PROCESS-PLC

Programming Manual

JETTER GmbH
GraterstralRe 2
D-71642 Ludwigsburg

Tel +49 7141 2550 0
Fax +49 7141 2550 425
Hotline +49 7141 2550 444
E-Mail jetter@jetter.de
Internet www.jetter.de

JETTER

PROCESS-PLC

Edition 1.2
February 1999

JETTER GmbH reserves the right to make alterations to its products
in the interest of technical progress. These alterations need not be
documented in every single case.

This manual and the information contained herein has been
compiled with the necessary care. JETTER GmbH makes no war-
ranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantibility and fitness for
a particular purpose. JETTER GmbH shall not be liable for errors
contained herein or for incidental or consequential damage in
connection with the furnishing, performance, or use of this mate-
rial.

The brand names and product names used in this hardware de-

scription are trade marks or registered trade marks of the respec-
tive title owner.

Bestell-Nr. 05 98 Printed in Germany

PROCESS-PLC

Programming

Table of Contents

|_I. SYMPAS PROGRAMMING ENVIRONMENT 5]
fL. Survey 5]
R. The SYMPAS System 7

P.1 Hardware (Requirements) 7
P.2 Software 7
P.3 Hardware Installation 8
P.4 Software Installation 9
P.4 SYMPAS for Several Networked Controllers (JETWay-H) 12
B. Operation of the SYMPAS Programming Environment 16
B.1. Starting of the SYMPAS Programming Environment 16
B.2 Description of the Screens 17
B.3 Program Input 19
3.3.1 Keys and Functions in the Program Editor 25
3.3.2 Program Transfer 28

.4 The Setup Screen (Setup Mode) 29
4.1 Keys and Functions in the Setup Screen 30
.4.2 Description of the Fields 31

.5 Description of the Menus SZI
.5.1 Keys and Functions in the Pull-Down Menus 37
.5.2 The "Project" Menu 38
.5.3 The "File" Menu 42
.5.4 The "Edit" Menu 46
.5.5 The "Block" Menu 4_8
.5.6 The "Transfer" Menu 51
.5.7 The "Listing" Menu 52'
.5.8 The "Monitor" Menu 59
-5.9 The "Scope” Menu 61
.5.10 The "Special" Menu 68

.6 Symbolic I5rogrammi ng - the §ymb0l Editor 77
3.6.1 Keys and Functions in the Symbol Editor 78
3.6.2 Creating a Symbol File (in the Symbol Editor) 81
B.7 INCLUDE Files 84
3.7.1 INCLUDE Files in the Program Editor 84
3.7.2 INCLUDE Files in the Symbol Editor 87
3.8 Error Messages 90
B.9 Files, Extensions, etc. 100
B.10 Miscellaneous 103
3.10.1 Indirect Addressing 103
3.10.2 Commentaries 103
3.10.3 Call-up by the /o Switch (Laptop, Notebook) 104
3.10.4 The NOSYMPAS.EXE Program 105
3.10.5 Switching to DOS 106
3.10.6 Password 106
3.10.7 SYMPAS Version 3.09 ff, and MIKRO up to 2.10 107
3.10.8 SYMPAS and PASE-J (up to version 4.04) 107
3.10.9 SYMPAS in the Network (PASE-E up to version 4.04) 108
3.10.10 Further Command Line Parameters (Call-Up Switches) 108
Il._SYMPAS PROGRAMMING 109
2

Programming

[L. Overview 109|
. Fundamentals of Programmin 110
.1_Principles of Program Setup 110
P.1.1 Rules for Program Structure - Task Structure 116
P.1.2 Special Registers / Flags for Task Control 121

P.2 Symbolic Programming 124
P.2.2 Examples of Symbolic Notation 126

P.3 Remarks on the Program Examples 128
B._The Programming Language 129
B.1 Overview over Instructions 129
3.2 Basic Instructions 133
3.2.1 Waiting Condition WHEN ... THEN 133
3.2.2 Waiting Condition WHEN MAX ... THEN 135

.2.3 Branch Condition|F ... THEN... (A 137

B.2.4 The DELAY Instruction 140

B.3 Boolean Expressions 143
3.3.1 Phrasing Elementary Conditions 144
3.3.2 Examples of Connected Expressions 149

B.4 Arithmetic Expressions 152
3.4.1 Numbers 153
3.4.2 Arithmetic Expressions 154
3.4.3 Assignment to Integer Registers 155
B3.4.4 Assignment to a Floating Point Regjister 157

B.5 Tasks, Labels, Jumps and Subroutines 160

.5.1 Tasks, Flags and Jumps 160
.5.2_Subroutines 163
.5.3 Functions 168
.6_Registers and Flags 173]

.6.1 Basic Information on Registers 174

.6.2 Instructions for Register Loadin 178

.6.3 Calculating with Registers 185

.6.4 Reqister Bit Instructions 189

.6.5 Flags and Flag Instructions 192|
.7_Inputs and Outputs 105)
195]

.7.2 Outputs 197
B.8_Display Instructions and User Input 200
3.8.1 Display of Texts 200
3.8.2 Display of Register Contents 204
3.8.3 Reading of Register Values by the Program 208
3.8.4 Special Registers for User Input 210
B.9_Instructions for Axis Controlling 220
3.9.1 Positioning 220
3.9.2 Enquiries on the Present Condition 228
B.10 Task Instructions 229
3.10.1 Taskbreak 229
3.10.2 Taskcontinue 230
3.10.3 Taskrestart 230
3.10.4 Examples of the Task Instructions 231
B.11 Various Instructions 232
3.11.1 Time Instructions 232
3.11.2 NOP 237
3.11.3 The Commentary Character 237
3.11.4 Special Functions 238
3.11.5 The LIMITS Instruction 241

Programming 3

PROCESS-PLC

Programming

B.11.6 Word Processing 242

B.12 Network Instructions 246
3.12.1 Sending Register Values to Slave Controllers 247
3.12.2 Getting Register Values from a Slave Controller 248
3.12.3 Network Operation by 50000er Numbers 251
3.12.4 Special Registers / Flags for Network Operation 260
._Description of the Memory 262
4.1 Basics on Registers and Flags 262
1.1.1 Registers 262

1.1.2 Flags 272

B. Realtime Clock 273
b.1 Overview, Function 273
b.2 Register Description 274
5.3 Realtime Clock: An Exemplary Program 275
REGISTER DESCRIPTION 275|
EXEMPLARY PROGRAM: REALTIME CLOCK 276|
6. Demonstrating Example: Handling-System 277
6.1 Problem Description 277
6.2 Flow Charts of the Three Tasks 279
6.2.1 TASK 0 - Control Task 279

5.2.2 TASK 1 - Automatic Task 280

B.2.3 TASK 2 - Display Task 281

6.3 Program Listing 282
6.4 Symbol Listing 291
INDEX 295|
4

Programming

|. SYMPAS Programming Environment

1. Survey

The stages of
program
development
are supported

Hardware
requirements:
PC, IBM
compatible

Menu and
window
structure

SYMPAS is the programming environment for PROCESS-
PLC programs. With the help of this programming
software, problems originating from a process that should
be controlled, can be directly expressed in a SYMPAS
program for all PROCESS-PLC control systems. All
important stages of program development - from editing
via syntax check, up to transfer into the controller and
setup in the integrated setup mode are supported by the
SYMPAS programming environment.

As a hardware for the use of SYMPAS an IBM compatible
personal computer will be needed. The PC serves for
data input as well as monitoring the program flow and
the register conditions during the setup stage.

PROCESS-PLC programs and register sets can be stored
on, and read from, hard or floppy disk drives.

The personal computer will be needed, until the program
has been transferred to the controller (any register sets
included) and tested successfully. After that, the PC can
be used again for other tasks.

In the SYMPAS pull-down menu and window structure of
SYMPAS, maximum clarity has been combined with user
fiendly operation. To grant the professional user the
possibility of swift working, the most important functions
can also be accessed by hotkeys.

Programming 5

PROCESS-PLC

Callup help Context sensitive information has been provided by the

by pressing he|p text that is always displayed in the status line, and by

(FL) the help windows, that can be activated by the F1
function key.

Programming 6

Programming

2. The SYMPAS System

2.1 Hardware (Requirements)

2.2 Software

Up-to-date
information in
the

README file

The requirements for the use of the SYMPAS programming
environment are:

. An IBM compatible personal computer with at least
512 kByte RAM and 2 disk drives (or 1 disk drive plus
hard disk) and a DOS operating system.

. one serial interface (COM1 or COM2).

. one programming cable EM-PK connecting the PC
with the controller.

. A PROCESS-PLC controller - PASE-E, DELTA, NANO, or
MIKRO.

A survey of the available files can be taken from the
README file, which should be read by the user in any
case, as it contains the latest important information,
which cannot be found in the manual. This file will be
displayed on the screen by giving the instruction TYPE
A:README,; it will be printed by giving the DOS command
PRINT A:README.

Programming 7

PROCESS-PLC

2.3 Hardware Installation

To use SYMPAS together with a PROCESS-PLC, connection
to the serial interface (COM1 or COM2) of the PC has to
be established. The interface can be configurated in the
context of the SYMPAS programming environment. For XT
compatible systems, a 25-pin sub-D male connector for
COM1, for AT compatible systems, a 9-pin sub-D male
connector for COM1 has been provided. The connection
cable EM-PK has to be used.

Programming The programming cable EM-PK can be produced
cable EM-PK gccording to the following figure:

PROCESS-PLC PC(XT) PROCESS-PLC PC(AI)
RS232 RS232 RS232 RS232
COM1 COMm1

m| |]

9 pin sub-D

— male connector
9 pin sub-D

male connector

9 pin sub-D

25 pin sub-D female connector

female connector

Programming 8

Programming

2.4 Software Installation

The SYMPAS
programming
environment is
being installed
By INSTALL.EXE

The software installation is carried out by the INSTALL.EXE
program. A subdirectory called SYMPAS is opened on
floppy disk or hard disk (default setting) by this program.
All important files are copied into this directory. Which files
and subdirectories are to be copied is determined by
the configuration, which can be defined in the
configuration window shown above before the actual
installation process. For installation, write the line

A\ I NSTALL orB:\ I NSTALL.

Programming 9

PROCESS-PLC

Programming

Using the cursor keys | and t, the menu line can be
selected, and by pressing the RETURN keyL], this selected
line can be changed. When the basic configuration has
been chosen, the installation process can be started by
pressing function key F9. The following definitions can be
made under these selection lines:

Controller Type

Here, a choice can be made between the PASE-E,
DELTA, NANO, and MIKRO controllers. Independent from
the installation, the controller type can be selected anew
any time in the SYMPAS programming environment.

Destination Directory

Here, the entire destination path can be defined. If the
programming environment is to be installed in another
subdirectory, this line has to be edited correspondingly,
for example:

C.\ D RECTORY

By this instruction, SYMPAS is installed in the subdirectory
"Directory" on the C: disk.

After selecting the line with the cursor key, a window will
be opened by the [ENTER key, where the destination
path can be edited.

Copy Tools?
Here, the installation of the available tools can be
determined. These tools have been documented in the

README file and can be attributed to an individual
directory.

10

Programming

Start installation
by pressing (F9)

Language

Here, the language to operate the programming
environment with can be chosen. A selection can be
made between German and English. Even after
installation, the dialogue, as well as the programming
language can be changed any time in SYMPAS itself.

By pressing the function key F9, the installation process

will be stated and caried out according to the
definitions that have been made.

Programming 11

PROCESS-PLC

2.4 SYMPAS for Several Networked Controllers (JETWay-H)

JETWay-H:
126 participants
115 kBaud

Programming

The following advantages are granted by using the
JETWay-H interface as a programming interface instead
of the RS232 interface:
. Up to 126 PROCESS-PLC can be addressed from

one SYMPAS desktop.
. Transfer rates of up to 115 kBaud can be realised.

. Greater distances are possible.

JETWay-H Cable

Connection Shielding Specification
on the max. Length
PROCESS-PLC
| RS485
9 pin sub-D Shield
male max.
connector cable length:
400m
or
15 pin sub-D e U -
male @
connector o
Please shield
extensively!
Only use metallised
housings!
7 Gnd 7
8 Data + 8
9 Data - 9

12

Programming

The JETWay-H Board for the PC

The connection between SYMPAS and up to 126
PROCESS-PLC controllers via JETWay H can be
established using the PC board shown below.

911
[-Mr6iLln

UD] d¥3on1sag

.
(]
w
"
(]

ZF c

a 5 -

~ 3 N

© 5 A e

3 N i Ry

— T = | A [T D

EJ] ZAI3 EG §5 E' u<

© 5 2H ©

;5 5 —

= | | UL :

B e %

D RN . T E 2z

° :l|g § These are the DIL

- i switches for definition

X1

of the port address.
Default value: 340h.

S
i
[
=1
g
Q

N
Figure 1: JETWay-H board for the PC

AUTOEXEC.BAT
Into the AUTOEXEC.BAT of your PC the following line is to
be written (only, if default setting is used):

SET JETWAY_PORT=340h

Programming 13

PROCESS-PLC

DIL Switches

If you want to, or have to, use another port address, this
is possible by the DIL switches shown above on the
JETWay-H.

The opposite
line must be
written into the
AUTOEXEC.BAT

Programming

DIL Switches on the JETWay-H Board

Port Switch | Switch | Switch | Switch | Switch | Switch
2 3 4 5 6 7
300h OFF OFF ON ON ON ON
310h OFF OFF ON ON ON OFF
320h OFF OFF ON ON OFF ON
330h OFF OFF ON ON OFF OFF
340n” | OFF OFF ON OFF ON ON
350h OFF OFF ON OFF ON OFF
360h OFF OFF ON OFF OFF ON
“) Default setting

Correspondingly, the line in the AUTOEXEC.BAT has to be
changed:

SET JETWAY_PORT=x

14

Programming

In the SYMPAS menu "Special / Settings" a choice can
be made between the programming interface via
RS232 and via JETWay-H.

“Trajecd Fale Edit Bloek Tramsfer Listin HWenilor GScape Special
O m 5 = L ECNHEER T BFM

IH i5tart
HEH

BUT O bFapper
-0UT D_drive_wert
pumT n
WHLH
IH 1 _ha
IH I_bas
THEH

IH 1_wa
THEH
BT B_Gri
DELAY 5
BT 0_driwe_wert
WHER

IH I_basicpos_wert
THEH

BT 0_driwe_kor
[yalax-Lhec!

Figure 2: SYMPAS Menu: Special / Interface

Note:

For making this cable, the following minimum
requirements have to be met:

Number of wires: 3

Diameter: 0,252

Male connector SUB-D, metallised
Shielding: total, not in pairs

The shield needs extensive contact to the plug
housings on both sides.

Programming 15

PROCESS-PLC

3. Operation of the SYMPAS Programming Environment

3.1. Starting of the SYMPAS Programming Environment

Create a
meaningful
structure of

subdirectories

Start SYMPAS

Programming

After the software has been installed, following the
instructions in Chapter R.4 Software Installation] the
programming environment can be started by entering
SYMPAS.

C. \ SYMPAS>SYMPAS

By this instruction, the SYMPAS programming environment
is started.

It might be helpful to create another subdirectory in the
SYMPAS subdirectory, e.g. PROJECT1:

C. \ SYMPAS\ PRQJECT1>

Further, the respective path definition for the SYMPAS call-
up is to be written into AUTOEXEC.BAT.

Now, SYMPAS can be started, for example, the following
way:

C: \ SYMPAS\ PRQJECT1>SYMPAS

All kinds of information, files, etc, which refer to "Projectl”,
are now filed in this subdirectory. That way, the overview -
even over a great number of projects - wil be
maintained.

16

Programming

3.2 Description of the Screens

Change
between
program and
symbol editor
by

pressing (F4).

Using (F7) and
(F4), switch
between setup
screen and
editors

uuuuuuuuuuu

After starting SYMPAS, the program editor screen, which is
used for wrting the PROCESS-PLC programs wil be
opened. Besides the program editor screen, there are
two more:

The symbol editor serves the creation of the symbolism
used in a program. Using function key F4, you can switch
between program and symbol editor.

Program setup, controller setup, and setup of the
controlled process is supported by the setup screen. It is
activated by function key F7. Using F4 you can switch to
either program or symbol editor.

(F4) (F4) (F7) (F4)

Figure 5: Symbol Editor

Figure 4 : Setup

Programming 17

PROCESS-PLC

Call up the
menu or the
function by
pressing the
(ALT)key plus
the
highlighted
letter

Programming

These three screens represent the global structure of the
SYMPAS graphic user interface.

The menu line has been placed in the upper line of the
respective screen. It is identical for all three screens, yet,
some functions only refer to one specific screen (e.g.
setup screen) and have no meaning for the other
screens (dim display of the selection lines).

The menu line is activated by the F10 function key. Using
the cursor keys €< and -, you can move in the menu
line. Using the | cursor key, the respective pull-down
menu can be opened, where you can move with the 1
and | cursor keys.

The pull-down menu or the menu line can be left with the
ESC key, which can also be used for terminating any
other activated function.

All functions that can be caled up from the three
screens are supported by help texts. First, a context
related help text can always be found in the status line,
which is the bottom line of the screen. Extensive help
information will appear in a special window after pressing
function key F1. This information is also context related.
The help windows are left by pressing ESC.

With the help of the program editor, the programs for
PROCESS-PLC control systems are written. The symbol
editor serves for defining the symbolism of a program.
The setup screen, finally, helps testing and optimising the
program in connection with the control system and the
process to be controlled.

18

Programming

3.3 Program Input

Instruction
input by
gramma-
logues

Exemplary
creation of a
NANO
program

The important instructions of the SYMPAS programming
language are written into the program editor by the two
first letters of the instruction. A selection window of all
SYMPAS instructions starting with letter "T" will appear by
pressing "T". Now, by either pressing the cursor keys or "A"
(the second letter of the word TASK), the TASK instruction
can be activated. After writing the parameter number
into a window, the instruction will appear in the
programming editor screen. Following this pattern, the
program is written.

By pressing the "?" key a window is opened, where all
available instructions are listed up, and from where those
instructions can be taken.

Following, an exemplary NANO program will be created.

After having started SYMPAS (Chapter the program
editor screen will appear. First you open the "Project" pull-
down menu by pressing ALT-P. By pressing cursor key |,
the line "Edit Project Data" is selected and activated by
ENTER<J. Now a window is opened by SYMPAS, where
the global project data are defined. Under the menu
ines "program name", “"customer/project’, "place",
"version" and "symbol file" the respective information can
be written. After confirming the input of the last line
"symbol file" with ENTER [, the window is closed. Now
program input on the program editor screen can be
started. Here the pattern of wiiting the grammalogue of
an instruction to be integrated into the program text as
briefly mentioned above will apply again.

Programming 19

PROCESS-PLC

First Instruction:

. Press the "T" key -> an input window of all
instructions starting with letter "T" will appear.

(T) will open a
window of all 1 Wlsck _Transfer Tieiing Weniter Geape Special

instructions
starting with "T"

TRERCORTIHUE
TIMER-EMD?
THEH
TREEEESTRRT

. Press the "A" key -> an input window to define the
desired task number will appear

(A) will open a
window where
the task

number i tasknumber R

specified

. now press the "0" (zero) key and confirm by ENTER [
-> the TASKO instruction will appear on the screen.

Programming 20

Programming

The TASK 0
instruction will
appear on the
screen

(O) will open a
window of all
instructions
starting with
IIOII

TransTer Tisiing Fanifor Teape Special

Note:

Each program must be started with the TASK O
instruction.

Second Instruction:

. Press the "O" key -> an input window of all
instructions starting with letter "O" will appeat.

B p—

b=l g

1 4+— I+

m

. Press the "U" key -> an input window for the output
parameter will appear.

Programming 21

PROCESS-PLC

(U) will open a
window where
the output
parameter is
defined

The OUT 102
instruction will
appear on the
screen

Programming

outputnumber L

Now press keys "102" and confirm by ENTER O ->
the OUT 102 instruction (output 102) will appear on
the screen. This instruction causes output 102 to be
set or activated.

22

Programming

Third Instruction:

. Press the "D" and "E" keys -=> an input window will
appear, where the required delay can be input in
multiples of 100 ms.

. Now input "10" and confim by ENTER [0 -> The
DELAY instruction with parameter "10" will appear on
the screen. This instruction causes the controller to
delay for 1 second and then to continue with the
further program execution.

Fourth Instruction:

. Press the "O" and "U" key -> an input window to
define the desired output number will appear.

. This time you input "-102" and confirm by ENTER [-
> the -OUT 102 instruction (-OUTPUT 102) will
appear on the screen. This instruction causes
output 102 to be reset.

Fifth Instruction

. Press the "D" and "E" keys -=> an input window will
appear, where the delay time can be defined.

. Confim the default value of the last instruction

input "10" -> this instruction causes the controller
to once more delay for 1 second.

Programming 23

PROCESS-PLC

Sixth Instruction:

. Press the "G" and "O" key -> an input window will
appear where the goto destination (task or label)
can be defined which the program is to branch
out to.

. Input "0" and confirm by ENTER [0 -> the GOTO 0O
instruction will appear on the screen. The program
run will return to TASKO, thus, the program will form
an endless loop.

Note:
Each program task must be closed in itself by a GOTO

instruction.

Now the program text input is terminated. Using the
cursor keys 1 and | you can move in the program text.
Program lines can be erased by pressing the DEL key.
Automatic input can be made over the actual line,
which is marked by the cursor. With the help of cursor
keys < and -, a selection beween program text and
commentary can be made.

Programming 24

Programming

3.3.1 Keys and Functions in the Program Editor

Cursor Movement:

Key: Function:

cursor up one line back
cursor down one line forward
page up page back

page down page forward
Ctrl-page up to top of program
Ctrl-page down to end of program
cursor left instruction range
cursor right commentary range

Editor Instructions:

Key: Function:

A.Z An instruction is directly activated, if its first letter
appears in the instruction list only once.
Otherwise a selection window for the required
instruction is offered. There is also the possibility
to integrate an instruction into the program text
by input of its first two letters.

? A complete instruction list is offered as a
selection window.

SPACE The instruction that has been input last will be
repeated.

ENTER Edit the parameters of the actual instruction.

BS(—~) Delete the instruction preceding the actual
instruction line.

DEL Delete current instruction.

Programming 25

PROCESS-PLC

Block Operations:

Key:
CtrlK B
Ctrl KK
CtrlKV
CulKC
CtrlKY
CtrlKR
CtrlKW
CtrKPI
CtrlKH
CtrlK L
CtrlQB

Ctrl QK

Programming

Function:

mark top of block
mark end of block
move block

copy block
delete block

load block from disk
save block to disk
print block

switch off block
mavk line

find top of block

find end of block

26

Programming

Storage of Cursor Position:

Key: Function:

Ctr-K 0..9 store cursor position 0 to 9 in
the program text.

