMPAS Programming
	1. Overview
	2. Fundamentals of Programming
	2.1 Principles of Program Setup
	2.1.1 Rules for Program Structure - Task Structure
	2.1.2 Special Registers / Flags for Task Control

	2.2 Symbolic Programming
	2.2.1 Recommendations on Symbolic Notation
	2.2.2 Examples of Symbolic Notation

	2.3 Remarks on the Program Examples

	3. The Programming Language
	3.1 Overview over Instructions
	3.2 Basic Instructions
	3.2.1 Waiting Condition WHEN ... THEN
	3.2.2 Waiting Condition WHEN_MAX ... THEN
	3.2.3 Branch Condition IF ... THEN ... (ELSE)
	3.2.4 The DELAY Instruction

	3.3 Boolean Expressions
	3.3.1 Phrasing Elementary Conditions
	3.3.2 Examples of Connected Expressions

	3.4 Arithmetic Expressions
	3.4.1 Numbers
	3.4.2 Arithmetic Expressions
	3.4.3 Assignment to Integer Registers
	3.4.4 Assignment to a Floating Point Register

	3.5 Tasks, Labels, Jumps and Subroutines
	3.5.1 Tasks, Flags and Jumps
	3.5.2 Subroutines
	3.5.3 Functions

	3.6 Registers and Flags
	3.6.1 Basic Information on Registers
	3.6.2 Instructions for Register Loading
	3.6.3 Calculating with Registers
	3.6.4 Register Bit Instructions
	3.6.5 Flags and Flag Instructions

	3.7 Inputs and Outputs
	3.7.1 Inputs
	3.7.2 Outputs

	3.8 Display Instructions and User Input
	3.8.1 Display of Texts
	3.8.2 Display of Register Contents
	3.8.3 Reading of Register Values by the Program
	3.8.4 Special Registers for User Input

	3.9 Instructions for Axis Controlling
	3.9.1 Positioning
	3.9.2 Enquiries on the Present Condition

	3.10 Task Instructions
	3.10.1 Taskbreak
	3.10.2 Taskcontinue
	3.10.3 Taskrestart
	3.10.4 Examples of the Task Instructions

	3.11 Various Instructions
	3.11.1 Time Instructions
	3.11.2 NOP
	3.11.3 The Commentary Character
	3.11.4 Special Functions
	3.11.5 The LIMITS Instruction
	3.11.6 Word Processing

	3.12 Network Instructions
	3.12.1 Sending Register Values to Slave Controllers
	3.12.2 Getting Register Values from a Slave Controller
	3.12.3 Network Operation by 50000er Numbers
	3.12.4 Special Registers / Flags for Network Operation

	4. Description of the Memory
	4.1 Basics on Registers and Flags
	4.1.1 Registers
	4.1.2 Flags

	5. Realtime Clock
	5.1 Overview, Function
	5.2 Register Description
	5.3 Realtime Clock: An Exemplary Program

	6. Demonstrating Example: Handling-System
	6.1 Problem Description
	6.2 Flow Charts of the Three Tasks
	6.2.1 TASK 0 - Control Task
	6.2.2 TASK 1 - Automatic Task
	6.2.3 TASK 2 - Display Task

	6.3 Program Listing
	6.4 Symbol Listing

	Index