Ctr-Q 0..9 go to stored cursor positions 0
to 9.

Miscellaneous:

Key: Function:

CtrlS The symbol parameters of the current line are
displayed, until the Ctrl key is released.

Ctl M The variable content of the curent line is
displayed, until the Ctrl key is released.

Programming 27

PROCESS-PLC

3.3.2 Program Transfer

Store the Before the program can be run in the controller, storing,
programby e g on hard disk, should be made. By pressing ALT-D the
pressing (F2) 5 ll.down menu "File" can be opened. By pressing the
cursor key | you will find the "save" selection line. Then
the "save" procedure can be triggered by pressing ENTER
[(or quicker by function key F2). "Save" will be changed
into "save as", when the file name has not been defined
before. To load a program from hard disk into the
program editor, the selection line "open..." in the same

pull-down menu must be used.

Transfer the After the program has been input, it can be transferred to
programto the controller by pressing CTRL-F9. This will tigger three
the controller ¢\, tions: First, the program will be transferred to the
by pressing)
(CTRL) (F9) controller and started there. Secondly, the screen will
change to "setup” screen. Thirdly, an acoustic start signal

can be heard.

Starting with Chapter B. Operation of the SYMPAS |
Programming Environment|you created a PROCESS-PLC
program in the program editor, saved it on hard disk,
transferred it to the controller and started it there
automatically. The LED at input 102 will now function as a
flashing signal with a constant signal time of one second.

By pressing function key F4, you will automatically get
back to the program editor, e.g. to make changes in the
program. Or else you will stay in the setup screen, in order
to test a program for proper functioning. Such a program
will surely be more complex than the flashing light that
has just been programmed. Then the setup mode will
support SYMPAS effectively in testing the program related
to the controller and the process that is to be controlled.

Programming 28

Programming

3.4 The Setup Screen (Setup Mode)

By pressing
(F1) call up
help

Inputs = Sutputs awis (5]
] 1 | %5 Bxis number

=1 10F = = Hominal pos. = S000R Limitewiteh «
031 =0 103 = = Bctwal pes. = S000F Limitswilch - &
& =0 10& = E Spewd = 100 Refterenee k. o

=10 10% = Starl ramp = fnis arriwed :

] n 10& Slop raep

=1 107 = I fset

Indles
. §

snoen | K HIl - B OH: Haim Swiich i:

222 FURning
f

1] Status —— —— Display ser
.11 |

22 = MFESER
2 Ch4BAES | ——— Binfleg 33 % §

= Thk3eTh {0101 = Oe00eO000SA0EaRAT 1011110

= GEIE0ET

Text register (90
Thas tesl is an Lhe Lest register

In the setup screen a great number of functions are
offered, which are to support program setup in
connection with the controller and the process that is to
be controlled.

Here you will also find direct support in the status line,
while in the help window (to be activated using function
key F1) extensive, context specific help will be offered.

In the setup mode, inputs, outputs, register contents (as
numbers or texts), and axis parameters can be displayed
and modified. Further, the contents of the user interfaces
(LCD9, LCD16, etc.), as well as the number of the
program line just being operated can be displayed.

Programming 29

PROCESS-PLC

3.4.1 Keys and Functions in the Setup Screen

Programming

The field identification number for activation of the
individual fields can either be taken from the status line or
from the brackets after the field name.

In an active field, the following instructions can be given:

Key:
INS
DEL

ENTER

Cursor up
Cursor down

Cursor right
Cursor left

Ctrl-cursor

Function:
insert a new line
delete a current line

* input of a new value
* input of a new number

one input field back

one input field forward

switch between number and
value input (only inputs, outputs,
flags, registers, bin registers, text

registers)

selection of bits 0 to 23 in the
"binreq" field

incrementation of the cursor
value

decrementation of the cursor
value

30

Programming

3.4.2 Description of the Fields

Changes
between the
individual
fields

can be made

Individual fields can be selected with the help of the field
identification numbers. Thus, the input field can be
activated by key "1", the output field by key "2", the field
for flags by key "3", the field for registers by key "4", the
index field by key "6", the field for the display contents by
key 7, the binary register, in which the content of any
register can be displayed in binary mode, by key "8", and
finally the text register by key "9".

The following function fields are available:

Programming 31

PROCESS-PLC

Inputs OCutputs Flags Axes
Kevy 1 Key 2 Key 3 Kev 5

riject Fale Edat Scope Spectal

Tlock Transfer sting Honitor

 aris (5) —
E_]r_axis number 1
Hominal pos. 50000, Limitswiteh + :

Actual pos. S0000°%L imit switeh - :
Speed 106" Reference ok. :
Start ramp fix1s arrived
Stop ramp
Offset

Outputs/-
101
102
103
10%
105
106
1017

LI
un

P 11 11 11 WA
i

eqister (4)

[Status Display ser -
sa000 HAHD-B U1._11 OH: Main _Switch -
22% rungling

2126708

boh88ol — BinReg 232 % 8/ 1 7 3 1
1563624 10101 = 00000000fd00000014011110
5505057 —

105

————fText register (9)
200 = This tex¥ 1s in the/text regifter

Registers Status Display BinReg TextReg INndex
Key 1 Window Key 7 Key 8 Key @ Key 6

Input . Press key "1" -> now the input field is doubly
Field framed; this means, it is active.
Key (1) Press key "Insert" -> a field will appear, where the
number of the input to be displayed can be
defined. Confirm by pressing ENTER L.

The same applies to flags.

Programming 32

Programming

Output
Field

Key (2)

Register
Field

Key (4)

Axis Field

Key (5)

Press key "2" -> now the output field is doubly
framed; this means, it is active.

Press the "Insert" key -> a field will appear, where
the number of the output to be displayed can be
defined. Confirm by pressing ENTER [I. This
procedure can be continued, until the field is filled
with displayed outputs. With the help of the + and |
cursor keys various outputs can be selected, with
the help of the —~ and - cursor keys, one can
switch between output number and output status.
The output can be set or reset by the "+" or "-" keys.
The same way, the output numbers can be
incremented or decremented using the "+" or "-"
key.

With the help of the "Delete" key, the display of the
output maked by the cursor is deleted.

By the "Insert" key, an output can be inserted at the

present cursor position.

The same applies to flags.

In contrast to other fields, a value can be attributed
to the registers in field 4. With the help of cursor keys
~ and -, one can switch between register
content and register number. If the cursor is
positioned on the register content and ENTER [is
pressed, a field will appear, where the register
content can be changed. After input of the new
register value, confirm by ENTER [

After you have opened the axis field by key "5",
press the "Insert" key. A field will appear, where the
desired axis number can be input (confrm by
ENTER 0[). After this, all parameters are set
according to the axis condition. By pressing the
cursor keys, certain parameters can be selected;
by pressing ENTER L[, the parameters can be
edited in a field (confirm by pressing ENTER [J).

Programming 33

PROCESS-PLC

Index . The conditions of individual tasks are displayed in
Field the index field. Press the "Insert" key and input the

Key (6)

number of the task that is to be displayed. Repeat
this procedure, until all relevant tasks appear are
displayed in the field.

The tasks are displayed according to the following

pattern:

— the task number, as it has been defined by the

user

— the line number that is being operated in the task

at the moment

if applicable, a status description of the task,

which is expressed by the following four signs:

o
o "

o) ‘M"
o
O II____II
) "Err"

Programming

DELAY; delay time defined in
the program.

Input; program is waiting for
user input.

WHEN_MAX

Taskbreak; the parallel
branch is interrupted at the
moment.

Error; the called-up task
does not exist in the
program.

invalid program line

34

Programming

Display
Field

Key (7)

Binreg
Field

Key (8)

Text Register
Field

Key (9)

Remark:

The index field is only functioning, when SYMPAS has not
been left since program transfer; otherwise "-1" will be
displayed.

* In order to activate the display field, press key "7". In
this field it is shown what is displayed by the connected
user interface (e.g. LCD9/10) at that moment.

. Call up the binreg field by pressing key "8". In this
field, a register content can be displayed in binary
form. With the help of key combination CTRL and
one of the two cursor keys — and -, an individual
bit can be selected and modified (+ and -) The
display of the slave module SV1 status register
10100 can be selected by pressing the "INSERT"
key, followed by input of the desired register
number and confirmation by ENTER [l.

. The text-register field is activated by pressing key
"9". After pressing the "INSERT" key, a register
number is queried. Input register 200, for example.
With the help of cursor keys €< and - you can
switch between a register number and its
corresponding input text. If the cursor is positioned
on the input text, press ENTER [, in order to edit the
text.

. By this function, dialog texts for VIADUKT can be
written, for example (maximum length 40 bit). The
text can be stored in one of the registers starting
from register 200. In Bits O to 7, information on the
length of the texts, in Bits 8 to 15 status information,
and then each character, will be stored in ASCII
format (three characters per register).

Programming 35

PROCESS-PLC

If you display output 102 after starting Chapter
Program]input on the setup screen, you wil be able to
monitor the change of status every second. This way, the
status of a great number of functions - even for complex
processes - can be displayed, monitored, and also
modified. The axis, input, output, flag, register, display,
and any other conditons, can be Vvisualised

simultaneously.
11U JChL . underneath the "project’ menu line of the setup-
screen there is a status display of the general

function of the screen.

The rotating arrow indicates that the setup screen is
active. If the displayed data do not change, it can
be verified by the still rotating arrow, that the
present conditions of the individual inputs, outputs,
etc. are static, and that misfunctioning of the setup
mode can be excluded.

Number

By the number behind the rotating arrow, the
duration of a refresh cycle is displayed in 1/100
seconds. This is the time, which passes, until the
state of all inputs, outputs, flags, registers, etc. have
been realised in the display.

Programming 36

Programming

3.5 Description of the Menus

Here, the individual pul-down menus are described,
which can be activated from the menu bar. The
description is given in the order of the individual functions
in the pull-down menus of the three screens. Basically,
the pull-down menus are identical for all three screens -
program editor, symbol-editor, and setup-screen. Some
functions are only possible in connection with a certain
screen and are thus displayed in grey colour, which
means, they are not to be activated, on the other two
screens.

3.5.1 Keys and Functions in the Pull-Down Menus

The following keys can be used to move in the menu bar
and in the pull-down menus:

Key: Function:

Cursor up one menu line backwards
Cursor down one menu line forward

Cursor left one menu function backwards
Cursor right one menu function forward
Home first selection line

End last selection line

ENTER < activate function under cursor
ESC terminate

By pressing a highlighted letter or a function key defined
behind a menu line, the corresponding selection can be
activated (hotkeys).

Selection lines are marked ([x]) by pressing the ALT key
together with the highlighted key.

Programming 37

PROCESS-PLC

3.5.2 The "Project" Menu

HI! H’il#l !!l'.. I

Hain File...
Belete madn Tile enlry

Conweri symbol language
- ETECHH.BSE
TRY.DSE

o e Pl
a]

Ll S K
. POBEIERR.DSE
LEEH. DSE

4 Lprogram name,; CEFloPfdr Eld.

Show Project Data

Under the headlines shown below, general information is

given:

Prngran name

Prn]ect

Synhul file

Programming

-
=
-1}

—a 00
2}

Uersiont

38

Programming

Edit Project Data

In this menu, the respective general information can be
input (also see illustration above).

* Program name

» Customer/project
* Place

* Version

» Symbol file

The input is confirmed by pressing the ENTER [key.

Each time the program editor is activated, the version
number is incremented. If this has not been desired, the
version number can be reset by hand.

Main File

If INCLUDE files are to be integrated into the program
text, a main file must be defined, where up to 32
INCLUDE files can be stored. The following line will appear
in the program editor:

#| NCLUDE NANME

The design of an INCLUDE file is the same as that of a
common program file. Thus, already existing programs or
program sequences can be assembled to one main file.
Another advantage of working with INCLUDE files is the
possibility to work with program sizes that could not be
stored in a PC memory any more. By dividing up the
program into various INCLUDE files which will again be
logically combined in the main file, the restriction of
memory space by the size of the PC memory can be by-
passed. An extensive description can be found in
Chapter B.7 INCLUDE Files|

Programming 39

PROCESS-PLC

A\

Programming

Note:

In the main file 32 INCLUDE files can be defined as a
maximum.

Delete Main File Entry

The main file that has been defined in the "Main File...'
selection is deleted.

Convert Symbol Language
The language used in the SYMPAS symbolism is
converted into another language. For this purpose the

alternative expression is given in square brackets in the
symbol editor.

40

Programming

Define the
alternative
symbol in
square
brackets

Start
converting in
the menu
"Project /
Symbol
Language"

Select the
programming
language in
the menu
"Special /
Settings"

Convert Symbol Language

Before Converting

“Pru]ect File Edit Block Transfer Llst}Qg Honitor Scope Special

I: TASE Beqinming
B EOTD Feginmimg

Figure 7: Program editor before converting

After Converting

ecl_TFile Tdil_Flock TransTer TisUing Feailer Tcape Fpecial

Figure 7: symbol editor after converting

ransier |isiieg Pamilor Scope Special

—h

| H -|.| | irst

|'||-:|- sl pragran

Figure 8: Program editor after converting

Programming 41

PROCESS-PLC

3.5.3 The "File" Menu

Programming

m

Save Fi
Save 8%...
Save all Eirl-F¥

Hew program
Pick list...

hlt-F3

Change direciory...

fave environment. ..
Laad environmesi...

0 shell
Exit SYMPES

AlL-X

New Project

In order to start a new program, the program and symbol
editor can be reset. The present content of the two
editors will get lost by taking this step, thus it should be
stored in advance. You will now find the same conditions
as after a new SYMPAS start.

Open...

Program or symbol files are loaded from the disk or hard
disk drive by this function. A window will appear, where
the complete path and file name can be defined. If the
window is ignored and RETURN [is pressed, all available
fle names, among which a selection can be made with
the help of the cursor keys (load by pressing ENTER), will
be displayed.

42

Programming

Save

By this function, the program or symbol editor is stored on
the drive under the name that has been defined in the
menu part "edit project data".

Save as...

By this function , the program editor, as well as the
symbol editor, wil be saved on the disk under any
desired name. After "Save as ..." has been activated, a
window will be opened, where the file name defined
under "project data" will appear. This name (and path)
can be confirmed by ENTER [, or else be modified; then
the function can be ended by ENTER [. The defined
name will be the actual name.

Save all

By this function, the program-, as well as the symbol
editor will be stored on floppy or hard disk. If no symbol
fle has been defined in the "Edit project data" window,
only the program editor will be stored by the settings from
the "Edit project data ..." window.

New Program
The program in the program editor is deleted. The

content of the symbol editor remains unchanged (Add
INCLUDE-files to the project).

Programming 43

PROCESS-PLC

Select
directory by
ENTER and
change
directory by
ALT-W

Programming

Pick-List...

32 file names can be loaded into a selection window as
a maximum, or the corresponding files out of the window
into the program editor.

A main file and up to 32 INCLUDE files can easily be
managed by this pick list. SHIFT-F9, helps to switch
between the two files which have last been worked with.

Change Directory...

This function helps to change the directory or drive.

Save Environment...

By this function, the following settings are saved under a
definable file name. (Select the required file by pressing
ENTER and activate by pressing ALT-W.)

Program Editor:

. Program name

. Cursor position

. Block data

. Program label data

. Switch to "Display symbol
parameter”

. Switch to "Monitor function

Symbol Editor:

. Symbol file name
. Cursor position

. Block data

. Program labels

44

Programming

Setup Screen:

. here, the complete screen wil be stored. The
condition of all the windows up to the cursor
position is kept in the memaory.

The extension of the peripheral files is .DSK.

Load environment

A *DSK file is loaded by this function. See "Store
environment".

DOS shell

By this instruction SYMPAS is interrupted in order to operate
on DOS surface, and from there one can return to
SYMPAS by the DOS instruction EXIT.

Exit SYMPAS

By this function SYMPAS is terminated in order to return to
the DOS level.

Programming 45

PROCESS-PLC

3.5.4 The "Edit" Menu

Criteria for
searching:
Instruction,
parameter
and line
number
included

Programming

Hexl

Eestore line

Program

By this instruction the program editor is activated.

Symbol

By this instruction the symbol editor is activated.

Find...

This function helps to find an instruction or a program line.
After activating the function, a window will appear, where
the expression to be found (Criteria for searching:
Instruction, parameter or program line number included)
can be defined. Indirect levels are not considered as
criteria for searching here.

The search is caried out from the cursor position down to
end of program.

46

Programming

Replace...

This instruction is connected with the above search
function. First the command is analogue to the
searching command mentioned above, yet, another
input line is offered, where the expression is written, by
which the searching expression can be replaced.
Indirect levels cannot be used.

Find Text...
This function helps to search for texts, which can either be

found in the commentary ranges or are parameter
components of certain instructions (e.g. DISPLAY TEXT).

Replace Text...

This instruction is connected with the search function
mentioned above. Further, an expression can be
defined, by which the search expression is to be
replaced..

Next

This instruction also relates to the search function. Further,
an expression can be defined, by which the search
expression is to be replaced.

Restore Line

The line deleted last is restored by this instruction.

Programming 47

PROCESS-PLC

3.5.5 The "Block" Menu

Programming

Heue
Copy
Erase

Listimg
Lwad bleck...

Save black...

Block on/off

Here the block function can be switched on or off. After
activating, the block can be marked using cursor key 1,
starting from the present cursor position. After this, the
marking mode is deactivated by repeated call-up of this
function. Then the block can be used for further
operation.

Move (Ctrl K-V)

The block is moved from its original position to the actual
cursor position. Thus, after execution of the command,
the block is removed from its original position.

48

Programming

Copy (Ctrl K-C)

The block is copied in front of the actual cursor position.
After carrying out the instruction, the block will be on the
place, where it has been marked, as well as over the
actual cursor position.

Erase (Ctrl K-Y)

The marked block is deleted.

Listing

With the help of this function, program sequences
marked as a block can be edited on a printer or stored
in a file. This file has got the same format as the data
transfer to the printer during the printing process. After
activating the selection line "Listing", a window will
appear, where the output to printer or file, the sheet
length, and the left margin can be defined. The default
values refer to the printing on continuous form paper.

Load block...

Here, a block is loaded from disk or hard disk. A window
will be opened, where the name of the block to be
loaded can be input. If this window is ignored and ENTER
[is pressed instead, a window with the files available for
selection wil appear. The structure of a block file is
identical with the file of a complete program.

Programming 49

PROCESS-PLC

A\

Programming

Save block ...

The block is saved to floppy or hard disk. After
confirmation of the selection line, a window will appear,
in which the name of the block can be defined. The
structure of a block file is identical with the file of a
complete program.

Note:

For the "Load block..." and "Save block..." functions, a
path to a directory can be specified, which need not be
defined again. For this purpose, the following instruction is
to be given on DOS level (e.g. in the AUTOEXEC.BAT):

SET SYMPASBLOCKS=" PATH'

where, for instance, "PATH" can stand for C:\BLOCK.

50

Programming

3.5.6 The "Transfer" Menu

Froject File Fdit_Block JFESSPERN Listisg Meniter Scope Special

Fils.EM - Editer...
File.EHE --> EAM...

Compare editer - HAHI-B

Ppdate speralisg sysiem...
E ==% Flash
Flazh - RiM

Eegister --> File.Dh...
File.DA --» register...

Extension, by

the example : -> Fi
of NANO-B; it Cditor - File.ENB

can be
named By this function the program is transferred into an object

differently, fle the name of which can be defined in a window.
depending on
the controller

NANO-B -> File.ENB

Transfer of a program from the RAM of a controller into
an object file the name of which can be defined in a
window.

Programming 51

PROCESS-PLC

File.ENB -> Editor...

Program transfer from an object file into the program
editor.

Programming 52

Programming

SYMPAS Program and System Files
(Extension *.ENB, for NANO-B as an example)

Program
Editor

Editor -> Flle.ENB

v

File.ENB -> Editor

Object File DA-File
(executable) (Reqister,
Flag)
File.ENB File.DA ->
-> RAM Reqister
NANO-B -> Register ->
File.ENB File.DA
Ctrl-F9 - -
Transmit
Progrom COﬂTFOller

Programming 53

PROCESS-PLC

Programming

File.ENB -> NANO-B...

Program transfer from an object file into the RAM of a
controller. The program wil be transferred to, yet not
started in, NANO-B.

Compare Editor -> NANO-B

The program editor is compared with the editor in the
RAM of the file. In a window, information is given, as to
what degree both programs are identical.

Register -> File.DA...

You will be able to save self defined register and flag
ranges as hard disk files. After function call-up a window
will appear, where various ranges can be defined. These
ranges can differ from each other in their type. Register
and flag ranges are possible- 8 as a maximum. After all
the desired ranges have been defined, the window can
be left by the first menu line "All ranges defined, start
transfer". Now a window will appear, where the file name
can be defined. The extension ".DA" wil be added by
SYMPAS, and the file will be saved on hard disk.

File.DA -> Register...

The file described under "Register -> File.DA" which serves
for the storage of register and flag ranges, is loaded into
the controller from hard or floppy disk.

Thus, all register and flag ranges of the controller, which
have been defined in the file, have been updated.

54

Programming

The DA File

Register and
flag ranges
are stored on
PC or VIADUKT
by the DA file

Header ->

Range of
registers
-=>

Range of flags
-=>

The DA file is an ASCI file which can be stored on the PC
or VIADUKT hard disk and reloaded into the controller
from there.

As an example, a DA file can look this way:

SD1001

; NANO B DATA FILE - JETTER Autonati on
Techni que 71642 Ludw gsburg

; C.\ SYMPAS\ EXAMPLE\ EXAMPLEL

Header
Definition
RS 1 10
RS 2 20 :
RS 3 30 \Reg'Ster
RS 4 40 List
RS 5 50
FS 1 0 Flag
FS 2 0 List
FS 4 0
50

FS

In the example shown above, the following register
ranges, resp. flag ranges have been stored in the DA-file
"EXAMPLE1.DA":

» Register 1 to 5 with the respective content

» Flag 1 to 5 with the respective status

Programming 55

PROCESS-PLC

Setup of a
DA-file

Programming

The register-, resp. the flag list is designed as follows.

« 1* column: Identification RS for register, FS for flag
« 2" column: Register-, resp. flag number
« 3" column: Register, resp. flag status

56

Programming

3.5.7 The "Listing" Menu

Page seliings...

Printer

The content of a program or symbol editor will be output
as a program listing on the printer.

File...

The content of a program or symbol editor will be written
as a program listing into a file. After activating the "File"
selection line, a window wil be open, where the fie
name can be defined, which is then be taken over into
the program listing. The extension *.LST." will be added
automatically.

Programming 57

PROCESS-PLC

Programming

Page settings...

Various settings concerning the page format can be
made in this window.

Sheet length

Here, the sheet length can be defined. The default value
refers to the printing of listings on continuous form paper.

Left margin

Here the width of the left margin of the listing is
defined.The input number refers to the number of blanks
preceding the actual text.

Form feed

A form feed at the end of each printed listing page is
generated by this function (if marked, it is activated). If
the form feed function has been deactivated, blank lines
will be printed.

58

Programming

3.5.8 The "Monitor" Menu

Inpuls —- Bulpuis

R¥i% nusbher
Hominal pes Shaft-F2
[T TEW | HaHl-B siop Shift-F3
'!'_|||rr|] kB continue Shift-Fi
Start rasp
Slap ramp

Bitsei LT

Register (6) =

Elalms Daisplaw
File
Ha Swnc ! | |
HOMAME .RT
HinEey &3 " -1 [mit
| | fownd !

Text reqister (%)

Setup

By this selection line, switching into the setup screen is
caused.

NANO-B start

The program is started in the NANO-B by this instruction
after having been transferred into the controller RAM, for
example, by the selection "File.EPR -> RAM" out of the
"Transfer" pull-down menu. It is started by this instruction.

NANO-B stop

Processing of the user program will be stopped.

Programming 59

PROCESS-PLC

NANO-B continue

Processing of the user program will be continued at the
point where it has been interrupted. The "NANO-B Start"
function, though, would start at the beginning of the
program.

Programming 60

Programming

3.5.9 The "Scope" Menu

Monitoring
any register of
various
controller
modules

3 graphs can
be displayed
simultaneously

Module cenfiguration. ..

Wi is nesber
Hominal pes.
Bciwal pas,

Speed Etart recording...
Slarl ranp Step recerding End
Slop ramp Transfer data...
L LEETT Edil wiew box...
Tosm F%

Scale Y-anis...
Dasplay ref. File...
Erase ref. display
Sawr a3 FCE file...

Tewt regisier (¥)

Elivale ScEpe Ecredn

Using the scope function, any register of the following
modules can be recorded:

» PASE-E SV4 Plus (servo controller)

» PASE-E DIMA3 (digital servo controller)
» PASE-E PID4 (digital PID controller)

» PASE-E AD16 (analogue input card)

* NANO SV (Servo controller)
* NANO PID (Digital PID controller)

As all register contents can be logged, it is possible, to
display speed and position of an axis in relation to time,
or to display the graph of an analogue input, to give but
a few examples.

Up to 3 graphs can be displayed simultaneously in the
scope screen.

Programming 61

PROCESS-PLC

Press (F8)
to open the
Scope screen

Input of slot
number and
module type

Programming

File Edit Block Transfer Listl

T TonTior B Special

BCope FB

Rodule conf igurat ion, ..

Start recording. ..
Stogp record ing
Tramsfer dats. ..
EAit wicw baox. ..

Ermul

Zoom, . . F3
Scale T-axiz,..

|
Eraze el . dizsplay
Sawe mx PCX File. ..

The following functions are available in the "Scope"
menu:

Module configuration...

First, a window will appear, where number and type of
the module to be monitored will be given.

Slot number

v

NANO-B odule

62

Programming

Define
sampling time
and assign
registers to
channels

Start

Another window wil be opened now for input of the
detailed module configuration.

Module conf iguration

Here the sampling time will be defined, while registers of
controller modules wil be assigned to the channel
(scope) of the Scope screen, in which they are to be
displayed.

Start recording...

The following window will appear:

Recording of the registers assigned to channels under
"Module configuration".

Programming 63

PROCESS-PLC

Conditional Recording of the registers, which have been assigned to
start channels in "Module configuration”, depending on the
conditions defined in the selection line "Trigger setup".

The following window will be opened:
Trigger setup

Trigger =setup

3
-8388608
9

83886087

Both trigger The condition for trigger register 1 is:

conditions , Tigger register 1 > Trigger value 1
must be 99 d 99

fulfilled . , . .
The condition for trigger register 2 is:

 Trigger register 2 < Trigger value 2

Both trigger conditions must be fulfilled.

Stop recording

Recording the register values is stopped.

Programming 64

Programming

Input the
number of
curves to be
displayed

The contents
of 4 additional
registers can
be displayed

Transfer data...

The following window serves for defining the number of
curves to be read by SYMPAS from the controller memory
and to be displayed on the Scope screen.

Tranferring graph data from NANO-B

1

Edit view box...

This function helps to display and change up to 4
controller registers of any kind in the top right corner of
the Scope screen.

Change register

1

Programming 65

PROCESS-PLC

Zoom...

The x-axis can The range of the time axis to be displayed over the entire

be scaled by screen can be defined by the "Zoom" instruction.
the "Zoom"

instruction

Zoom window

Scale Y-axis...

Y-axis scaling First define, for which graph the display of the y-axis is to

of each graph be scaled.
can be

selected
individually

Now input the new value range which is to be displayed.

Programming 66

Programming

The display
area of each
graph can be
selected
individually

Change =cale

Display ref. file...

The monitor display can be saved by "File / Save" (*.SCP).
By "Display ref. file..." a reference file, which has been
stored on hard disk, will be displayed on the screen
again.

Erase ref. display

The monitor display of the reference file (*.SCP) will be
deleted again.

Save as PCX file...

The monitor display will be stored as a PCX file on hard
disk.

Programming 67

PROCESS-PLC

3.5.10 The "Special" Menu

Programming

#el File Fdil_Bleck Tramsfer Lisling Manilor Scaps DERSSRSIN
CETTER

Terninal _
Inwestigate program line. ..

Interface. ..

DBialogue langmage.-.
Frogram lamgwage...
Colers. ..

Settings. .. Cirl-E

we config

JETTER

After giving this instruction, an information window will
appear, from which the following information can be
taken:

. Program version

. Our phone number

. Current interfaces: COM1, COM2, or JETWay
. Controller state: online or offline

. Save environment: ON or OFF

Under this heading information about the switch
position of the "Auto save environment" function is
given.

. Syntax-Check: ON or OFF
Uncer this heading information about the switch
position of the "Syntax Check" function is given.

. RAM capacity is still available in the PC

68

Programming

Terminal

A terminal is simulated by this function. In the upper
section of the screen there wil be the data sent via
interface, in the lower section there wil be the data
which have been sent back to SYMPAS.

These functions are reserved for internal use by the JETTER
company.

Investigate Program Line

Investigate actual program line (task pointer, special

function).
Interface...
Interface
_ , In the window which will appear, the interfface can be
Timeout time

defined, by which the connection to the controller is
Baud rate made up. A choice can be made between COM1 and
COM?2 of the PC or the JETWay interface (see Chapter
SYMPAS for Several Networked Controllers (JETWay-H)). In
addition, can be defined a timeout for the selected
interfface. The change between various screens
(program editor, symbol editor, setup-screen) can be
speeded up using this function, if the controller is not
connected. Further, the baud rate for the DA file, resp. for
program transfer, will be given.

Dialogue Language...
Here, the dialogue language, e.g. the language of the

pull-down menus, help windows, etc. can be defined. A
choice between English and German can be made.

Programming 69

PROCESS-PLC

Programming

Program Language...

Here, the programming language, i.e. the language, in
which the instructions will be displayed, can be selected.
A choice between English and German can be made.

Colors...

In this selection line the colour settings for the entire
programming environment can be determined. After
confirming the selection line a window will appear, where
again a choice of 4 subordinate windows is offered. With
the help of the TAB key, the windows "Group", "ltem",
"Foreground" and "Background" wil be activated one
after the other (distinguished by double frame). By the
SHIFT-TAB key combination, the windows are activated in
reverse sequence. One can move between the
individual windows by the cursor keysFor each line of the
"Group" window, there are one or more sub-divisions in
the window "Detail", which can be assigned a certain
colour in the windows "Foreground" and "Background".
Colour setting will be interrupted by pressing the ESC key,
while it is confirmed by the ENTER [key. Underneath the
"Background" window there is a test text, where a preview
of the colour setting is given in an exemplary text.

70

Programming

Settings...

In a window, the following settings can be defined:

o L1 ARl Er & i F -
b= Length: (]|] 1o Q|| '[\]"

l'rli- editer l“I
tan check
i e [B T

Centroller t pe HERDSR @ Iihers
O —— A

isplay type NENNESSSINN N

Program Editor
. Display of the symbol parameters (Ctrl-Alt-S)

When symbolic expressions are used for
parameters of the programming language
instructions, the numeric value of the parameter will
additionally be displayed in the program text by
this function.

If the following line is found in the program

REG r Nunber Part s

in the line below, the number of the controller
register will be added by the function:

REG r Nunber Part s
100

That way, the assignment of symbolism to
physically existing registers can be checked.

Programming 71

PROCESS-PLC

Programming

Monitor Function (Ctrl-Alt-M)

The register contents are displayed in the program
editor.
If, for example, there is the following program line

REG STER LOAD [100 with R(200)]

the "Monitor function" will lead to the following
result:

REG STER LOAD [100 with R(200)]
0 23

The contents of the respective registers are

displayed in the line below and are continuously
actualised.

12

Programming

With the
settings

o number
0 auto
o ignore

Compatibility
with

former
versions

Configuration

Auto save environment

If this switch is active, all environment settings (as
described in Chapter are saved under
SYMPAS.DSK. When SYMPAS is started afresh, all
settings are restored, when the switch "Auto save
environment" is being kept by the instruction "Save
environment".

Controller type

Here, the desired controller type can be set.

Version number

Here, the version number of the operating system
of the controller mentioned above is input.

Auto: Error report, if for program transfer the
controller version does not contain the instruction
set that has been used (if it is too old).

Number: Eror report, if for program transfer the
controller version does not contain the instruction
set that has been used (if it is too old).

Display-Type
Here the information is given, whether a 2 or 4 line

LCD display is being used (only for the setup-
screen).

Setup

Disable input
Register contents, respectively input, output and

flag conditions can be displayed, but not
changed..

Programming 73

PROCESS-PLC

Programming

Syntax - Check

active

By this function, "Syntax check" is switched on and off. The
program is checked by "Syntax check" for the following
criteria:

Has TASKO been defined?

Incomplete comment

double flag or task

conditioning has not been finished
incomplete conditioning

brackets have not been set correctly

task instructions without corresponding task
condition without corresponding flag
subroutine without corresponding flag

GOTO without SUBROUTINE command

error in instruction syntax

completeness of task

number of subroutine levels (20 are possible)
main program is running in subroutine

go into a non-corresponding task

local subroutine has been called up by a non-
corresponding task

error in arithmetic or Boolean syntax

If the "Syntax Check" switch is set to "ON", a syntax-check
will be carried out for the following actions:

before program transfer by the selection line
"File.ENB... -=> RAM" in the "Transfer" pull-down
menu.

Before automatic program transfer and program

start from the program editor with key combination
Ctrl-F9.

74

Programming

Independent from the switch position the syntax check is
carried out:

. with the SHIFT-FO key combination in the program
editor.

. Check global CALLs

Per definitionem, global calls stand at the end of
the last task. Any different positioning wil be
remarked by the Syntax check. If this function has
been deactivated, global calls can be placed

anywhere.
Others
. Transfer constants

The constant data defined in the symbol file are
transferred to the controller.

. old protocol

For the programming interface (RS232) the old
protocol is used (applies to PASE-E PLUS only.)

Save config

Using the function "Save config", the following
configurations are kept:

. Dialogue language

. Programming language

. Interface

. Number of lines per page

Programming 75

PROCESS-PLC

This setting refers to output of block and program
listings.
. Margin
This setting refers to the output of block and
program listings.
. Switch Positions
o Auto save environment
o Syntax check
o Formfeed at end of page
o Timeout
. Colours

Programming 76

Programming

3.6 Symbolic Programming - the Symbol Editor

Switch
between
program and
symbol editor
by pressing
(F4)

ecl Fole kdil HBlack Transier Il!.l-i.il Honifer Scape Sprcial

Using the F4 function key or the corresponding selection
ine "edit" in the pull-down menu you will get into the
symbol editor. In this edior a file to assign symbolic
names to all instruction parameters of the programming
language can be created. Thus, for example, input
"IN102" will become "IN iStart". Each numeric parameter
of the instruction language can be replaced by such
symbolic naming, which means more clarity of the
program and laees maintenance after completion. The
following order should be observed: First, create the
complete symbol file, in order to write the corresponding

Programming 77

PROCESS-PLC

program into the program editor.

3.6.1 Keys and Functions in the Symbol Editor

Programming

Some rules for the creation of the program symbolism
must be considered.

Any available ASCIlI character, starting from the ordinal
number 32, can be input.

Valid symbols must start in column 1 and must be
separated from the following parameter by at least one
blank. The symbol length is limited to 15 characters.

Parameters of the type "string" (DISPLAY_TEXT) have to be
enclosed by one of the following characters: ", ', or #
(e.g. "Hello World"). The string length is limited to 24
characters.

INCLUDE files can be included after the following pattern:
#I NCLUDE fil e nane

INCLUDE files must also start in the first column.

Commentaries must be preceded by semicolon or at
least one blank.

78

Programming

Cursor Movement:

Key: Function:

Cursor up one line back
Cursor down one line forward
Page up page back

Page down page forward
Ctrl-page up go to first line
Ctrl-page down go to last line

Cursor left one column back
Cursor right one column forward
Home go to beginning of line
End go to end of line
Ctrl-cursor left previous word
Ctrl-cursor right next word

Editor Instructions:

ENTER new line

BS delete character in front of the cursor
DEL delete marked character
Ctrl-Y delete line

Programming 79

PROCESS-PLC

Block Operations:

Key: Function:

Ctr-K B mark top of block
Ctrl-K K mark end of block
Ctrl-K vV move block

Ctr-K C copy block

Ctrl-K'Y delete block

Ctrl-K R load block from disk
Ctrl-K W write block onto disk
Ctr-K P print block

Ctrl-K H switch off block

Ctrl-K L mavk line

Ctrl-Q B search for top of block
Ctrl-Q K search for end of block

Program Labels:

Key: Function:

CtrlK0..9 0 to 9 cursor positions of the symbol text
are stored.

Ctrl Q 0..9 cursor positions 0 to 9 are searched for in
the symbol text.

Programming 80

Programming

3.6.2 Creating a Symbol File (in the Symbol Editor)

The numeric parameters of the programming language
can be replaced by symbolic names.

REG 100 wil become

REG r Nunber O Part s

A symbol file is created according to the following
pattern

. A valid symbol has to begin in the first column. If a
line starts with ";" or a blank " ", this line is interpreted
as a commentary line.

r Nunmber O Part s

. This symbolic parameter r Nunber O Part s is now
given its numeric equivalent, which will appear in
the same line only being separated by at least one
blank " " from the symbolic name.

r Nunmber O Parts 100

. A commentary can be added now. It must be
separated from the parameter by at least one
blank or semicolon.

rNunberO Parts 100 ; Commentary: The synbol
"Nunber O Parts" is rel ated
to the nuneric paraneter
"100".

Programming 81

PROCESS-PLC

Programming

REG 200 = REG r Nunber O Part s

register REG 100 , which is physically existant in the
controller is given the symbolic name "NumberOfParts".

After writing the symbol listing, the creation of programs in
the program editor can be supported as follows: For
example, a register with symbolic naming wil be input
into the program editor. After input of the "RE" short form
a window wil appear, in which register numbering,
respectively symbolic nhaming can be caried out. If in
this window the first letter of the symbolic name is written,
and after this the key combination SHIFT-? is pressed, a
window of all symbolic names starting with this letter will
appear. Now you can easily select the respective name
by cursor key. This way, symbols that have been defined
once, will not have to be typed over and over again.

82

Programming

Example of a Symbol File:

Synbol |i sting von ,prog01“ V1, 28.04.1996 15:13 Seite 1

JETTER PROCCESS- PLC NANG- - B

Cust oner/ Proj ect: synpas nanual

Pl ace : Ludwi gsburg
Dat e : 28.04.1996 15:13
Ver si on 1

;**** TASK * %k k%

t Cont r ol Task

t Aut oTask

t D spl ayAct ual pos
t EMERGENCY_STCP

;**** LABELS * %k k

sLoop 40
sDri velLeft 41
sDri veR ght 42
sRef Drive 43

;**** |NPLJTS * %k k%

f Ener gSt opSwi t ch
i Ener gDoor

i Automati c

i StartButton

i St op_But t on

i Ref _Run/Button

;**** EG STER * k kk
r SM St at us

r Command Regi ster

r SM Speed

r Act ual Posi tion

;**** FLAG * %k k%

1" Ref erenceXX 1

105
106

107

108

201
202

11100
11101
11103
11109

0 ; The process is controlled by the task
1 ; Aut omat i c- Task

2 ; D spl ay- Task Actual position

3 ; EMERGENCY STOP- Task

; Flag 40

; Flag 41: Program sequence drive |eft
; Flag 42: Program sequence drive ri ght
; Flag 43: Program sequence reference run

; Switch Emergency Stop Condition
; Switch Emergency Stop Conditi on;
; Emer gency Door is Open
; Switch Aut omat i k/ Hand
;Button ,Start”
; Button , Stop*

; Button , Ref erence Run“

; Status regi ster SM Control

; Command regi ster SM Control

; Nom nal speed regi ster SM Contr ol

; Actual position register SM Control

; Flag: Reference Drive has taken place
f Aut omat i cTask 2 ; Control Flag Automatic- Task
f ArrowLef t 217 ; LCD Qursor Key |eft
f ArrowRi ght 218 ; LCD Qursor Key right
Note:

The path of the symbol fle must be identical to the path
of the corresponding program file. The relationship
between program file and symbol file wil be
demonstrated extensively in Chapter 6. Demonstrating

Example: Handling-System|

Programming 83

PROCESS-PLC

3.7 INCLUDE Files

Structuring of
programs

Function
libraries

Enlargement
of maximum
program
length

SYMPAS programs respectively program parts can be
included in a SYMPAS program. Thus, a complete
program can be combined out of a pool of SYMPAS
modules. #| NCLUDE instructions can be part of both
program and symbol files. The maximum number of
INCLUDE files has been restricted to 32 per editor.

INCLUDE files are used for

* modular structuring of programs
» Combining INCLUDE-files in instruction libraries
» Avoiding restrictions in the maximum program length

3.7.1 INCLUDE Files in the Program Editor

#1 NCLUDE
instruction as
a place
holder for the
text of the
INCLUDE file

Programming

INCLUDE-files are integrated into the text of the main file
by the #I NCLUDE instruction. This instruction line is
functioning as a place-holder for the program text, which
is written in the INCLUDE-file. Exactly the program text
which is in the INCLUDE file is logically placed in the main
fle, where the #INCLUDE instruction has been inserted
under the name of the respective file.

84

Programming

32 INCLUDE
files are
possible

No nesting of
INCLUDE files

The INCLUDE
file is inserted
by the

#1 NCLUDE
instruction

Define Main File

In the menu "File/Main file..." the main file will be defined.
In this main file the INCLUDE-files will be inserted..

Figure 9: Up to 32 INCLUDE files can
be defined in the main file.

The #INCLUDE Instruction

With the help of the #I NCLUDE-instruction, the INCLUDE
file will logically be integrated in the program text.

Figure 10: The INCLUDE file is inserted by
the #INCLUDE instruction.

Programming 85

PROCESS-PLC

Example:

Main file:
TOTAL.PNB

INCLUDE file
PUMPO1

Determine with
the help of the
pick list, which
file is to
appear in the
program
editor

Programming

Note:

» 32 INCLUDE files can be defined in the main file.
* Nesting of INCLUDE files is not permitted. In one
INCLUDE file no further INCLUDE files must be defined.

The result might be similar to the following one:

FII.I Eﬂ. ITack _TransTer ll“tl.!q Honilor Scape Gpecial
= * L. . = s L1 HL =

DISPLAY TEXT Jd0, ep=1, "Program 7

ONT Pentilater sWentilater BH

DELAY 10 Magts 1 &

PBS [amwis=1, pos=RMiMsgazine), w=E(Autematicd] ;Put
WHEH

AEARE amis=1

THEH

rums" ||

-BUT Vemtilator sBentilater OFF
DELAY 1D “Hank -
= DISPLAY _TEXT [30, cp=1, “Axis in Pasitiom™]
37: TASKE 1PemgConlral
" 1 E

E[:d of pregras

—iL

Figure 11: The INCLUDE file PUMPO1 has been inserted into
TOTAL.PNB

The Pick List

With the help of the pick list (file / pick list ...) selection
between main file and INCLUDE files can be made. For
this purpose, first load the necessary files (New File) into
the pick list. From then on, the file wil appear in the
program editor, which has been mouse-clicked upon in
the pick-list.

86

Programming

i Pick list A
FUMPFD1 +

—— Hew fi1le —-
E -

Figure 12: Integrate files in the list by "Open". The file which
has been mouse-clicked upon in the list will appear in the
screen..

3.7.2 INCLUDE Files in the Symbol Editor

By #| NCLUDE
further symbol
files can be
integrated in
the symbol
text

#1 NCLUDE
instruction

A symbol file serves for integrating further files as INCLUDE
files. Thus, a library of pre-designed, application related
symbol files can be created, which can be integrated
into the symbol text if necessary. In the symbol editor, the
following line can be read, for example:

Fraject Fale Edit Hlock T:'IHF\HF l.l.lt:ll'!_ Homitor Gcope Special

= 5liZ ki TES T u

I'Programi sEomlipe Frogramd s slariled
fPrograsd ;Eoutine Programd is started

TIHCLUBE Peeep0

Programming 87

PROCESS-PLC

INCLUDE files
can be
defined

together
with a path

A\

INCLUDE Files:

The file name
and the file
itself must be
o.k.

A\

Programming

The INCLUDE-fle can be defined together with a path.
Nesting on several levels is not possible. The respective
pieces of information are taken from the files on hard disk
and will not appear in the symbol editor.

Note:

» 32 INCLUDE files can be defined in the symbol file.
» Nesting of INCLUDE files is not permitted. In an INCLUDE
file, no further INCLUDE files must be defined..

For the use of INCLUDE files, two aspects have to be
considered. First, the file name must be identical with the
name that is on the hard disk. Secondly, the content of
the respective INCLUDE-fle must be o.k. In case there are
errors in the INCLUDE-file or in the file name, leaving the
symbol editor is not possible any more. The
corresponding include files have to be cleared, if an
error has occurred.

Note:

If the symbol editor cannot be left because of a faulty
INCLUDE file, the errors of the INCLUDE files must be
cleared (with ;). Then, the INCLUDE file which has been
cleared of the errors can be left.

88

Programming

The design of
the INCLUDE
file is identical
to the design
of a symbol
file

May we remark in conclusion, that the design of an
INCLUDE file is identical to that of a symbol file. Thus, any
existant symbol file that has been saved on hard disk,
can be included in any further symbol file as an INCLUDE
file, which then must not contain any further INCLUDE files,

though.

Programming 89

PROCESS-PLC

3.8 Error Messages

Call the syntax
check by
(SHIFT) (F9).

Check the
symbol text by
(ALT) (F9)

Programming

The following SYMPAS error messages are meant to
support the program editor, the symbol editor, as well as
general programming of PROCESS-PLC controllers.

The program with its coresponding symbol file is
checked by the syntax check. This will (if activated;
Chapter B.5.10 The "Special' Menu) be activated before
program transfer into the controller, by the key
combination SHIFT-F9.

Further, there is the possibility in the system editor to
check the symbol text for syntactic correctness by the
key combination ALT-F9.

In another window there will be information on numbers
and categories of errors. After confirming with ENTER [,
the cursor will be placed at the error position of the
program editor. A red eror line wil provide further
information.

If several errors have been reported in the window
mentioned above, one eror after the other can be
corrected by calling the syntax check function as often
as necessary by SHIFT-F9. A context-related help
messsage per error will appear in the red error line.

The following error messages are possible:

90

Programming

Error Messages of Symbol Errors:

1 Symbol not found

A symbol placed in the program text has not been
defined in the symbol file.

2 Symbol already exists

A symbol has been defined several times; for instance
INPUT 102 twice.

3 Invalid parameter

An invalid parameter has been assigned to a symbol in
the symbol editor: numeric parameter: max. &= 8388606.

4 Exceeds valid value range

The instruction paameter is outside the valid value range.

5 Symbol is not a register

One symbol has been defined for both a numeric and a
text parameter.

6 Invalid string constant

An invalid string parameter has been defined.

Sting parameters must stand between " or ' or '
characters. Their length can be 24 Bit as a maximum.

Programming 91

PROCESS-PLC

Error Messages in the Syntax-Check:

Programming

9 Function definition (X) not found

A function called in the program text has not been
defined in the program heading.

10 Function call does not match

The number of parameters is not equal in call-up and
definition

11 Too many labels

There are too many relative flags (managed by SYMPAS
itself)

13 First instruction has to be TASK 0

The first instruction in a PROCESS-PLC program must be
TASK 0.

14 TASK(X) already exists

Task number "X" has alleady been defined in the
program.

15 LABEL (X) exists already

Flag number "X" has already been defined in the
program.

92

Programming

16 TASK not found

A task defined as TASKBREAK, TASKCONTI NUE,
TASKRESTART does not exist.

17 TASK (X) is no endless loop

Task number "X" has not been closed by a GOTO
instruction. Each task must be closed in order to form an
endless loop.

20 GOTO label not found

The LABEL(X) or TASK(X) relating to the GOTO(X) instruction
do not exist.

21 GOTO into another TASK

It is not possible to give GOTO instructions for jumps into
other parallel branches.

22 GOTO into procedure not allowed

GOTOs into functions (from outside) are not permitted.

23 GOTO from procedure not allowed

GOTO out of functions (to the outside) is not permitted.

Programming 93

PROCESS-PLC

Programming

24 Global subroutines only at the end of
program text

There are differences between local and global
subroutines. Local subroutines are only used by one task.
They are placed at the end of a task.

Global subroutines are used by various tasks and have to
be placed at the end of t he entire program text, that is,
after the text of the last task. If this structure cannot, or is
not to be maintained, the syntax check can be
deactivated with the help of the respective switch

25 Only 20 subroutine levels valid

20 subroutine levels are permitted.

26 RETURN without SUBROUTINE

A RETURN instruction that has not been preceded by
CALL has been found by SYMPAS.

27 Main routine runs into subroutine

The main program will turn into a subroutine.

28 CALL not found

There is no FLAG X) corresponding to a CALL(X) .
30 WHEN not allowed here

No WHEN instruction is permitted by the program syntax at
this position.

94

Programming

31 | F not allowed here

No | F instruction is permitted by the program syntax at
this position.

32 ELSE without | F. . THEN

ELSE without a preceding | F.. THEN instruction has
been detected by SYMPAS.

33 ELSE, |IF, WHEN, THENtoo far from | F

The program text in a conditioned decision, this is,
between | F and THEN, or between | F and ELSE or to
the final instruction belonging to | F - THEN, | F, WHEN - is
too long. This problem can be solved by shortening the
respective program text.

34 | F, WHEN, THEN too far from

ELSE
The program text in a conditioned decision, here
between ELSE and the corresponding final instruction -
THEN, | F, WHEN - is too long.
35 THEN expected

At this point, the instruction THEN is waited for by the
compiler.

Programming 95

PROCESS-PLC

Programming

37 Allowed only in input condition
These operators are only allowed between | F (WHEN)

and THEN.

38 Allowed only in output instruction

These operators are only allowed after THEN and ELSE.

39 Form syntax error

The operators =, +, -, *, [/, WOR WAND, WKOR
ACTUALPGS, ND, NB, NHhave been used in a wrong
context in this operation.

41 Numeral or variable expected

At this point a numeral or variable is expected by the
compiler.

42 "=" expected

At this point an equal sign is expected by the compiler.
43 Boolean expression expected

At this point a Boolean expression is expected by the
compiler.

96

Programming

44 Arithmetic compare operator expected

At this point an arthmetic compare operator is expected
by the compiler.

45 ")" without "("

Parentheses have not been set completely
46 ")" expected

Brackets have not been set completely.

47 Only 3 parenthesis levels valid

3 parenthesis levels are valid as a maximum.

50 Function definition only allowed before
TASKO

Functions must be defined before the first task (TASK 0).
51 END DEF without DEF FUNCTI ON

END_DEF has been specified without DEF_FUNCTI ON. In
END DEF, a functionis concluded by DEF _FUNKTI ON.

52 END DEF expected

A function definiton has not been concluded by
END DEF.

53 RETURN expected

Before an END_DEF, RETURN is missing.

Programming 97

PROCESS-PLC

1

Miscellaneous Errors:

Programming

55 Unknown instruction

An unknown instruction has been detected by the
compiler.

56 Program too large for controller memory

The program memory of the controller is too small for the
program that is to be transferred.

57 "} without "{"

Commentary parentheses have not been set
completely.

58 "} not found

Commentary parentheses have not been set
completely.

59 Cannot open file

DOS error in the context of INCLUDE-files ("File not found"
or "Too many open files").

60 Insufficient RAM space

In the PC memory there is not enough space for the
INCLUDE file.

98

Programming

61 Only single nesting depth allowed for
INCLUDE files

In an INCLUDE file, there is another #| NCLUDE.

62 Only 8 include files allowed

Not more than 8 INCLUDE files may be defined in one
main file.

63 INCLUDE files only allowed if main file
defined

INCLUDE files can only be defined in a main file.

64 Unexpected end of file

System error message.

65 GOTO distance larger than 32 kByte

A label handled by SYMPAS is too far from the GOTO
instruction. Reduce distance.

66 Controller version x.xx needed

An instruction has been used, for which a later operating

system version is needed than the one that has been
defined in "Settings...".

Programming 99

PROCESS-PLC

3.9 Files, Extensions, etc.

Programming

Please find the compilation of files, which are provided
by SYMPAS, in the up-to-date README file, which can be
found on the SYMPAS disk to be read on DOS level.

All files generated by SYMPAS while working in it, will be
shown in the survey below.

NAME.PPE (PASE-E), NAME.PPM (MIKRO),
NAME.PPD (DELTA), NAME.PNA (NANO-A),
NAME.PNB (NANO-B)

These are the names of the program files, in which the
program text is to be stored.

NAME.BKE (PASE-E), NAME.BKM (MIKRO),
NAME.BKD (DELTA), NAME.BNA (NANO-A),
NAME.BNB (NANO-B)

This way, the backups for the corresponding program
files are named.

NAME.SYM

These are the symbol files of the corresponding program
fles. The name of the program file need not be identical
with the name of the symbol file. The symbol files must

be found in the directory of the coresponding program
files.

NAME.BKS

The backups of the symbol files are named this way.

100

Programming

SYMPAS.CFG

This is the configuration file, where all the settings are
stored, which are selected in the "Special" pull-down
menu "Save Settings".

SYMPAS.DSK

This desk file will be considered by SYMPAS during startup,
when the switch "auto save environment' has been
stored in activated state in the SYMPAS.CFG file.
According to the design of SYMPAS.DSK, the environment
will be restored after startup.

NAME.DSK

In this desk file, all settings have been stored, which can
be addressed by the selection line "save environment in
the "file" pul-down menu. Besides the SYMPAS.DSK file,
the user can still create further files to store the
configuration of the environment.

NAME.SUE (PASE-E), NAME.SUM (MIKRO),
NAME.SUD (DELTA), NAME.SNA (NANO-A),
NAME.SNB (NANO-B)

In this file, the settings of the setup screen will be stored.

NAME.LST

In this file, printer outputs will be stored, which are to be
transferred into a file.

Programmind.01

PROCESS-PLC

Programming

NAME.RT

System file, the existence of which is essential for the
functioning of the index window in the setup screen.

NAME.EP (PASE-E), NAME.EPR (PASE-M),
NAME.EPD (DELTA), NAME.ENA (NANO-A),
NAME.ENB (NANO-B)

This object file is created with the help of the "Editor ->
File.EP" in the "Transfer" pull-down-menu.

NAME.DA

Register and flag range file. With the help of the "Register
-> File.DA..." selection line in the "Transfer" pull-down-
menu you can store register and flag ranges, which you
have defined yourself, in the above mentioned files on
floppy or hard disk.

NAME.SIT

Sympas Include Table contains already included
symbols in binary form.

102

Programming

3.10 Miscellaneous

3.10.1 Indirect Addressing

Activate the
indirect level
in the
definition
window by
(CTRL) (R) or
(SPACE)

e
12|

Indirect addressing will be defined in the opened
window, where one, or more than one, instruction
parameters are defined. For this purpose, press the CTRL-
R key combination or the SPACE key. Now, an "R" will
appear in front of the parameter line, or - after pressing
the keys twice - "RR" wil appear, if doubly indirect
addressing is possible in this instruction.

3.10.2 Commentaries

There are three ways of inputting commentaries into the
program editor:

press the "" key and input the respective
commentary as a program line. Confirm by
pressing ENTER <.

to add a commentary at the right hand side of the
program text, press the cursor key — and input the
respective commentary.

Further, it is possible to integrate commentaries into
the program text by writing them in braces { ... }.
All characters in braces wil be interpreted as
belonging to a commentary and will thus not be
compiled (commenting of program passages).

Programmind.03

PROCESS-PLC

3.10.3 Call-up by the /o Switch (Laptop, Notebook)

Programming

SYMPAS has been programmed in overlay technique
and thus needs minimum space in the working storage
of the PC. On the other hand, frequent access to the
hard disk of the PC will be necessary when this technique
is used. Normally, this is no problem, as those activities
will hardly be realised.

If you have installed SYMPAS on a disk drive (access time
is problematic), or in a laptop or a notebook (in case of
battery operation, operation time wil be reduced),
though, SYMPAS can be called by

SYMPAS /o

on DOS level. Now the overlay-buffer in the working
storage of the PC will be enlarged, so that no access to
hard disk wil be necessary any more, as all SYMPAS
program parts will continuously be in the RAM. Thus, the
problems mentioned above will be solved from their very
roots.

SYMPAS / 0XXXX
Expand overlay range by xxxx Bytes.
As an alternative to using the switch, 20 free 16 kByte

blocks EMS can be installed on the PC (see DOS
manual).

104

Programming

3.10.4 The NOSYMPAS.EXE Program

The NOSYMPAS.EXE program is a reduced version of the
SYMPAS.EXE program.

The programs are meant for end users, who are to be
granted only very restricted possibilities of manipulation.
Programs can be loaded from hard disk and out of the
controller RAM), yet they cannot be edited. As usual,
access to the setup screen has been provided, although
data manipulation is not possible after call-up. After
release of the disable in the "settings" dialogue, register
values, inputs, outputs, etc. of the PLC controller can be
changed.

If a customer is to be supported, the following aspect
might be helpful: Program name (e.g. *.PNB) and/or
setup file name (e.g. *.SNB) can already be defined on
DOS level, when SYMPAS is started.

NOSYMPAS / NANCB PROX)1. PPE SETUPOS. SUE
NOSYMPAS.EXE will function in the following order:

. load *.PNB

. load *.SNB

. activate setup screen, after value input resp.
change have been disabled first (release with the
help of selection line "disable input' in the
"Special/Settings..." pull-down menu).

Programmind.05

PROCESS-PLC

3.10.5 Switching to DOS

By the Alt-F5 key combination the DOS screen is moved
into the foreground, that has been active before SYMPAS
call-up, respectively after leaving the DOS shell by EXIT. By
pressing any key, the SYMPAS screen can be called
again.

3.10.6 Password

Programming

Activation

In order to define a password, SYMPAS is to be given the
call-up parameter /p (/pv). In this case, the password is
input by a window at the beginning of SYMPAS. A choice
between two varieties can be made:

/p = the characters that have been input wil not be
readable in the display; for the sake of security, the
input must be repeated once more.

/pv =the characters that have been input can be read;
thus, repetition of the input is not necessary.

Definitions

. a password can have a maximum length of 8
characters, and it must have a minimum length of
5 characters.

. if there is no error report after password input, the
password is valid.

106

Programming

Application

. the coded keyword will be written into the program
header or directly into the controller (Ctrl-F9).

. if by the "File.ENB -> Editor" selection line a

program is recompiled, and if a password has
been defined and taken up into the program
head, this must be input now, otherwise no
compilation of the program out of an EPROM file
will be possible. If the password, which has been
input at the program start of SYMPAS, is identical
with the password in the program header of the
control program, a second password input will not
be needed.

3.10.7 SYMPAS Version 3.09 ff, and MIKRO up to 2.10

If SYMPAS from version 3.09 onwards is executed together
with any MIKRO of an operating system version earlier
than 2.10, the syntax check belonging to SYMPAS will not
be able to recognise an excession of the 3 subroutine
levels that are permitted as a maximum.

3.10.8 SYMPAS and PASE-J (up to version 4.04)

If a controller of the PASE-J type is used, SYMPAS must be
started by the following call line:

SYMPAS /J

Programmind.07

PROCESS-PLC

3.10.9 SYMPAS in the Network (PASE-E up to version 4.04)

If SYMPAS is used in the network, the path to the
SYMPAS(_M).CFG configuration file is to be defined by the
DOS command line

SET SYMPAS_CONFI G=Pat h.

3.10.10 Further Command Line Parameters (Call-Up Switches)

L

IS

/B

/BXxxx

/PASEE+
/IMIKRO
/DELTA
/INANOA

/INANOB

Programming

high contrast colour chart for laptops

symbols in selection windows, in alphabetic
order.

input windows appear under the cursor line.

input of a fixed baud rate (which has been
set in the controller).

SYMPAS setting: PASE-E PLUS
SYMPAS setting: MIKRO
SYMPAS setting: DELTA
SYMPAS setting: NANO-A

SYMPAS setting: NANO-B (Default, if no
controller has been defined).

108

Programming

ll. SYMPAS Programming

1. Overview

SYMPAS
follows

the motion
sequences of
the machine

The process is
described by
plain-text
language

For the execution of a controller task with the help of a
PROCESS-PLC, a program adapted to the problem is
needed besides an apt hardware configuration. The
controller is caused by the program to execute the
respective controller task.

The PROCESS-PLC programming language is
unconventional in a certain sense. It is adapted to the
motion sequence of the machine to be controlled,
respectively of the process to be controlled, and not to a
contact plan, as this would usually be the case.

This makes a vast difference: For programming a
controller task it is not necessary to consider traditional
means first (contactors, contactor relays ...). The motion
sequence can be transferred almost directly into the
programming language of the PROCESS-PLC.

In addition to the mere descriptive language, there is
also floating point arithmetic, data management and
multitasking of up to 32 tasks.

During program execution, the PROCESS-PLC differs from
conventional controllers in so far, as no cyclic storage run
takes place. This way, the reaction time is independent
of the program length, as only those input conditions,
which are necessary for continuation of the controlling
process, yet not any other condition, will permanently be
tested.

Programmind.09

PROCESS-PLC

2. Fundamentals of Programming

2.1 Principles of Program Setup

The clear difference between the programming
language and the standard PLC languages has a
certain effect on the basic program structure.

Normally, several parallel partial processes have to be
controlled, which, in general, will run sequentially.

Thus, the program structure should follow the
arangement of the parallel programs as closely as
possible. It is helpful to define a basic program, which is
to function as a main program and which will activate
and connect the "sub"-programs, called subroutines, via
flags.

In addition, parallel programs for execution of
asynchronous instructions given by, for example, user
elements, by the central controller or by VIADUKT, will
normally be needed.

In this language, the processing time is not dependent
on the program length, but on the number of parallel
programs (tasks) that have been used. Thus, not too
many of them should be running simultaneously.

110 Programming

Programming

Basic

Instruction
VWHEN

THEN

The basic instruction WHEN...(condition)... THEN
...(output).. can thus be used very well for direct process
description, as (in contrast to the IF/THEN instruction for
BASIC or PASCAL) meeting the condition is waited for,
and only then the output is carried out. This means, that,
other than with the known PLC languages, the order of
iInputs corresponds to the program sequence.

If meeting the condition is not to be waited for, but if only
a logic decision is to be made, | F. . . THEN. . . (ELSE)...
must be used. This directly corresponds to the BASIC
instruction | F. . THEN. . . (ELSE)... , i.e. depending on
the logic state of the condition, one of the two outputs
will be made, which can also be blank. (The ELSE
branch can be left out totally, even including the "ELSE".)

Programmind.11

PROCESS-PLC

A basic program
up as follows:

structure can, for example, be made

TASK 0

FLAG 40

; Initialising:
; (Modul es, axes,
; registers, flags)

inquiry - |oop

I F

v

THEN
CALL 41
| E

condition, e.qg.
; automatic condition

v

; condition, e.qg.

THEN
CALL 42
| E

v

: for manual node

THEN
CALL 43
THEN

GOTO 40
LABEL 41

FLAG 1

RETURN
LABEL 42

RETURN
LABEL 43

RETURN

112 Programming

condi tion procedure3

Y.

; further inquiries
>» ; wWth IF -
: THEN - ELSE
, . call .
: automatic
——» : cal
: manual node
————————> . execution

; procedure 3

Programming

TASK 1

VWHEN
FLAG 1
THEN

v

THEN
FLAG 10

VWHEN
- FLAG 10
THEN

v

v

GOoTO 1
TASK 2

v

VHEN

FLAG 10
THEN

THEN
- FLAG 10
GOro 2
Pr ogram end

v

mai N program e. g
automati c
started by flag

execution
mai N program

possibly call-up of a
paral | el process, via
flag

then wait, until this
is finished

further execution
mai n program

paral | el process,
started fromthe
mai N program vi a
flag 10

execution
paral | el program

report run is finished

Programmind.13

PROCESS-PLC

TASK 0O
must always
be present

TASK O:
Initialisation,
request
loop for
inputs, keys,
etc.

Description of the individual parallel tasks and of their co-
ordination:

TASK 0

In TASK 0, first an initialisation of additional boards and
of the outputs, flags and registers is made. Normally, a
reference run is necessary for axis control, which can also
be programmed at this stage.

After this, there will be a number of | F conditions. This
way, inputs can be enquired on. This enquiry loop will
continuously be run through; in consequence, no WHEN -
instruction must be written there. This way it is possible to
recognise a met condition and to react immediately.

Then a jump to the respective flag will be made at once
(FLAG 41, FLAG 42 etc.), where those instructions,
which must be executed, are written. Those can also be
instructions for an automatic control task or something
similar. Yet, there must not any instructions be given at
this position, which will need a long time for execution.
Otherwise, the inquiry loop will not be run through any
more, neither will any new inputs be considered further.

In the case of "call-up automatic" a task could be
started, for example, by which automatic controlling
could be carried out. The same way another task could
be started under "call-Fup manual mode", by which a
manual controlled task could be carried out.

114 Programming

Programming

TASK 1:
Automatic
task,

control of the
main functions

TASK 1

In this task the main controller program has been written.
This main program will be started by FLAG 1. This could
be started out of TASK O (LABEL 41). Thus, the
condition for this process could be a start key (input). As
soon as this input has been actvated by pressing the
key, FLAG 1 wil be set and thus the start function be
triggered.

Then the main program wil cary out the instructions,
possibly start another parallel program (here by FLAG
10), and will then come to an end by defined conditions.
This main program must be seen as an endless loop, if it
really is in automatic mode. By certain interrupt
conditions, for example by a stop key or an error report,
this endless loop will be left and the end will be reached.

From the end a jump will be made to the beginning of
the task, for the task to be ready to be called again. If
FLAG 1 has not been reset in the meantime, the
controller will be restarted immediately, which might
even have been desired. Otherwise the flag would have
to be reset to the beginning before GOTO.

TASK 2

This is an example of a simple task called via flag to, for
instance, control operator guidance.

Programmind.15

PROCESS-PLC

2.1.1 Rules for Program Structure - Task Structure

By 32 tasks
parallel
program parts

TASK 0O
must always
be there

Ascending
and complete
numbering

Definition of a Parallel Branch (Tasks)

For programming more complex processes and for the
realisation of subroutines, there is the possibility in
PROCESS-PLC to write several parallel program parts.
Altogether, 32 independent program parts are possible.
These can also be connected via FLAG oder REG STER,
which means they are made dependent on one
another. One of these program parts can be called
"parallel branch" or "task".

A parallel branch always has to start with a TASK
I nstruction. The TASKs for parallel branches have
got numbers 0 to 31 (inclusively). TASK 0 is always there.
If no further TASK of a number smaller than 32 is input,
"parallel branch" 0 will remain the only one; thus, no
parallel processing will be carried out by the controller.

If a parallel branch is needed, a TASK number 1 must
be input. For all parallel branches that are needed
further, the next number must be selected in ascending
order and without leaving one number out.

In the editor, TASKS are marked by a line. This line is to
distinguish between two programs.

116 Programming

Programming

Goro
destinations
only in the
context of one
task; never
exceeding
one task

Place global
calls at the
end of the
program text

A parallel branch is a program that is complete in itself.
This means, that out of a parallel branch there must not
be a GOTOto a LABEL, which is also used by another
parallel branch. At the end of a parallel branch, a GOTO
to a LABEL must be part of a parallel branch. Otherwise,
the parallel branch will run "into the next one", which will
lead to malfunctioning of the program.

Subroutines ("calls") and functions are an exception. They
can be called from another parallel branch without any
problems. Basically, even simultaneous call-up of the
same subroutine is possible from several parallel
branches - yet, it should be placed at the end of the last
task (place global calls at the end of the entire program
text).

TASKS, which have been positioned at the beginning of
a parallel task (0..31) can be used - as any other lable -
as destinations for GOTO instructions (GOTO.

A program without multitasking, i.e. without parallel
branches, can be structured as follows:

; Program Text
LABEL 50
; Program Text

&Oro 50

Programmind.17

PROCESS-PLC

The parameter

This means, that at the end a jump to label 50 has been
numbers of made. This label can, of course, be given any number
the from 32 to 999 or a symbolic name. The jump at the end

TASK or FLAG must be made to a LABEL that is already available. A

instructions jump can also be made to TASK 0 directly.

can be given
symbolic
names

Example of structuring a program with three parallel

branches:

LABEL 101
LABEL 105

LABEL 102

GOTO 101

TASK cococccn

LABEL 200
LABEL 201
GOTO 201

GOTO 1

TAGK 2 cococcon

GOTO 2

118 Programming

; All set labels are, of course,

; only meaningful,

;-if they are jumped to.

; The jumps can be programmed to
; go in all directions to your liking,

; even forward,

; yet only inside

; of one

; parallel branch (Task).

Programming

Parallel Processing (Task Switching)

Rules
for task
switching

Parallel processing of individual parallel user program
branches is managed by the operating system of the
controller. There are certain rules, according to which the
processing of individual program parts is started and
changes from one parallel branch to another can be
made. To know these rules might be interesting for the
advanced programmer:

Rule 1:

Rule 2:

Rule 3:

Processing of the user program always starts
with TASK 0.

Switching between parallel branches will
always be caried out after the following
instructions or in the following situations:

- DELAY

- USER | NPUT

- In case of a WHEN - condition, which has
not been met

The following three further conditions for task
switch can be influenced by the user with the
help of the flag (flag number in the controller
manual). The default value after reset will be
written in square brackets.

- After a certain time
(Task switch-Timeout) [active]

- After GOTO- instruction [active]

- After an | F condition that has
not been fulfilled [deactivated]

Programmind.19

PROCESS-PLC

Task switch
after a
defined time

Task switch
before GOTO
i nstruction

Remarks on Rule 3

a) Task Switch Timeout (Flag 2056)

After a certain time the task will be
changed, when the present instruction has been carried
out, without meeting any other requirement.

The time, which has been stored in the "task-timeout
time" register (in units of ms), can be changed by the
user.
After reset if flag 2056 = 1, (if it is set)

the "task timeout time" is loaded with 20
(ms)

Without changing flag 2056 and special register "task
timeout time" this task switch timeout is activated. Thus,
switch to another task will be made after 20 ms as the
latest.

Note:

An output instruction cannot be terminated by timeout
and will thus be processed completely.

b) After GOTO- instruction (flag 2057)

If flag 2057 has been set, the task will be changed after
each GOTOinstruction.

This flag is also = 1 after reset, this means, it has been
set.

c) | F condition, not fulfilled (flag 2058)

120 Programming

Programming

Task switch
before

| F condition
that has not
been met

Overlapping
flags 2056 to
2058 with
special
register

If flag 2058 has been set, task switch will be carried out
after each | F condition, if it has not been met (This
means, that the THEN branch will be preferred to the
ELSE branch.

This flag will be = 0 after reset, this means, it will not be
set.

d) Flag 2056 to 2058
<---> Special register "task switch conditions"

These three flags are overlapping with the "task switch
conditions", where the three bits represent the three
register bits of lowest value (flag 2056 <--> Bit 0, etc.),
while the register bits of higher value are not being used.

The defined values after reset result in value 3 for the
special register "task switch conditions".

By the instruction

REG STER LOAD [Task switch conditions with 0]

the three conditions can make an exception from rule 3.

2.1.2 Special Registers / Flags for Task Control

Flag 2056

If this flag has been set, the task will be changed after a
certain time, which has been wiitten into the "task
timeout time" special register, without any other condition
having come true. Of course task switch during execution
of an instruction cannot be made, yet immediately after
this. After reset, this flag is set; this means, the task switch
condition is active.

Programmind.21

PROCESS-PLC

Special Register "Task-Timeout Time"

In this register, the task-timeout time is defined in ms
(miliseconds). After reset, this register will be set on 20
with the consequence, that the task wil be changed
after 20 ms as a maximum.

Flag 2057

If this flag is set, the tasks will be switched after each
QOTO instruction. This flag is set after reset; this means,
that without changing the flag, the tasks will be switched
after each GOTOinstruction.

Flag 2058

If this flag has been set, the tasks will be switched after
each | F condition that has not been fulfiled. This
means that the THEN branch is preferred to the ELSE
branch.

After reset, the flag will not be set.

The special register "taskswitch conditions" s
overlapping with flags 2056 to 2063, flags 2059 to 2063
excluded. Thus, only the three bits of lowest value are
used. By assigning a certain value to this register, all task
switch conditions can be defined as desired. After reset,
the register value will be 3, as can be concluded from
the values of the flags mentioned above.

In the following example the same task switch conditions
are set in two different ways:

122 Programming

Programming

Exemplary Example:

numbering
DELTA' REG STER LOAD [61467 with 4] - FLAG 2056
- FLAG 2057
FLAG 2058

At the left, values 0, 0 and 1 will be written into flags
2056, 2057 and 2058 of register 61467. At the right, the
same is done with the help of the three FLAGI nstructions.

Programmind.23

PROCESS-PLC

2.2 Symbolic Programming

Symbolic
name
instead of
numeric
parameter:

IN iStart
instead of

IN 101

The numeric parameters of the programming language
can be replaced by symbolic names. This helps for
claity of the program and makes getting acquainted
with the source text easier. It is important to replace only
the numeric part of the parameter by symbolism. All
other parameter components stay the same.

Thus, for example,

Input 101 can be named Input Start

or

Register 100 can be named Register No.OfPieces
Instead of the numeric parameters, which are not very
meaningful, symbol names can be used to make the

program easier to understand.
See also the explanations on the symbol editor in

124 Programming

Programming

2.2.1 Recommendations on Symbolic Notation

Standardising
of symbolic
names

Improved
readability

List of all
symbols
of the same

type

It is helpful to set up some rules for the choice of
symbolic names. Standardising of symbols for inputs,
outputs, flags, registers, etc. should be made in the
symbolic name, for example:

iStart for a start input, or

rDestinationPosition for a destination position
register of an axis

Placing standardising small letters in front of the actual
symbolic names has got two important advantages:

. Readability of the program code is improved, as in
each symbolic name there is information not only
on its meaning resp. function, which is given by the
naming itself, but also on its type (input, output,
flag, register, etc.).

. It is possible to have, for example, all inputs
displayed in the dialogue window by inputting i?.
You need not print or memorize the symbols any
more; instead, you wil be given uncomplicated
online help.

Froject File Edit Bleck 'I'rill'l’lrI l.:i!lllil Manilor Scape
: a1 L&Y} ———————— ERRNF P

i
|
-
L,
&

[H
i:
Xz
3z
[
L
[
1=
|
=

Nl sRddetrama 1]
ELSE

-7 ohAdditisnal sresel outpul 0%
TEEH

DELAY 1% swait for 1.5 see

=T olglwel sresel oubpel 03

BUT oldd il penal reael autpal TH&

DELAY 10 saait for 1 second

GATH 0 ;elose Lhe Lask
AhiTE- Ihee = H

Programmind.25

PROCESS-PLC

The following pre-posed small letters are recommended

for standardising:
Recommended

contractions for - QRN I s ‘Sub-Type

standardising [° ,
the symbolic ! Input

names |O output -
f flag -
fs special flag
r register -
s special register
rf floating point reg
rm slave register on

modules, boards
It text registers
v VIADUKT registers
I labels -
Im for WHEN_MAX
le error subroutines
t task -
n number -
ne error report
nc commands
nb definition of a register bit
call-up of VIADUKT masks

nv
ax axes

2.2.2 Examples of Symbolic Notation

The following program sequence is to illustrate the
recommendations on symbolic notation:

126 Programming

Programming

0 ’ kkhkhkkhkhkkhkkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkdhkhkdkhdkhkhkhkhkhkkhkhkdhkd,xkx*x*%
1: ;

2: ; Exanple 1: Conditioned activating of outputs
2 : ;**************************************
5: ;

6: TASK O

7: WHEN ; VWit for

8: INiStart ; I nput 10 acti vat ed
9: THEN

10: QUT oVal vel ; Set out put 8

11: | F ; Input 11 aktive?
12: I N i TenpTooHi gh

13: THEN

14: QUT oRefrig ; Set out put 9

15: ELSE

16: -QUT oRefrig ; Reset output 9

17: THEN

18: DELAY 15 ; Wit for 1,5 seconds
19: - QUT oVal vel ; Reset out put 8

20: - OQUT oAddition ; Reset output 9

21: DELAY 10 ; VWit for 1 second
22: GOor0O 0 ; Close the task

Pr ogr am end

The following symbol definitons have been made

i Start

i TenpAddHi gh
oAddi ti on
oVal vel

10 ;lnput: Start input

11 ;Input: Tenperature sensor
9 ; Qut put: Refrigerating set
8 ; Qut put: Suction val ve

Programmind.27

PROCESS-PLC

2.3 Remarks on the Program Examples

if Note:
In the following program and instruction examples, both

symbolic and numeric programming will be applied.
Symbolism is not used, if it is better to communicate with
the hardware directly via register number, or for didactic
purposes, if symbolic presentation would complicate the
description.

In case of numeric presentation the register numbers of
the NANO-B PROCESS-PLC will be used; exceptions will be
marked.

128 Programming

Programming

3. The Programming Language

In this chapter all instructions, which are available for
programming the controller will be described (by one
example or more), then it will be demonstrated (by one
example or more), how they can be used.

3.1 Overview over Instructions

The instructions have been listed in the following table:

Arithmetic and Boolean Characters:

> = <+ - * / () #

(Chapter B.3 Boolean Expressions| and Chapter

IArithmetic

Commentary Characters:

. (Chapter

Programmind.29

PROCESS-PLC

PROCESS-PLC

Instruction Set

DR DISPLAY REG output of register contents onto LCD or
printer

DT DISPLAY_TEXT output of texts onto LCD or printer

D2 DISPLAY_TEXT 2 depending on a register, one of two
texts can be chosen

ou OUTPUT NUMBER setting, resetting, querying of a digital
output

U USER_INPUT input of register values by the user, with
the help of the LCD

BC BIT_CLEAR the bit of a register is cleared or
queried for zero

BS BIT_SET the bit of a reqgister is set or queried for
1

TH THEN | F. . THEN. . ELSE, VWHEN. . THEN

DF DEF_FUNCTION the beginning of a function definition is
marked

ED END_DEF the end of a function definition is
marked

IN INPUT NUMBER a digital input is queried

IF IF | F. . THEN. . ELSE

LI LIMITS 1.it is queried, whether the register is

inside certain limits (Query)
2. a reqister is placed between
certain limits by force (assignment)
AX AXARR 1.it is queried, whether the axis has
been stopped (query)

2. axis is stopped (assignment)

AP ACTUAL_POS the actual axis position is queried

130 Programming

Programming

CO COPY aregister area is copied

NP NOP this command is of no effect, yet, a
processing time is needed (test
purposes)

CF CLEAR_FLAGS a flag area is cleared

RL REGISTER_LOAD a value is written into a register (direct,
indirect, doubly indirect)

LA LABEL GOTO label for program flow

F FLAG setting, resetting, querying a flag

NG N-GET-REGISTER a reqister of a slave controller is
loaded into the memory of a master
controller,

JETWay, fieldbus

NO NOT logic NOT (an input condition is
inverted)

NS N-SEND-REGISTER a register of a master controller is
loaded into the memory of the slave
controller, JETWay, fieldbus

OR OR logic OR (input condition)

P POS an axis is positioned with speed v onto
position pos

RD REGDEC aregister value is decremented by 1

RE REG register command, e.g. REG 100 =
1234

RI REGINC a register value is incremented by 1

RC REG_CLEAR aregister areaissetto 0

RZ REGZERO a register is set to zero, or a register is
queried for zero

RT RETURN a subroutine or a function is finished

WH WHEN VWHEN. . THEN

Programmind.31

PROCESS-PLC

SF specialfunction call-up of certain special functions,
e.g. tigonometry
WM WHEN_MAX VWHEN MAX. . THEN, additionally a
time can be input, after which a
subroutine (e.g. bugfix) can be called
EL ELSE | F. . THEN. . ELSE
G GOTO control of program flow
ST START-TIMER a time regqister is started
TA TASK label for task start
TB TASKBREAK atask is breaked
1C TASKCONTINUE a breaked task is continued
TR TASKRESTART breaked task is started from the
beginning
CA CALL a subroutine is called up
DE DELAY task-processing is breaked for a certain
time
WO WOR CRlinkage of registers
WA WAND AND linkage of registers
WX WXOR exclusive CRlinkage of reqisters
TE TIMER-END? time-register is queried
PROCESS-PLC
Numbers
Abbr. Command Remarks
NB number (binary) the numbers are input as binary
numbers:
b010101010101010101010101
ND number (decimal) the numbers are input as decimal
numbers:
1234
NH number (hexadecimal) the numbers are input as hexadecimal

numbers:
hFA23CD

132 Programming

Programming

3.2 Basic Instructions

3.2.1 Waiting Condition \WHEN

VHEN

waits, until
condition has
been met

Elementary
conditions:

Input
output,
flag,
register bit,
arithmetic
comparison

Syntax:
VHEN
<Condi ti on>
THEN

Meaning:

Fulfiling the <condition> is waited for. Only then the next
instruction will be given (after THEN).

The condition can either be a flag, an input, an output, a
certain register bit or the result of an arithmetic
comparison.

These "elementary conditions" can be combined into a
Boolean expression, the result of which is to be the
condition. For those expressions brackets can also be
used. If the sequence has not been defined otherwise by
brackets, the Boolean expression will be processed from
the beginning to the end, while the result can be
interpreted as a condition. (See also Boolean Expressions
Chapter B.3 Boolean Expressions).

Examples:
1) VHEN
INiStart
Fl ag f TaskEnabl e
THEN

Programmind.33

PROCESS-PLC

When the input IN i Start is active, and when FLAG
f TaskEnabl e has been set, the program wil be
continued by the instruction following after THEN.

if Note:
If in a Boolean expression nothing has been written

between two or more elementary conditions, this will
automatically be interpreted as an AND operation.

2) VWHEN
REG r Vol t age

50

THEN
When the register REG r Vol t age has got value 50,
processing of the program is continued. (The value of
REG rVoltage can, for example, be changed in

another task, or it can represent an analogue voltage
value.)

134 Programming

Programming

WHEN

3.2.2 Waiting Condition WHEN MAX ... THEN
Syntax:
WHEN VAX [Max. Ti ne=<Ti ne>, Subrouti ne= <Subrouti ne>|
<Condi ti on>
THEN
Meaning:

Fulfiiment of
condition is
waited for.
In addition:
Timeout time

Fulfilment of <condition> is waited for; only then the next
instruction will be given (after THEN).

If the maximum time has run out before the condition
has been met, the subroutine will be called.

The condition is either a flag, an input, an output, a
certain register bit, or the result of an arithmetic
comparison.

Example:

1) WHEN _MAX[Max.ti me=z5s, Subroutine.=leError]
REG r Pressur el nCyl i nder
>
50
THEN

LABEL | eError
- QUT oHydraul i cPunp
DI SPLAY_TEXT[#0, cp=1," _fix error"]
DI SPLAY_TEXT[#0, cp=25, "after this F1"]
VWHEN
FLAG f KeyF1
THEN
QU oHydr aul i cPunp
DI SPLAY_TEXT[#0, cp=1, "_"]
RETURN

Programmind.35

PROCESS-PLC

When the register REG rPressurel nCylinder is
greater than 50, the instruction after THEN wil be
continued. If the task remains at the WHEN condition that
has not been met, the error routine | eError wil be
called up. After the error routine has been processed, it
will return to the WHEN condition by the GOTO instruction.
This means REG r Pressur el nCyl i nder is waited for
by the task to become greater than 50 - what should be
the case now, as the error has been corrected by the
error routine.

Note:

After execution of the error routine, the program will return
to the WHEN-condition by the RETURN instruction.

2) WHEN_MAX[Max. ti me=n2s, subrout.=| eEner gSt op]
I N i PneuAxi s
THEN

LABEL | eEnergSt op
- QUT oPneuAxi s
AXARR Axi s=X
AXARR AXi s=Y
AXARR AXi s=Z
QUT oWar ni ngTone
Dl SPLAY_TEXT[#0, cp=1,"_EnergStop"]

RETURN

When the input i PneuAxis is actvated, further
instructions will be given after THEN. If the task remains at
the unfulflled WHEN condition longer than 2 seconds
8max. time = n2s), the error routine | eEner gSt op will be
called up. After being processed, the error routine will
return to the WHEN condition by the RETURN instruction.

136 Programming

Programming

3.2.3 Branch Condition|F ... THEN ... (ELSE)

Syntax:
| F
<Condi ti on>
THEN
<First instruction>
ELSE
<Second instruction>
THEN or WHEN or | F

Meaning

If <condition> has been fulfilled, the first instruction will
be caried out. If <condition> has not been fulfilled, the
second instruction will be carried out.

After another THEN, a following WHEN or another | F,
processing of the program will be continued.

For <condition> another Boolean expression - similar to
the WHEN instruction must be written.

Both the first and the second instruction can consist of
several sub-instructions. Yet, they can also be left out.

if Note:
. The THEN branch will be closed by ELSE, or THEN,

VWHEN, | F.
. The ELSE branch wil be closed by THEN, WHEN,
| F.

. Both will not be closed by FLAG

Programmind.37

PROCESS-PLC

Examples:
1) | F
I N i St opper
THEN
FLAG f Par t PosCK
ELSE

- FLAG f Par t PosOK
THEN (or I F or WHEN)

In this example it is demonstrated, what the | F - THEN
- ELSE - structure normally looks like.

If input I N i St opper active (<condition> is fulfiled),
FLAG f PartPosK is set, the instruction in the ELSE
branch is left out and the process continued after the
second THEN.

If I N i St opper is not active (<condition> not fulfiled),
the instruction in the THEN branch is left out, the flag is
reset and the process continued by the instruction after
the second THEN.

2) | F

FLAG f sKeyF1
OR
FLAG f sKeyF2

THEN

ELSE
QU oLanp

THEN (or I F or WHEN)

If the condition has been met, (FLAG f sKeyF1 or FLAG
f skeyF2 have been set) no steps are taken (THEN
branch is not used). If the condition has not been met,
output QU oLanp is switched on (ELSE branch).

3) | F
INiStart
THEN
QU oHydAXxi s
QU oWar ni ngTone
REG STER LOAD [rlLength with 25]
ELSE
THEN (or I F or WHEN)

138 Programming

Programming

If input I N i Start is active, the outputs QU oHydAxi s
and QU oWarni ng tone are set, while value 25 is
loaded into register REG r Lengt h.

If IN iStart is not active, though, the program will
jump to the second THEN to continue with the next
instruction.

4) VHEN
FLAG f Stati onl
THEN
| F
IN i Keyl
THEN
QUT oPunp
DELAY 5seconds
- QUT oPunp
ELSE
QU oSi gnal Tone
DELAY 2Seconds
- QUT oSi gnal Tone
| F
FLAG fError
I N i St opper
THEN
QUT Rel ai sOFF
ELSE
WHEN
-1 N i St opper
THEN
GOro 100

In Example 4) a small program part is shown, where the
structure of the WHEN- THEN instruction and of the | F-
THEN- ELSE branch have been illustrated.

Recognition of these structures is supported by different
indentation positions of the instructions in the SYMPAS
editor.

Programmind.39

PROCESS-PLC

3.2.4 The DELAY Instruction

Indirect
addressing
of the delay
is possible

Unit of DELAY

parameter:
100ms

The

DELAY <Tinme of del ay>
Instruction

serves for programming of a defined time, while
processing of the task is to be held for this time. The
program is simply to be inactive during the delay time.
The time of delay is the only parameter which must be
input.

The delay time can also be defined indirectly via register.

Generally, the DELAY parameter is defined in units of
100 ms. A delay value of 10 means one second.

This unit can be defined by changing the "users' time
base". Please be careful not to use too small units, as the
operating system would be occupied with too many
management functions. These mechanisms can be
looked up at the description of the time registers. At this
place they shall not be dealt with any further, as they will
only be needed for very special applications.

Example:

DI SPLAY_TEXT [#0, cp=0, "_Wonderful !"]
DELAY 50
DI SPLAY_TEXT [#0, cp=0, " "]

In this example, a text is displayed in the user interface,
then there is a delay of 5 seconds before the display is
cleared again.

140 Programming

Programming

Exemplary
numbering in
the NANO-B

Time Registers

In connection with the DELAY instruction it is important to
mention the time registers as well: These are the reqisters
the parameter value of the delay instruction is written
into. When such a register is not zero any more, it will be
decremented by one after each time unit. The delay
instruction only serves the purpose of loading this register
and then to wait, until its value is zero.

Please note about the time registers: Each task has got its
individual time register (the number of which can be
looked up in the respective controller manual). In the
following example the task-time registers are shown as
examples of the NANO-B.

Example: Task-Time Register

Task O Register 2300
Task 1 Register 2301
Task 31 Register 2331

In some applications a time register is to be activated,
while still further instructions are being executed by the
program. This can be managed by writing into the
respective register using the REG STER _LQAD instruction.
Later the time register can be integrated into a
comparison by simple enquiry.

Note:

Please be careful not to use the DELAY instruction
simultaneously with the time register of the same task, as
this might cause situations, where there is no time for the
delay to expire any more.

Programmind 41

PROCESS-PLC

This danger can easily be avoided: Just take a time
register of a task instead, in which a DELAY instruction will
never occur. This way, both the instruction and one (or
even more) time register can be used in the same task.

Examples:

1@a) TASK 0 -=---cemmao oo

1b) TAGK @ cc-ccacmccacoacaoeacnacoo-

REA STER LOAD[r sTaskTi nreReg wi t h 10]
VHEN
REGZERO r sTaskTi neReg
THEN

In their function, both programs are identical. First, the
time reqister is set and then it is waited for to become
zero. That is exactly the function of the DELAY instruction.

142 Programming

Programming

3.3 Boolean Expressions

Boolean
expressions
are either
true (1)

or false (0)

Elementary
Conditions

All those expessions are conditions which have either
been fulflled or not. If the condition has been fulfilled,
value 1, if it has not been fulfilled, value 0 is assigned. The
Boolean expressions always appear in a WHEN or | F
branch as input conditions, this means, never after THEN
or ELSE!

Everything that is written between | F or WHEN and the
next THEN, wil be understood by the controller as a
Boolean expression

These are very simple expressions, which can consist of
only one instruction, and which in the following will be
called Elementary Conditions. Some of them are:

flags

inputs

outputs

single register bits

arithmetic comparisons (this means, REGZERO
AXARR

Flags, inputs, outputs, and register bits can be (logically)
connected with each other.

For elementary conditions, the following characters are
also permitted:

= < > () #
and the following instructions for connections:

NOT OR XOR AND

Programmind 43

PROCESS-PLC

Elementary
conditions
as default,

connected by
AND

A\

If there is no link instruction between two elementary
conditions, they will automatically connected by AND! In
output conditions, AND must be used.

Note:

Three levels of brackets are allowed for Boolean
expressions.

3.3.1 Phrasing Elementary Conditions

Flags have got
the value 1
or0

Flags

Generally spoken, a flag is a one-bit register. It can have
value 1 or 0. A set flag corresponds to value 1. A flag that
has not been set corresponds to value 0. By input of a
negative sign in front of the flag number into the input
field, easy access can be made onto:

Examples:

FLAG f St art Task

FLAG f Start Task set? (=17?)

2) | F | F
- FLAG PosCk NOT
FLAG PosOK

FLAG PosCK notset? (=07?)
Both phrasings have got the same result.

144 Programming

Programming

Access to
inputs and
outputs, e.g.
with

IN 101

or
-QU 108

Access to
register bits by
the instructions

Bl T_SET

and
Bl T_CLEAR

Inputs and Outputs

These have either got value 1 or O (set or not set). As it is
the case for flags, access to the deactvated input,
respectively output, can also be made here by
preposing a negative sign.

Examples:

1) | F
IN i Start

Input I N i St art active? (=1 7)

- QUT olLanp NOT
QUT oLanp

Output QU oLanp not active? (= 0 ?)
Both phrasings have got the same meaning.

Individual Register Bits

Access to registeer bits can be made by the BI T_SET
and Bl T_CLEAR instructions (see also chapter
Register Bit |for these instructions).

Bl T_SET is 1, if the defined bit has got value 1, otherwise
itis 0.

BI T_CLEARs 1, if the defined bit has got value O (if it is
cleared), otherwise it is O.

Example:
Register 1 is to have (binary) value 100110 = 38.

BIT SET [Reg.1, Bit 2] is 1
BIT CLEAR [Reg.1, Bit 2] is O
BIT CLEAR [Reg.1, Bit 4] is 1
BIT SET [Reg.1, Bit 0] is O

Bit is set)
Bit has not been cleared)

Bit is cleared)

P e N N

Bit has not been set)

Programmind.45

PROCESS-PLC

Arithmetic
comparisons
are also either
true or false

Arithmetic Comparisons

Arithmetic comparisons are also always either true or
false. They are given value 1 for true and value O for
false.

Examples:
1) | F | F
REG r Count er REGZERO r Count er
= THEN
0
THEN

If the reqgister REG r Counter has got value O, this
expression is true (= 1). If REG r Count er is not O, the
expression is false (= 0). This example exactly
corresponds to REGZERO r Count er, as it is queried by
the counter, whether the value of the given register is 0.

REG r Nunber
>

10
THEN

If the content of register REG r Nunber is greater than
10, this expression is true. If the register value is smaller
than or equals 10, the expression will become false (= 0).

146 Programming

Programming

Note:

The REG instruction or arthmetic and logic connections
of registers or results of functions without a comparison
operator are implicitely compared with O.

Example:
| F | F
REG r Test Reg REG r Test Reg
THEN #
0
THEN
Remark:

In arithmetic comparisons it is possible to use arithmetic
expressions and word processing instructions right and
left of the comparison operator (see to this aspect
Chapter B.4_Arithmetic).

Example:

VHEN
REG 100
>

REG 1000
*

135
+

REG 1001
VWAND
hOOF080
THEN

At this part of the program the value of register 100 is
waited for to become greater than the result of the
arithmetic and logic connections on the right hand side.

Programmind.47

PROCESS-PLC

if Note:
The combinations ">="resp. "<=" are not permitted.

148 Programming

Programming

3.3.2 Examples of Connected Expressions

1) IF
FLAG 1
FLAG 2
R
IN 101
THEN

Boolean Expression:
(FLAG 1 AND FLAG 2) ORI N 101.

This expression is true, if both flag 1 and flag 2 have been
set, orifinput | N 101 is active.

2a)

REA STER LOAD [rCounter with 10]
LABEL | Loop

REGDEC r Count er
| F
NOT
REGZERO r Count er
THEN
QOTO | Loop
THEN

2b)

REAQ STER LOAD [rCounter wi th 10]
LABEL | Loop

REGDEC r Count er
| F
REGZERO r Count er
THEN
ELSE
Q01O | Loop
THEN

Programmind.49

PROCESS-PLC

In this example a loop has been realised, which is being
run through 10 times. For this purpose, first the loop
counter (Register REG r Counter) is loaded with the
number of loop runs and is decremented by 1 in a loop
(REGDEC r Counter). At the end of a loop, the loop
counter (REG r Counter) is checked, whether O has
already been reached. If this is not the case, the loop
must be run through once more (Go to LABEL | Loop).
In this case the comparison is made on two different
ways: In one case the condition is negated and thus the
jump is made from the THEN branch, in the other case
the loop is closed from the ELSE branch. Both programs
are identical referring to their function.

3a) WHEN
NOT

—_——~

N 101
R
-1
)
REG 100
<

20
THEN

N 102

If the Boolean expression is '1' (this means, it is true) the
program can be continued by THEN.

The expression:

NOT (1IN 101 OR IN -102) AND REG 100 < 20

To let this expression be true, both partial expressions
(before and after AND) must be true.

Although the first partial expression is a little confusing, it
becomes clear after more detailed investigation: This
partial expression is true, if IN 101 OR IN -102) is
false, if - N 101 is deactivated and | N 102 is active.

150 Programming

Programming

The second partial expression is fulfiled, if the content of
register REG 100 is smaller than 20.

To let the entire expression become true, both partial
expressions (before and after the AND) must be true.

IN 101=0 AND IN 102=1 AND REG 100<20

3b) VHEN
-1N 101
IN 102
REG 100
<

20

This program part has got exactly the same function as
the former one.

Thus it can also be realised that by simplifying such
expressions a better overview can be acquired. If, on the
other hand the machine is considered, it is easier to
understand, if the more complicated expression is kept.

Programmind 51

PROCESS-PLC

3.4 Arithmetic Expressions

These instructions can be used for making an input
condition after WHEN or | F (arithmetic comparison; see
former Chapter B.3 Boolean Expressions), as well as in
an output instruction (assignment of a calculation result
to a reqgister).

The design and the evaluation of a formula is identical in
both cases, except the fact, that in an arithmetic
comparison left of the comparison operator, a number
or connection may, assignment to a register can, only
be made to one register.

A value is assigned by an equal sign.
Assignment: =

The following instructions serve the description of
arithmetic / logical expressions:

arithmetic operators: + - *
logic operators: WAND, WOR, WKOR
Numbers: Bi nary Nunbers

Deci nal Nunbers
Hexadeci mal Nunbers

Variable: REG <Reg. Nunber >

152 Programming

Programming

3.4.1 Numbers

Floating point
numbers are
input in
indirect
mode

Numbers can be input in three different ways:

1. Decimal numbers by ND (Number Decimal)
2. Binary numbers with NB (Number Binary)

3. Hexadecimal numbers NH (Number
Hexadecimal)

In the program text differentiation of the three number
formats is made by writing 'b' in front of binary numbers
and 'h' in front of hexadecimal numbers.

Only integers can be input. Direct input of a floating
point constant is not possible.

Referring to the internal integer format (23 Bit and signs),
numbers of seven decimal places, numbers of six
hexadecimal places and numbers of twenty-four binary
places can be input.

Programmind.53

PROCESS-PLC

3.4.2 Arithmetic Expressions

The characters + - / * can be directly selected on
the keyboard and input this way.

Note:

10 levels of brackets can be used for arithmetic
expressions !

Syntax:
REG x
REG y
+
REG z
/
5
20
Meaning:

Register x is assigned the value of the following
operation:

((Register y + Register z) / 5) - 20.

It can be seen that calculations are not made
according to the "./: before +/- " rule, instead, one step
after the other will be carried out following the sequence
of operations.

An operator with the following number (operand) will
always be selected by the controller to evaluate this

154 Programming

Programming

"partial calculation” in order to gain an intermediate
result. Basing on this intermediate result, the next operator
and operand will be selected in order to evaluate this
partial calculation now. This procedure will be followed,
until the last number value will have been selected.

Thus, an expression like X=A+B-C/D-E*F
has got the following X=((A+B-C)/D)-E)*F
meaning:

In the following examples a difference is made between
integer registers and floating point registers, as partiallly
different possibilities are offered.

3.4.3 Assignment to Integer Registers

Decimal
places are
omitted, when
a number is
assigned to an
integer
register

When a number is assigned to an integer register, the
decimal places are simply omitted, i.e. the numbers will
not be rounded!

This means: Reg 0 =10/3 = 3,333...

-> Reg 0 contains value 3

Reg0=-10/3 =-3,333...

-> Reg 0 contains value -3

Programmind.55

PROCESS-PLC

Examples:

1) REG 100

hOO00AS8
+

b000000000000001001001110

Register REG 100 is given the sum of hA8 (=168) and
b1001001110 (=590). The result is 758, what will then be
the value of REG 100. (REG 100 = 758)

2) REG 200

100
/
3

Register REG 200 is assigned the value 100 / 3 (=
33.333.... Asin REG 200 only integers can be stored, the
decimal places will be omitted. After this, the register
value will be 33. (REG 200 = 33).

3)

The assignment A=A - (B + C)/ 2 is to be calculated,
which cannot be achieved by following the "./: before
+/- " rule.

Solution:

An alternative expression (operation) must be phrased for
the controller to calculate the expression step by step in
the desired sequence.

Transformation: A-B+C)/2 = 0-B-C/2+A
The expression at the right hand side exactly corresponds
to the needed expression

156 Programming

Programming

(REG 1 = A REG 2 = B, REG 3 = C). An operation
cannot be started by "-" (negative sign), thus, a small trick
has been applied (0 - ...).

REG 1

0
REG 2

REG 3
/

2
+

REG 1

REG 1 (A) is decremented by the value (REG 2 + REG
3) / 2 (average between B and C). Again, the new value
is stored in register REG 1.

3.4.4 Assignment to a Floating Point Register

More detailed description of floating point registers can
be found in Chapter 3.6 Reqisters and | and Chapter
4.1). Below, there are just some short remarks:

Numbers from -10% to +10* are stored in the floating
point register.

The preciseness of operations is 7 post-comma places,
as the numbers are stored in a 32 Bit wide store.

The following floating point register ranges are supplied
by various PROCESS-PLC:

Programmind.57

PROCESS-PLC

Numbering

of registers
demonstrated
by

DELTA

PROCESS-PLC Floating Point Register
Range

PASE-E Plus 8960 to 9215
DELTA 62208 to 62463
NANO C 65024 to 65279
NANO B ?7t07?

NANO A -

MIKRO -

In a program, no floating point numbers can be input,
though (e.g. DELTA register: REG 62208 = 1,456 can not
be input directly.)

Note:

Value 1,456 can be loaded into a floating point register
by the assignment REG x = 1456 / 1000.

The rules for the calculation of floating-point expressions
are exactly the same as for integer registers. 10 bracket
levels, no "./: before +/-" operation.

Examples :

1) REG 62208

12345
/
1000

Value 12,345 (= 12345 / 1000) is assigned to the floating
point register (DELTA) REG 62208.

2) REG 62248

158 Programming

Programming

REG 0
/
REG 1
+

100

REG 62208

The value of the following operation is assigned to
floating point register (DELTA) 62248.

REG 0O
REG 62248 = (—— + 100) * REG 62208
REG 1

Programmind.59

PROCESS-PLC

3.5 Tasks, Labels, Jumps and Subroutines

3.5.1 Tasks, Flags and Jumps

Tasks must
start with O
and be
numbered in
continuous
and
ascending
order

Labels serve
as markers for
jumps, or they

mark the
beginning of a
subroutine

The following instructions belong together and serve
unconditioned jumps in a program. With the help of the
| F instruction they can be turned into conditioned
jumps.
TASK L ABEL GOoro

The labels are to mark certain program points, which can
be accessed by a GOTOinstruction.

TASKS O to 31

These labels serve the marking of parallel branches. In
the program they must be applied in ascending order;
this means, start with TASK 0, then mark TASK 1 etc.
Tasks must not be left out. They are presented as follows:

TASK 0 Vf%
77
LABELS 32 to 999 -

These labels serve as mere junctions, or - in connection
with subroutines - to mark the start of a subroutine. They
are displayed without the horizontal line:

LABEL 32

160 Programming

Programming

Goro
instructions
can be
defined
indirectly

7

VAN

Jumps

After a GOTO instruction, processing of the program will
be continued at the label the number of which is defined
as a parameter in the GOTO instruction. The number of
the label can also be defined indirectly, this means, by
REG x, causing the jump to go to the label the number
of which has been stored in register REG x.

Please be especially careful not to jump to a label,
which has been allotted to another task.

Note:
Define special label numbers for each task, for example

TASK 0: Labels 100 to 199
TASK 1: Labels 200 to 299
TASK 2: Labels 300 to 399

Syntax:

TASK O
LABEL 100
G&Oro 100

&Oro 0

Programmind.61

PROCESS-PLC

Program
execution
always starts
with TASK 0

A\

Meaning

Program execution starts with TASK 0 and then executes
the instructions, until the GOTO 100 instruction will have
been reached. This way Label 100 is jumped to. If this
QOTO instruction stands in the output branch of an | F
condition, the GOTO instruction will be caried out, while
the program is going on, until GOTO 0 will be reached.

Note:

Please be careful not to leave out this second jump for
any reason. If there are more than one tasks, this could
mean that TASK 0 would go over into TASK 1.

Example:

1) REG STER LOAD [rCounter with 10]
LABEL | Loop

REGDEC r Count er
| F
NOT
REGZERO r Count er
THEN
Q01O | Loop
THEN

In this example, a loop has been realised, which is run
through 10 times.

Register REG r Count er , which was assigned value 10 in
the beginning, is decremented by one in each loop
(REGDEC r Count er). After this, a comparison wil be
made to find out, whether value 0 has already been
reached. If it has not, another jump to the beginning of
the loop (LABEL | Loop) is made. If value 0 has been

reached, the program will be continued after the second
THEN.

162 Programming

Programming

3.5.2 Subroutines

The instructions
CALL RETURN

also belong together and serve the realisation of
subroutines.

Subroutines are program parts which can be jumped to
from any position in the program. Then, these patrtial
programs wil be processed. After completion the
program will return to the position the subroutine has
been called from.

if Note:
20 subroutine levels are permitted.

Programmind.63

PROCESS-PLC

Using
subroutines
make
program texts
clearer and
more
compact

As a return from a

subroutine IS
always made to
the program
position the
subroutine has
been called
from, the
program parts,
which are

needed often
and at various
positions in the
program, only
need to be
written once.
Thus, memory
can be saved
and the program
design becomes
Clearer.

Syntax:
THEN

CALL | eErrorHandling

J\ Program

Bubroutine

y

[nstruction

[nstruction

[nstruction

[nstruction

[nstruction

[nstruction

Subroutine

[nstruction

[nstruction

[nstruction

\/\

Figure 13: Subroutines

Subroutine

Flag x

[nstruction

[nstruction

RETURN

164 Programming

RETURN

ELABEL | eError Handl i ng

Programming

The subroutine
will return to
the call-up
position after
execution.

Indirect call-
up of
subroutines

Interpretation

When the subroutine reaches the CALL
| eEr r or Handl i ng, an immediate jump wil be made
to LABEL | eError Handl i ng. There, the instructions will
be caried out, untl the RETURN instruction wil be
reached to go back immediately to the position, where
the subroutine has been called up and then to continue
with the next instruction.

The difference between RETURN and GOTO instruction is,
that, in the RETURN instruction, the call-up position is
memorised by the program, in order to return there after
execution of the subroutine.

Indirect addressing is also possible after giving the CALL
instruction. Thus, a subroutine can be called up as
follows:

CALL R(100)

or

CALL R(rPointer)
In this case, the program starting at the label the number

of which has been stored in register REG 100 resp. REG
r Poi nt er.

Programmind.65

PROCESS-PLC

Rules in Connection with Subroutines

1. 20 subroutine levels are permitted.

2. Jumps out of subroutines are not permitted. A
subroutine must always be finished with a RETURN
instruction, otherwise new subroutines cannot be
called up any more.

3. One subroutine can be jumped to from several
parallel branches. Depending on the program, this
can even be done simultaneously.

Example:

TASK Initialising

CALL | d obal

TASK Automatic

CALL | d obal

TASK | nput/ Qut put

CALL | d obal

Q10 2

LABEL | d obal
* Subroutine Text *

RETURN
End of program

166 Programming

Programming

In this example, the subroutine is called once out of
each of the three branches at the end of the last task
(TASK I n-/Qutput). This is absolutely legal, as has
been mentioned before, yet, depending on the
subroutine, it can lead to unwanted results in the case of
simultaneous call-ups.

To give an example, display of a "false" register can be
caused, if in a subroutine various registers are to be
displayed, which should not be a problem, when indirect
register definition is used (by the D SPLAY_REG
instruction).

Note:

Global subroutines, i.e. subroutines, which can be called
up by several tasks, must be written at the end of the last
task.

Thus, special care should be applied, if the same
subroutine is called up several times simultaneously. If
necessary, subroutine calls can also be coordinated with
the help of flags.

Programmind.67

PROCESS-PLC

3.5.3 Functions

Functions are
defined in the

program
header

Instruction
libraries can
be set up with
the help of the
functions

Functions are
defined
before TASK
0

The instructions

DEF_FUNCTI ON <Functi on>, xy] END_DEF

As it is common for high level languages, the function is
defined by the programmer in the program header, in
order to call it up in the program text whenever it is
needed.

* Functions can be called up by transfer parameters.

» Functions can be defined by return parameters.

* Functions have got local variables and labels.

* Functions can be applied as Booleans or in output
instructions.

« Functions do not differ in their call-up from system
instructions.

The programmer can create his own application specific
instruction libraries with the help of the functions.

Definition of a Function

The functions are defined at the beginning of the
program (before TASK 0). First, the data framework is
specified in a definition window (call-up by hotkey (D),
then (F)).

168 Programming

Programming

Functions are
closed by
END_DEF.

With the help
of the
instruction
contraction,
the functions
are called up
in the
program text

Projekt Datei Edit Block Transfer Listing Monitor
Lange: 42 (B.84) = FUNKT1.FNB

Oszi 3Spezial

(LS Tauschelerkzeug

arameter

urzel
ariahble

I8N Programm_Nr
PZ Positions_Nr
=B Uerkzeug HNr
B: DEF_FUN
Par: P
REG Werkzeug Nr

REG Programm_Nr
+

REG Positions_Nr
DANN
A Auswurf
SOBALD
: E Ausuwurf_0OK
F1 Hilfe Shift-F9 Syntax-Check Cirl-F9 Ubertragen an NAND-B F18 Menil

(=1 B I = Y TR o]

Figure 14: With the help of the definition windows the
functions are parameterised

Definition of the Function Text

After confirming with (¢), the function header wil be
displayed on the screen; after this, the function text can
be input. It must be closed by END _DEF.

Function Call-Up in the Program Text

Using the contraction of the function name, which has

been input in the definition window (see figure above),
the function is called up in the program text.

Programmind.69

PROCESS-PLC

Projekt Datei

Edit Block Transfer Listing Momitor Oszi Spe=zial

Lange: 42 (B.82x) = FUNKT1.PNB

F1 Hilfe Shift-F9 Syntax-Check Ctrl-F9 Ubertragen an NANO-B F18 Menu

ISTPOS Achse=Horizontal
>
REG Zuwischenpos T
DANN Tn TASK
SOBALD TB TASKBREAK
LRG| TC TASKCONT INUE
DANN TR TASKRESTART
POS [Achse=Verti||| il ElEs NS00 |[(Automatik)]
SOBALD
HALTACHSE Achse=Ve
DANN
Tauschellerkzeug [Programm_Nr=R(Zahler), Positions_Nr=R(Ablage),
Werkzeug Nr=R(Stanzuwerkzeug)]

SOBALD
E Wechsel 0K
DANN
POS [Achse=Vertikal, Pos=R(Stanzposition_¥), v=R(Automatik)]
POS [Achse=Horizontal, Pos=R(Stanzposition_X), v=R(Automatik)]
SOBALD
HALTACHSE Achse=Vertikal
HALTACHSE fAchse=Horizontal
DANN

Figure 15: The call-up is made with the help of function
(instruction) contractions the same way as in instruction call-

ups

Example 1 (in an output condition):

The function 0: DEF_FUNCTI ON [Exchange Tool s, ET]

begins with
DEF _FUNCTI ON
1:
2.
3.
4:
5:
6:
7.
8:
9:
10:
11:
12:
The function 13:
definition ends 14:
with END_DEF 15:
16:
17:
18:
19:

170 Programming

Par: ProgramNo., PositionNo,
Tool No
REG r Tool No

REG r Pr ogr anNo

+
REG r Posi ti onNo
THEN
QUT oEj ect
VWHEN
IN i E ect K
THEN
QUT oFeedTool
RETURN
END DEF
TASK tlnitialisation ---------------------
VWHEN
I N i Feedback
THEN

POS [Axi s=axHori zont al
Pos=R(r Put _Down), v=R(r Aut omati c)]
VHEN

Programming

The function is

called up by
Exchange-
Tool

20: ACTUAL_POS Axi s=axHori zont al

21: >

22: REG r | nt er medi at ePos

23: THEN

24 VHEN

25: AXARR Axi s=axHori zont al

26: THEN

27: POS [Axi s=axVerti cal , Pos=R(r Put Down)
v=R(r Aut omati c)]

28: VHEN

29: AXARR Axi s=axVerti cal

30: THEN

31: ExchangeTool

[ProgramNo=R(r Count er),
Posi t i onNo=R(r Put Down) ,
Tool No=R(r Punchi ngTool)]

32: VHEN

33: I N i ExchangeOK

34: THEN

35: POS [Axi s=axVerti cal,

Pos=R(r Punchi ngPosi ti onY),
v=R(r Aut omati c)]

36: POS [Axi s=axHori zont al ,
Pos=R(r Punchi ngPosi ti onX),
v=R(r Automatic)] 37: VWHEN

38: AXARR Axi s=axVerti cal
39: AXARR Axi s=axHori zont al
40: THEN

41: QUT oPunchl

42:

End of prog.ré.m

Example 2 (in an input condition):

In this example enquiry is made, whether the starting
condition St art CondFul f has been fulfilled. When the
condition has been fulfilled, the task TASK t PunchHol e
Is started.

Programmind.71

PROCESS-PLC

0: DEF_FUNCTION [Start CondMet, SE]
Par: r M ni nunPos

'_\
=

12:
13:
14.
15:
16:
17:
18:
19:
20:
21.

22:
23:

End

172 Programming

'_\
R e e

| F

| N i Door Locked

I N i Start Si gnal
FLAG f @ obal Enabl e
REG r M ni nunPos

>
1000
THEN

REG St art CondMet

1
ELSE

REG St art CondMet

0
THEN

RETURN

END DEF

ASKERRINCh ORI E R LR R

VWHEN

St art CondMet

THEN

of pr og'ré'm

[r M ni mumPos=r Act ual Posi ti on]

Programming

3.6 Registers and Flags

The following instructions serve dealing with registers and
flags. They will be explained in this chapter.
REG STER_LQOAD

CoPY

speci al function no. x

REGDEC

REGQ NC

REGZERO

REG CLEAR

BI T_SET

Bl T_CLEAR

FLAG

CLEAR _FLAGS

Programmind.73

PROCESS-PLC

3.6.1 Basic Information on Registers

_Register The registers are the numeric stores of the PROCESS-PLC.
definitionby They can be used like variables. A value can be
NUMENC assigned to, and later be read from, them. A difference
parameter or . de b . . f . . .
symbolic is made (.—:-tvveen. integer reglstgrs, oating point registers
variable name and special registers. All registers are marked by a

number or a symbolic variable name.

With all registers there is the possibility of indirect
addressing. This means, that the number of a required
register is in another register. On this subject, please see
the REG STER _LQAD instruction.

Integer Register:

Al these registers are 24 Bit wide registers, in which an
integer number between -8388608 and 8388607 is
stored.

The following integer register ranges are supplied by the
various PROCESS-PLC:

PROCESS-PLC Integer Register Instruction

PASE-E Plus Oto 8191
with additional memory expansion

MEM128:
200000 to 232767

MEM512:
200000 to 331071

MEM1024:
200000 to 462143

174 Programming

Programming

DELTA 0to 20479

NANO-C 0 to 1999
20000 to 27999

NANO-B 0 to 1999

NANO-A 0to 199

MIKRO 100 to 1099

These integer registers can also be used as parameters
for various instructions. Instead of a certain parameter,
R100 is written, for example. The consequence for the
instruction is, that the present memory content of register
R 100 is used as a parameter.

Floating Point Register:

=

Wadalalizaas s dntiniiam
,f}?:\\\\\\\\\“"mﬂ”llﬂfrﬁ

These regqisters are 32 Bit wide and can store real
numbers, i.e. floating point numbers in a range between

-10%° to + 10%S.

The smallest possible number has got an amount around
1,2*10™"

Due to the 32 Bit wide display of numbers, a calculation
preciseness of up to 7 decimal places will result.

The following floating point register ranges are supplied
by various PROCESS-PLC:

Programmind.75

PROCESS-PLC

The special
registers, and
thus the
functions of
the operating
system are to
be handled
carefully

PROCESS-PLC ‘Floating Point Register Range

PASE-E Plus 8960 to 9215
DELTA 62208 to 62463
NANO C 65024 to 65279
NANO B -

NANO A -

MIKRO -

Special Registers:

The special registers contain parameters, which are
being used by the operating system. A big range of
possibilities of influencing the functioning of the controller
is offered; thus, it should only be used very carefully!

Slave Registers:

These registers are on inteligent modules resp. boards of
various PROCESS-PLC. They serve the communication
between the CPU and the processor of the module,
respectively of the board. Thus, instructions and
parameters are wiitten into these registers by the
controller program, and the status report is read. Access
to the slave registers is made by the same instructions as
for any other register. In some of these registers
conditions or present values (e.g. the actual axis position)
have been stored and have for this reason only been
designed as read-only memories. Writing into these
registers is not permitted!

176 Programming

Programming

PROCESS-PLC

‘Slave Register Range

PASE-E Plus Slot 1: 11100 to 11799
Slot 2: 12100 to 12799
Slot 32: 42100 to 42799
DELTA Slot 1: 21000 to 24999
Slot 2: 31000 to 34999
Slot 3: 41000 to 44999
NANO-B CPU: 11100 to 11999
Module 2: 12200 to 12999
Module 3: 13300 to 13999
Module 4: 14400 to 14999
NANO-A -
MIKRO 1100 to 1149

Programmind.77

PROCESS-PLC

3.6.2 Instructions for Register Loading

By pressing
the (SPACE)
key (one or
two times),
the indirect
levels are
selected

The instruction

REG STER LOAD [x with a]

serves loading of number values (or contents of other
registers) into a register.

Description:

In the instruction mentioned above, x stands for the
number of the register number a is to be written into.

Indirect and Doubly Indirect Addressing

For the "' and the "a" in the upper instruction, there
cannot only stand a number, but also a register can be
specified: By pressing the space key, an "R" can be
placed in front of the register number.

If "Ry" is written instead of "x', value "a" is written into the
register, the number of which is written in register y.

If "Rb" has been written instead of "a", the result will be,
that not the value itself, but the content of the specified
register is loaded into register x (or Ry).

If for "a" "RR" (SPACE key twice) and then a number (b) is
input

REG STER LOAD [x with RR(D)]

the result will be the following: First the value of register b
Is read. This value now serves as a register number. In the
register of this number a new value is written and finally
stored in register x.

178 Programming

Programming

Example:

1) Load a number into a register

REG STER_LQOAD [r NewPosition with 1280]

Value 1280 is loaded into REG r NewPosi t i on.

2) Copy aregister onto another one

REA STER LOAD [rVoltage with R(rVoltagel)]

The value that is written in REG r Vol t agel is loaded into
REG rVoltage. In other words, the content of REG
r Vol t agel is copied into REG r Vol t age.

3a) Load by doubly indirect addressing

REA STER LOAD [rVoltage with RR(rU Pointer)]
The value, which is in the register of the number written in

register REG rU Pointer, is loaded into REG
r Vol t age.

Programmind.79

PROCESS-PLC

B

3b) Example for Double Indirect Addressing Using
Numbers

Register Occupation

REG 64 211

REG 211 70035
REG 5000 4711

REG 4711 arbitrary

with the help of this occupation the following instruction is
caried out:

REA STER LOAD [R(5000) w th RR(64)]

The following register values will result:

Register 64 =211 (remains the same)
Register 211 = 70035 (remains the same)
Register 5000 = 4711 (remains the same)
Register 4711 = R5000 = RR64 =R211 = 70035
Graph:
R(5000) RR(64)
REG 5000 REG 64
4711 I; 211

REG 4711 REG 211
arbitrary < 70035

70035

will be

copi ed
I nto
REG 4711

180 Programming

Programming

Indirect

parameter
input is
possible

The instruction

QPY [n=<Nunb of Reg> from <SourceReg> to <Dest Reg>]

serves for copying whole register blocks. Only the
number of registers has to be input: the number of the
first reqgister that has to be copied, and finally the number
of the register, into which the first register is to be copied.

All those three parameters can be input in simple
indirect mode.

Example:

Copy [n=5, from 100 to 200]

Reg.Nr. Content Execution Reg.No. Content
100 77 > | 200 77
101 3198 > 1201 3198
102 791 > | 202 791
103 86320 > | 203 86320
104 13629 > | 204 13629

The above presentation is to illustrate what is happening
after the COPY instruction: Five registers are copied
(n=>5). The first register to be copied is REG 100 which is
copied into REG 200. In the example arbitrary values
were assumed for REG 100 to REG 104. It is important
that after the copy instruction the same values appear in
REG 200 to REG 204.

Example:

1) Copy [n=100, from O to 1000]

Registers REG 0 to REG 99 are copied onto registers
REG 1000 to REG 1099.

Programmind.81

PROCESS-PLC

2) CCOPY [n=100, from 700 to 650]

REG 700 to REG 799 are copied onto REG 650 to REG
749. Here, registers REG 700 to REG 749 are given new
values, while the former ones get "lost". (Now they are
stored in REG 650 to REG 699.)

182 Programming

Programming

SPECI AL-
FUNCTI ON 1
for axis
initialisation

The instruction
SPECI ALFUNCTI ON [#1, pl=a, p2=b]

also serves the copying of register contents.

There are two more special functions, which have been
explained in Chapter 3.11.4 Special Function. Special
function 1 serves for copying and will thus be described
below.

Special function 1 has been developed for the
initialisation of axis cards, as a great number of registers
have to be loaded there. The function has got two
parameters: In the first parameter (p1) the number of the
first register of a description block is defined, in (p2) the
first register to be written into (b) is defined. Parameters p1
and p2 can also be indirectly addressed. In this
description block all details are contained of how many
and which registers are to be copied after the following
standards:

Description Block

Reg.No Content

a Number of registers to be copied

a + 1 |1 offset register number

a + 2 |Content of the 1 registers

a + 3 | 2" offset register number

a + 4 |Content of the 2" register

a—+5 |etc.

Programmind.83

PROCESS-PLC

Remark:

For each register to be written into, two registers of the
description block are needed, for example register a+1
and register a+2. Those two numbers result in copying
value R(a+2) into the register of the number b+R(a+1).
This procedure can be illustrated best by an example:

Example:

SPECI ALFUNCTI ON [#1, 100, 1000]

The description block starts with register 100. As an
example the values of register 100 and the following are
to be:

Reg100= 4 Reg 103 = 11 Reg 106 = 912
Reg 101 = 10 Reg 104 = 199 Reg 107 = 19
Reg 102 = 4500 Reg 105 = 15 Reg 108 = 9999

After carying out the special function the following
registers contain the values

Reg 1010 = 4500
Reg 1011 = 199
Reg 1015 = 912
Reg 1019 = 9999

The instruction

REG CLEAR [from Reg<first reg> to <l ast reg>]

serves clearing of register contents. Register blocks of any
size can be set to zero. The registers, the first and the last
register being included, are set to zero.

184 Programming

Programming

Example

REG CLEAR [100 to 200]

3.6.3 Calculating with Registers

Calculating with registers is extensively described in the
chapter on arthmetic expressions (Chapter
Arithmetic). Here, expecially the instructions

REG <RegNr >
REGNULL <RegNr >
REGDEC <RegNr >

REG NC <RegNr >

are to be explained. In all of those four instructions it is
possible to indirectly specify which is the only parameter
to be defined. Thus, for example, for RegNo., Reg 100
can be wiitten. This means that for the instruction the
register is selected the number of which has been written
into register 100.

Programmind.85

PROCESS-PLC

The instruction

REG

By this instruction a register value can be directly
accessed and treated like a variable. In an output
instruction the register that has been written on the left of
the equal sign a value is attributed. In an input condition
the content of the register is read. The register accesses
written at the right of the equal sign result in both cases in
reading of the register.

Example:

1) THEN
REG 1
REG 105
*
25

In this example an assignment (output assignment
introduced by THEN) is shown. Register REG 105 is read
and its content multiplied by 25. The result of this
operation will be stored in register 1. The content of REG
105 remains unchanged.

2) | F
REG 1

REG 105
*

25
THEN

In this case the expression REG 1 = REG 105 * 25 is
not written in an output instruction, but it serves as an
input condition. In this program part the value of register
1 will not be changed. It will only be compared with the
product REG 105 * 25. (also see Chapter B.3 Boolean |
Expressions

186 Programming

Programming

A register is set to zero by the REGZERO instruction, or an
enquiry is made, whether a reqgister value is zero:

REGZERO <RegNr >

When this instruction is used as an input condition, (after
| F or WHEN) it has got the following meaning, which is to
be explained by the example below:

Example:
| F | F
REGZERO 49 REG 49
THEN =
0
THEN

In both program parts the same function is carried out. At
the right, the comparison is caried out as a general
arithmetic comparison, while at the left the special
instruction REGZEROis used.

The instructions

REGDEC REG NC

These two instructions serve for decrementing a register
by 1, respectively to increment it by 1. These functions
are often used in loops for incrementing or
decrementing counters and pointers.

Examples:
1a) 1b)
THEN THEN
REGDEC 100 REG 100
REG 100
1

Programmind.87

PROCESS-PLC

These two program parts have got the same function. In
both of them the content of register 100 is decremented
by 1.

2a) 2b)
THEN THEN
REG NC 88 REG 88
REG 88
+
1

Here both program parts have also got exactly the same
result. Register 88 is incremented by 1.

3) REGQ STER LOAD [r Counter with 10]
LABEL 55

REGDEC r Count er
| F
REGZERO r Count er
THEN
ELSE
QOTO 55
THEN

This way a loop can be realised that is carying out a
certain number of runs. In the loop the counting register is
always decremented by 1, and then it is evaluated by
comparison whether it is zero (REGZERO r Count er). If it
Is zero, no step is taken after the first THEN; the program
goes on to the second THEN instead to be continued
from there. If register 1 is not O, though, a return is made
to the beginning of the loop.

188 Programming

Programming

3.6.4 Register Bit Instructions

Using the instructions
BI T_SET

Bl T_CLEAR

individual register bits can be queried, set or cleared.

In this case, the instruction

BI T_SET [Reg. <RegNo>, Bit <Bit No>]

means as an output instruction after THEN or ELSE):
The described bit is to be set; it is to be given value
1.

means as an input condition (after | F or WHEN):

Enquiry is made, whether the described bit has
been set; this means, whether it has got value 1.

BIT_CLEAR [Reg. <RegNr>, Bit <BitNr>]

means as an output instruction (after THEN or ELSE):
The described bit is set to zero.

means as an input condition (after | F or ELSE):
Enquiry is made, whether the described bit is zero. If
it is, the expression will be true; otherwise it will be
false.

The register number can also be given here in indirect
mode, but not the bit number.

Programmind.89

PROCESS-PLC

Bit Numbering:

Integer Registers (24 Bit):

2312221120119 |18|17|16|15|14 |13 |12

11110/ 9 | 8| 7|6 |5]4]13|]2]1]0

Bit O Is the bit of lowest value.
Bit 23 is the bit of highest value.
Internal Internal numbering is made by complements of two, for
numbering is example:
made by
complements 110 = 0000..1010
+1 = 0000.....01
0 = O........ 0
-1 = 1111...11
-10 = 1111...0110
Bit 23 is 1 for Bit 23 ist bei negativen Zahlen 1.
negative
numbers

The value can be calculated as follows: Vv = 28t°

Examples:

1) THEN
Bl T_SET [Reg. 12, Bit 3]

The fourth bit of register 12 is set, this means, it will have

value 1 after this. If all the other bits of this register are
zero, register 12 will then have value 8.

190 Programming

Programming

2) REGSTER LOAD [1 with 0]
BIT SET [Reg.1, Bit 9]
BIT SET [Reg.1, Bit 8]
BIT SET [Reg.1, Bit 6]
BIT SET [Reg.1, Bit 3]
BIT SET [Reg.1, Bit 2]

In this program, certain bits of registe 1 are set. The value
resulting for register 1 can be calculated as follows
(summing up of the "set values"):

294+ 28 4+ 204+ 234+ 22= 512 +256+ 64+ 8+ 4=
844

3a)

WHEN
Bl T_SET [Reg.1, Bit12]
THEN

3b)

WHEN
NOT
Bl T_CLEAR [Reg.1, Bit12]
THEN

These programs have got exactly the same result. It is
waited, until bit 12 of register 1 has been set (not
cleared).

Programmind.91

PROCESS-PLC

3.6.5 Flags and Flag Instructions

Flags have got Basically, flags are memories, which are only one Bit
valuelor0 yjde, though. This means they can either have value 1 or
0. For this reason one can say a flag has been set (= 1)
or cleared (= 0). Just as the registers, the flags are also
marked by numbers. The numbering of the flags can be
looked up in the manual on the respective controller.
Numbers 2048 to 2303 have been reserved for special
flags, which are needed by the system. The special flags
that can be helpful to the user have been described in
Chapter 4.1.2 Flags|

Overlapping Further, there is a flag range overlapped by a register
flag - register ange. For numbering ,please see the manual on the
fanges respective controller. For further details see Chapter
Basics on Registers and Flags|

The following flag instructions are available:

FLAG

CLEAR FLAGS

192 Programming

Programming

The instruction

FLAG <FI agNo>

has got the following meaning:

as an output instruction (after THEN or ELSE):
The flag is set, this means it is given value 1.
The flag can be cleared by inputting "-" (negative
sign) in front of the flag number.

as an input condition (after WHEN or | F):
Enquiry is made, whether the flag has been set. The
result of this enquiry corresponds to the flag value
and has got the meaning true (= 1) or false (= 0).

Here, a negative sign can also be input in front of the
flag number to get access to the inversed flag number.
This means, enquiry is made, whether the flag has been
cleared. (Thus, the result is exactly the inverse value of the
flag.)

Example:

1) THEN
- FLAG 2

By this instruction, flag 2 is cleared. After this, the flag
value will be 0.

2) WHEN
- FLAG 61
THEN

Programmind.93

PROCESS-PLC

Flag 61 is waited for to be given value 0. This flag can, for
example, be changed by another task; this means, it
can be deleted by this task. If the flag is O already, when
the program reaches this instruction, the rest of the
program will be continued immediately.

The instruction

CLEAR_FLAGS

serves for clearing whole blocks of flags. This will be
llustrated by the following example:

Example:

CLEAR FLAGS [1 to 300]

All flags from 1 to 300 are cleared; this means all flags
from 1 to 300 will afterwards have got value 0.

194 Programming

Programming

3.7 Inputs and Outputs

3.7.1 Inputs

Inputs can be
queried, but
not set

Inputs and outputs serve for inputs and outputs of binary
signals.

The inputs can be directly accessed by the program as
a binary signal, this is, as 0 or 1. The inputs can, for
example, be connected to a switch, which can be
queried in the program by the input instruction.

For numbering of the inputs, please see the manual on
the respective controller.

The inputs have only got a function in input conditions.
This means, they cannot be set by the software or be
influenced in any other way. Only enquiries are possible..

This can be easily achieved by the input instruction:

N 101

Enquiry is made by this instruction, whether input 101 has
been set. If the input number is preposed by a negative
sign, access can be made to the inverted signal, just as
it is the case with flags.

Programmind.95

PROCESS-PLC

Several inputs
are combined
in registers

Example:

VWHEN
-I'N 108
THEN

In this program part, input 108 is waited for not being set
any more. As soon as the input is not active any more,
the program is continued.

Via special registers, several inputs can be read
simultaneously. The register numbers can be taken from
the respective controller manual. Besides that, they will
be displayed as examples by Chapter

196 Programming

Programming

3.7.2 Outputs

Outputs are digital switches to control valves, fuses, LED's
or similar devices.

The numbering of the outputs can be taken from the
respective controller manual.

The instruction for switching or querying an output is:

QUT 101
This instruction will have the following effect:

as an output instruction (after THEN or ELSE):
Output 101 will be set (activated)

as an input condition (after | F or WHEN):
Enquiry about the output: Has the output been set?
(This is an internal logical query. This means, that, for
example, short circuits of the voltage output
cannot be recognised that way.)

By input of a negative sign in front of the output number
access can also be made to the inverse value ; this
means, enquiries can be made, whether an output has
not been set, or the output wil be deactivated as an
output instruction.

Programmind.97

PROCESS-PLC

Here, the output number can also be specified indirectly.

Examples:
1) | F
IN 101
THEN
QUT 201
ELSE
- QUT 201
THEN

Here, input 101 is queried first. If this input has been set,
output 201 is to be set as well. If input 101 has not been
set, output 201 is to be reset.

Remark:

Setting an output that is alleady active, as well as
resetting an output that is not active will be to no effect.

2) WHEN
- QUT 202
THEN

When output 202 is not active any more, the program is
to be continued.

For outputs, there are also registers, by which
simultaneous access to 8, 16 or 24 outputs can be
made. For numbering see the respective controller
manual.

198 Programming

Programming

Register
number
NANO-B

3) Register 2540 (NANO-B) goes together with outputs
QUT 101 to QUT 108.

Examples
1)

REG 2540

b000000000000000011111111 (16 zeros, 8 ones)

REG STER _LQOAD [2540 with 255]

The outputs (1 to 8) are set by these instructions. (After
this, each one of the 8 LED's wil be active). By the
assignment of registers, the binary value can directly be
input or - if this is required - the problem can be solved
by one diect instruction lke the REG STER LQAD
instruction top right. For this purpose, the binary value
must first be transferred into a decimal value. (See also
Chapter B.11.4 Special Function)

Programmind.99

PROCESS-PLC

3.8 Display Instructions and User Input

In this chapter, the instructions for user interfaces will be
explained. The devices have been described in a
separate manual.

These are the instructions:
DI SPLAY TEXT
DI SPLAY REG

USER | NPUT

3.8.1 Display of Texts

HALLO
SCHAT2!!

The instruction

Dl SPLAY_TEXT[#<Devi ceNo>, cp=<Cur sor Pos> , <Text >, |
serves for text output on user interfaces or on a printer.

Meaning of the parameters

Device Number

For this parameter, 0 to 9 can be input.

200 Programming

Programming

User Interface

Printer

Free
programm-
able
interface

#O to #4

A user interface will be controlled

#8

By this device number, the control system is caused to
edit the text onto a printer.

#9

Editng is made via the free programmable PRIM
interface.

Separate display on up to 4 simultaneously connected
user interfaces is possible (a description can be ordered).

Cursor Position

In this parameter the cursor position is given, where the
first character of the text is to stand. In this case, values
from O to 127 are possible. The respective cursor
positions can be taken from the manual on user
interfaces.

Example on LCD9:
First line of the display: Cursor positions from 1 to 24
Second line of the display: Cursor positions from 25 to 48

Cursor position 0 has got a special meaning: If cursor
position O is set, the text will be attached to the text
edited last. The cursor will stand at exactly the same
position, where it stopped after completing the former
display instruction. (The function of cursor position O can
be changed by a special register. Refering to this,

Programmin@01

PROCESS-PLC

please see the description of the special registers in the
controller manual.)

Text

_and $ Here the text can be input which is to be displayed. The
are test marks two characters " " and "$" serve as test marks:

Thedisplayis " " This character causes the display to be cleared first

clearedby _ gnd the input text to be displayed (independently from
the input parameter) then beginning with cursor position
1. This character only makes sense at the beginning of a
text, as otherwise the first part of the text would be
displayed first, yet would immediately be cleared again.
This character has got the meaning DELSCR (Delete
Screen). If this character is to be input, the character
code for DELSCR can be changed in a special register of
the controller.

For printing, this character has got the meaning FORM

FEED.
By$,theend ¢* This character causes the rest of the line, starting
oftheline, fom the present cursor position, to be cleared. It is also

starting ffom |led DELEOL (delete end of line) and can also be
the cursor

position replaced by another character (see description of
will be special registers in the user's manual).
cleared
For printing, this character has got the meaning LINE
FEED.

202 Programming

Programming

Examples:
1)
DI SPLAY_TEXT [#0, cp=0, "_Actual _Pos:"]

First, the whole LC display wil be cleared by this
instruction, then "ActualPosition:" will be written on the
upper line of the display (cursor position = 1). Instead of
the cursor position, any other number could be written,
as this will not be considered any more after input of the
Delete Screen mark (DELSCR). The display will then look as
follows:

Act ual Pos:

DI SPLAY TEXT [#0, cp=25, "Nom nal Pos: $"]
The text "NominalPos" is written, starting from the defined

cursor position 25, which is the beginning of the second
display line; then, the rest of the line is cleared.

3)
DI SPLAY_TEXT [#0, cp=0, "FEHLER']
Beginning at the present cursor position, the text "ERROR"

Is written. This means the text is simply attached to the
former text.

Programmin@03

PROCESS-PLC

4)

DI SPLAY TEXT [#8, cp=1, "This wll be sent to the
printer"]

The result will be, that the text "This will be sent to the
printer" will be printed on the printer, starting from the
beginning of the line. Details on printer output have been
described in the controller manual. For editing on PRIM,
the cursor position will be ignored.

3.8.2 Display of Register Contents

The instruction

DI SPLAY_RE({ #<Devi ceNo>, cp=<Cur sor Pos>Reg=<RegNo>]

serves for output of a register value onto user interfaces,
modules, or a printer.

The parameters device number and cursor position
have got exactly the same function as they have got in
the DI PLAY_TEXT instruction (see above). Further, a
register number must be input here. This is the register
number the value of which is to be displayed. It can also
be input by indirect addressing.

For register display there are two parameters to be
changed, which are stored in the special registers "Field
width for integer display’ and "Alignment left/right".
Following, the standard settings (after reset) wil be
described:

204 Programming

Programming

Setting after
reset

Setting after
reset

Special Register "Field Width for Integer Display"
=1

8 places are used for register display; negative signs are
displayed in the very beginning of the line and numbers
flush right in the other seven places.

Special Register "Direction, Left/Right" =

Flush right display

By PROCESS-PLC (not NANO-A) floating point numbers
can also be displayed on user interfaces; special register
"Field Width for Floating Point Display" (value 1..14).

Examples:
1)
DI SPLAY_REG [#0, cp=17, Reg=100]

Register 100 is displayed by this instruction. If the special
registers "Field Width for Integer Display® and
"Arrangement; Right/Left" have not been changed since
reset, the register will appear at the end of the first display
ine, as it is displayed in the following: (assumptions:
Before the instruction the display was empty, while
register 100 = -3567).

The dots are to mark the places, which, after giving the
instructions, still have got the "old" contents.

Programmin@05

PROCESS-PLC

DI SPLAY_TEXT [#0, cp=25, , Actual Pos :$“]
DI SPLAY_REG [#0, cp=41, Reg=11109]

It is shown here how the two outputs/instructions can be
meaningfully combined. First, the text "Actual Position" is
written into the second line (left), and the rest of the
second line is deleted (Dollar sign ,$“). Giving the second
instruction, register 11109 is displayed bottom right in the
display. The actual position of the stepper motor axis on
the basic module NANO-B is stored by this register
(assumptions: The actual position of axis 1 is to have
value 5400.)

Actual position: 5400

The dots are to show the places, which will still have the
"old" content after giving the instructions.

3) The following exemplary program is to demonstrate
how it can become possible to lead a protocol of
values directly to the printer.

206 Programming

Programming

TASK 5
REG STER LOAD [rField width with 2]
DI SPLAY_TEXT [#3, cp=1 "$"]
DI SPLAY_TEXT [#3,cp=1 "nom nal _pos"]
Dl SPLAY_TEXT [#3, cp=21 "actual pos"]
DI SPLAY_TEXT [#3, cp=41 "speed$"]

LABEL 100

VHEN
FLAG 1
THEN

Dl SPLAY_REG [#3, cp=3, Reg=rSol | Pos]
Dl SPLAY_REG [#3, cp=23, Reg=rl st Pos]
REG 1

30

*

REG r Act ual Pos

/

REG Nunber Encoder Li nes

DI SPLAY _REG [#3, cp=43, Reg=1]
-FLAG 1

GOro 100

This program has been programmed in a parallel
branch, which is very practical, as this way printing of a
protocol line can be triggered by setting flag 1 from any
other parallel branch. At the beginning of this task
(parallel branch) the title line is printed. This is done before
the actual loop, so that in this case three columns are
printed. In the first column, there is the nominal position,
in the second one, there is the actual position, while in
the third column there is the present speed in rev./min (if
1000 inkrements per revolution are evaluated).

NANO-A: no The protocol printout could look as follows:

printer
connection Noni nal Pos. Actual Pos. Speed
15000 8433 2450
4800 1206 - 1207
250000 250000 0

Programmin@07

PROCESS-PLC

3.8.3 Reading of Register Values by the Program

The instruction

USER | NPUT[#<Devi ceNo>, cp=<Cur sor _pos>, Reg=<RegNo>]

serves the writing of register values, which can be input
via the keyboard of the display and keyboard module.

The same as for DI SPLAY_TEXT instruction also applies
to the two parameters device number and cursor
position, yet with the following changes: In case of the
device number, there is of course no printer that can be
accessed, thus device number 8 is to be avoided in this
case. If cursor position O is input, the value out of special
register "Absolute Cursor Position for USER | NPUT" is
selected as cursor position at the user input. If this value is
also 0, though (which is the value the register has got
after reset), the register will be written into at the present
cursor position.

Indirect The register number is the number of the register the
addressing of input value is to be assigned to. Here, simple indirect

the destination ¢ ister addressing is possible as well
register is

possible

It is important to know, that, for USER_| NPUT there are
normally 8 characters available. This value, which has
been stored in the special register "Field width
USER | NPUT" can also be changed. (See Chapter[3.8.4]
Bpecial Registers for Pser Input).

208 Programming

Programming

Combination of
DI SPLAY TEXT
and

USER | NPUT

Example:

To achieve effective operator guidance, USER | NPUT is
often combined with the DI SPLAY _TEXT instruction.

DI SPLAY_TEXT [#0, cp=1, "_New Position ?"]
USER | NPUT [#0, cp=17, Reg=100]

After giving those two instructions, the text "New position ?"
will appear, and then the input of a number is waited for.
This number, which is stored in register 100, serves as a
new nominal position for a positioning run.

Programmin@09

PROCESS-PLC

3.8.4 Special Registers for User Input

A\

Note:

The special register numbers can be taken from the
respective controller manuals, where a general survey
of the special registers is given.

Special Register "Field Width for Floating Point
Display

Field width of the DI SPLAY_ REG instruction for floating
point numbers. Value range 1..14, value after reset: 8.

Special Register "Field Width for Integer Display

In this reqister the number of characters has been
defined, which are to be displayed after a
DI SPLAY_REG nstruction. After reset the value is set to 1,
which corresponds to a display of 7 characters.

Special Register "Field Width for Flush Left
Display”

In this register information is contained, whether a register
to be displayed is to be written on the user interface flush
left or right. The value after reset is O here.

In the following tables the various possibilities of
combining the two registers and its effect on the display
format are shown. The "*" (asterisk) will in the following
stand for the output of a space. The "+" stands for a
place holder of a positive sign; actually, a space will be
displayed, though.

210 Programming

Programming

a) Special register "Flush Left Number Display" = O;
default after reset

Regval ue 1234 -345 7654321 - 1234567
0 *r* 41234 |(****-345 |+7654321 |- 1234567
1 +***1234 |-****345 |+7654321 |-1234567
2 +**1234 - ***345 +654321 - 234567

3 +*1234 -**345 +54321 - 34567

4 +1234 - *345 +4321 - 4567

5 +234 - 345 +321 - 567

6 +34 -45 +21 -67

7 +4 -5 +1 -7

8 + - + -

b) Special register "Flush Left Number Display" = 1

RegVal ue 1234 - 345 7654321 -1234567
0 +1234 - 345 +7654321 |-1234567
1 + - + -

2 +1 -3 +7 -1

3 +12 -34 +76 -12

4 +123 - 345 +765 -123

5 +1234 - 345* +7654 -1234

6 +1234* - 345** +76543 - 12345

7 +1234** - 345*** +765432 - 123456

8 +1234*** |-345**** |+7654321 |-1234567

c) For special register "Flush Left Number Display" =
see a), yet, no sign will be displayed.

Special Register "Field Width USER_| NPUT"

The value of this register is the field width, which is
presented to the user by the user interfface, when the
USER | NPUT instruction is caried out. The value of this
register after reset is 8, which means that 8 characters
are available to the operator for input. The first space for
a character is reserved to the sign and will be occupied
by a sign only.

Programmin@11

PROCESS-PLC

3.8.4.1 Control Character for the DISPLAY_TEXT Instruction

Special Register "Delete Characters up to the

End of the Line"
Default after

reset: $ In this register, the ASCII code of the DELEOL (DELete End
Of Line) character is contained. After reset it will have
value 36, which is the ASCIl code of ,$“ (Dollar sign). If, for
example, a Dollar sign is to be used in a text display,
thus, by this register, the function of "$" can be transferred
onto another character by inputting of another number.

Defal:'etszf;t_ef Special Register "Clear Character Display"
In this register, the ASCIl code of the DELSCR (DELete
SCReen) character is contained. Deactivation of the LC
display is caused by this character. After reset, the
register will have got value 95, which is the ASCIl code of
" " (underline). This character can also be replaced by
any other.

Register Example:
numbering

DELTA REG STER LOAD [61462 with 38]
DI SPLAY_TEXT [#0, cp=0, "&']

The display is cleared by those two instructions. First, the

DELSCR character wil be changed; then the
DI SPLAY_TEXT will immediately be activated.

212 Programming

Programming

3.8.4.2 Controller Register for Cursor Position on the LC Display

Register
numbering
DELTA

Special Register "Absolute Cursor Position DT, DR"

The value of this register represents the cursor position
after the DI SPLAY TEXT or the D SPLAY REG
instruction, in case cursor position 0 has been defined in
the instruction. If the value of this register is 0 as well,
which is the case after reset, the text to be displayed is
simply attached to the last display. This means, the
present cursor position is not being changed.

Special Register "Absolute Cursor Position U"

This register has got exactly the same function as the one
mentioned above, but referning to the USER | NPUT
instruction. The cursor position is defined by this register,
where the input is to be made, if, at a user input cursor
position 0 has been defined. This value will also be 0 after
reset, which will result in annexing to the latest input or
output.

Example:

REG STER LOAD [61649 with 25]
USER | NPUT [#0, cp=0, Reg=100]

The register for indirect definition of the cursor position for
user input is first loaded with value 25. At the beginning of
the second display line a number, which is then assigned
to register 100 can be input with the help of the following
instruction.

Programmin@13

PROCESS-PLC

3.8.4.3 LCD Display Time

The display of the user interfaces functions on two display
levels. Normally, level one is displayed, which is also
accessed by the user program; this means, here the
DI SPLAY_TEXT-, DI SPLAY_REG and USER | NPUT
instructions are displayed.

By pressing the 'R' and 'F' keys, registers, flags, inputs and
outputs can be queried and changed. This is carried out
on level two (called monitor screen).

The time for switching back onto level one can be
defined by the

Special Register "Display Time for Monitor
Functions"

In this register the time of how long a register, a flag, an
input or an output queried via keyboard is to remain on
the display is given in seconds. This is the time before
switching back the display of a user program.

After reset this register has got value 3, that is, three
seconds.

214 Programming

Programming

3.8.4.4 Input Enable for Flag and Register Changes via User
Interface Keyboard

A number of special registers serve for definition of
register ranges, which can then be changed via
keyboard. In this case, every two registers following one
another make up a pair, by which a block is defined. The
first three pairs refer to registers, the fourth pair to flags.

Special Register "First Changeable Register - Range 1"
"Last Changeable Register - Range 1"

The lowest register that can be changed is defined in the
special register "First Changeable Register - Range 1"
(value after reset = 0), while the upper register is defined
in the special register "Last Changeable Register - Range
1" (value after reset = 59999) the upper one (first register
- input enable range).

Special Register "First Changeable Register - Range 2"
“Last Changeable Register - Range 2"

The same applies to the same register range (values

after reset: both registers are 0)

Special Register "First Changeable Register - Range 3"

"Last Changeable Register - Range 3"

The same applies to the third register range (values after
reset: both registers are 0)

Programmin@15

PROCESS-PLC

Special Register "First Changeable Flag"
“"Last Changeable Flag"

In special register "First Changeable Flag" (value after
reset = 0) the lowest flag that can be changed, in
special register "Last Changeable Flag" (value after reset
= 59999) the upper flag that can be changed is
defined.

if Note:
The values after reset have been chosen in such a way,

that all registers and flags can be changed via
keyboard. In most cases it is advisable to protect blocks
of registers and flags this way, which contain important
values, in order to avoid loss of important values due to a
typing error on the keyboard.

Input enable for flags, inputs, outputs and registers can
also be generally prohibited. (For this, see "Special Flags"
in the controller manual.)

Register Example:
numbering

DELTA REG STER LOAD [61697 with 49]
REG STER LOAD [61698 with 100]
REG STER LOAD [61699 with 199]
REG STER LOAD [61703 with 300]

Assuming that the other registers have not been
changed after reset, these attributions result in the
following status:

Register 0to 49: input permitted

Register 100 to 199: input permitted
Flag 1 to 300: input permitted

216 Programming

Programming

All other registers and flags cannot be changed via
keyboard any more. Thus, all special reqgisters, as well as
the axis module registers, are protected.

3.8.4.5 Restriction of the Monitor Functions

Special Register "Restriction of the Monitor Functions"

Flags 2096 (Bit 0) to 2103 (Bit 7) are overlapped by this

register.

0 = Function blocked, 1 = Function available

BitO =0
BitO =1
Bitl =0
Bitl =1
Bit2 =0
Bit2 =1
Bit3 =10
Bit3 =1

R, I/O keys without monitor function
(flag will be set, though)

R, I/O key with monitor function

R, I/O key without monitor function
flag input

R, I/O key with function flag input

R, /O key without function, input of output
number

R, /O key with function, input of output
number

R, /O key without function, input of input
number

R, I/O key with function, input of input number

Programmin@17

PROCESS-PLC

Bit4 =0 = reqister contents cannot be changed by
the key

Bit4 =1 = register contents can be changed by the
key

BitS =0 = flags cannot be changed by the key

BitS =1 = flags can be changed by the key

Bit6 =0 = outputs cannot be changed by the key
Bit6 =1 = outputs can be changed by the key
Bit7 =0 = no access to inputs by the key

Bit7 =1 = access to inputs by the key

218 Programming

Programming

3.8.4.6 Time for User Input

Setting after
reset:
no time limits

Special Register "Maximum Time for USER_| NPUT"

The operating system is informed by the register of how
much time there is (in seconds) for the operator to carry
out a USER | NPUT.

After reset, this register will have value 0, which has got
the following meaning: without any condition of time user
input and its confrmation by ENTER is waited for. The
number will be input and the processing of the program
continued then. When the register is set to 10, termination
of the USER | NPUT instruction after 10 seconds will be
caused.

Flag 2053

This flag must be seen in the context of "Maximum time
for USER | NPUT". After USER | NPUT, enquiries can be
made via this flag, whether the input has been finished
properly by the operator, or whether the user input has
been terminated by a 'timeout'.

Flag 2053 = 1 means termination by timeout.

Programmin@19

PROCESS-PLC

3.9 Instructions for Axis Controlling

In this chapter all available instructions for axis control will
be described. The instructions are

PCS
ACTUAL_PCS

AXARR

Using these makro instructions for axis control, program
development will be made easier a great deal; the
program will be clearer and easier to read.

3.9.1 Positioning

For axis positioning, that is, running the axis to a certain
location, the following instruction is used:

PCS [Axi s<Axi sNo>, Pos<Act ual Pos>, v<NonSpeed>]

Three parameters must be input, which serve for
informing the axis board, where, and by which final
speed, the axis is to be driven. Everything further will be
controlled by the axis board on its own. In order to control
the correct axis, the axis number must be input first.

220 Programming

Programming

All parameters
can be
indirectly
addressed

As an alternative
to the PCS-
instruction,

position and
speed registers
can be written
into directly by
the

REG STER LQAD

instruction

The meaning of the parameters (the parameters can be
indirectly addressed):

Axis Number

Axis numbering can be taken from the respective
manual.

Nominal Position

Here, any number of an integer register can be input (this
means, from -8388608 to 8388607). It depends on the
whole process, whether all those values are useful.
Normally, the range of numbers that is really useful for an
application is smaller. (Please also see the descriptions of
the respective servo controllers.)

In any case, the nominal position is given by this number;
this is the position the axis is to drive to. The position input
in the POS instruction corresponds to directly writing into
the nominal position register.

Nominal Speed

In the number that has been input the maximum speed
for this positioning is defined.

Both for nominal position and for nominal speed there
can be doubly indirect register definition, for example
RR50. For explanations on this doubly indirect register
access see the REQ STER _LQOAD instruction, Chapter

This way, the meaning of the PCS instructions can simply
be the following:

Programmin@21

PROCESS-PLC

For servo axes
sinus-shaped
start and stop
ramps

Register
numbers by
the example
of NANO-B

"AXis X : go to position Pos with speed v"

During acceleration the speed will slowly be increased
(sine square shaped) and during deceleration when
heading the destination position it will also be slowly (also
in sine square shape) be decreased.

How fast the meaning of "slowly" is meant to be, that is,
how high the steepness of the sine square function is to
be, can be set using further parameters (start and stop
ramps), which are directly loaded into the registers
provided for this purpose.

In register 1xy05 there is the start ramp.

In register 1xy06 there is the stop ramp.

Remark:

Besides start and stop ramp, further parameter registers
can be initialised on the axis boards in most cases. For
this purpose the following instructions are preferred:

REG STER LOAD
SPECI ALFUNCTION [#1, . . .]
CoPY

These instructions are extensively explained in Chapter

222 Programming

Programming

Decel er -
ation with
the hel p of
the start

ranp is
caused by

t he AXARR

i nstruction

For positioning the
AXARR Axi s<Axi sNo>

instruction is also necessary. This instruction can be used
as an input condition and an output instruction. The axis
number can also be defined in simple indirect mode.

As an output instruction (after THEN or EL SE) this means:

The axis is to stop immediately (i.e. without ramp)
and the position is to be controlled at the present
actual position.

As an input condition (after | F or WHEN) this means:

Has the axis reached the destination position
(respectively the destination window)? If so, a 1 as a
Boolean value (true), if not, a 0 (false) wil be
returned by the instruction.

If a negative sign is input in front of the negative number,
the meaning of the instruction will be converted into its
opposite.

In an output instruction this means, that an axis
that has been stopped will continue, if its nominal
position has not been reached yet.

In an input condition an enquiry can be made,
whether an axis is still running.

Programmin@23

PROCESS-PLC

Remark:

For positioning instruction the following should be
considered: As soon as the instruction has been written
and passed on to the axis board, the processor on the
CPU will have fulfiled its task and thus go on to the next
instruction. Axis positioning itself will independently be
caried out by the micro processor on the axis controller
module.

For this purpose enquiry will normally be made with the
help of the AXARR instruction, whether the axis has
already arrived in the destination window, before the next
positioning is started. It is also definitely permitted,
though, to start further positioning runs during one
positioning run is already carried out. In this case, the axis
will drive onto the nominal position that has been
transferred last without stopping in between.

The destination window is an area that can be defined
around the destination position. It can be set by register
7.

224 Programming

Programming

Initialising
of the axis
controllers

Referencing
of the axis

After the power supply of the controller has been
switched on, all registers of the axis controllers will be
loaded with the values they had at the beginning (reset
values). In various SV modules, a relay will be switched off
at this reset, which is going to transfer the analogue
speed - nominal value output to the outside. By loading
the number 1 into the instruction register (1) of the
required module, this relay can be switched on:

Positioning is only possible, after a reference position has
been loaded. For the beginning, this reference position
can simply be defined. This is possible by writing number
3 into the instruction register:

REG STER LOAD [rConmand with 3]

Normally, a special, exactly defined reference point is
searched by reference run and then loaded into the
register. In the instruction shown above, the present
position is loaded as a reference point.

Programmin@25

PROCESS-PLC

Please find
detailed
information on
the servo
controller in
the respective
controller
manual

Example:

1) REG STER LOAD [r Command with 3]
REAQ STER LQOAD [r Command with 1]
POS [axi s=21, Pos=10000, v=500]

First the relay is switched on, then the reference point is
set, and finally positioning is carried out:

"Axis 21 on the first axis module: Go to position 10000
with the speed 500%}"

Axis 21 is to go to position 10000 with speed 500. This
means that just the nominal position (10000) and the
nominal speed (500) are loaded into the respective
registers on the axis board.

The nominal speed is set on the output of the axis board
as follows:

The speed rises up to its final value of 500 in a sine
square shaped ramp (stepper motor: linear). When the
axis is recognised to be near the nominal position, the
speed is being decreased again, until the nominal
position has been reached. There, the calculated speed
will be O.

(For a more detailed description, also on start and stop
ramp, please see the servo controller and stepper motor
chapters of the respective controller manual.)

226 Programming

Programming

2) REAQ STER LOAD [rStartRanp with 50]
REA STER LOAD [r St opRanp with 10]
REA STER LOAD [r Command with 3]
REA STER LOAD [r Command with 1]
PCS [axi s21, Pos-40000, v1000]
VHEN
AXARR axi s21
THEN
POS [axi s21, Pos -30000, v200]

First, the ramps are defined (start/stop), then the
reference is set, and finally the relay is switched on.
First, position -40000 is driven to with a speed of 1000%o
After the position has been reached, the instruction is
given to go to position -30000 with a speed 200%.

3) REG STER LOAD [r Command with 3]
REG STER LOAD [rCommand with 1]
PCS [axi s=21, Pos100000, v=300]
DELAY 20
AXARR 21

Here, the reference is set first, before the relay is switched
on. Then, axis 21 (axis on the first axis module at slot 2) is
instructed to go to position 100000 by a speed of 300%.
After a delay of 2 seconds (definition by multiples of 100
ms), the axis run is interrupted by the AXARR instruction.

Programmin@27

PROCESS-PLC

3.9.2 Enquiries on the Present Condition

To enquire about the present position, the

ACTUAL_PCS

instruction is needed, which allows elegant access to the
present axis position.

This position is in a register of the axis module (register 9)
and could as well be found out by querying this register.
The axis number can also be defined in indirect mode.

Example:

REAQ STER LQAD [r Command with 3]

REAQ STER LQAD [r Command with 1]

PCS [axi s=21, Pos10000, v=500]
VHEN

ACTUAL_PCS axi s21

>

8000
THEN
aur 201

First, the reference is set, then the relay is switched on,
and finally the instruction is given to go to position 10000
with a speed of 500%o

When the actual position is greater than 8000, output OU
201 is set.

228 Programming

Programming

3.10 Task Instructions

The instructions described in this chapter serve for mutual
task control.

TASKBREAK this way a task can be interrupted
TASKCONTI NUE this way a task can be continued
TASKRESTART this way a task can be restarted

3.10.1 Taskbreak

By the instruction

TASKBREAK #<TaskNo>

processing of the defined parallel branch (task) is
interrupted.

The parameter to be defined together with this instruction
is the number of the parallel branch to be interrupted,
that is, a number from O to 31.

if Note:
Please mind here, that the controlling/positioning of

inteligent slave modules will not be interrupted! If this
should still be required, positioning must be explicitely
terminated/ controlling must be interrupted.

Programmin@29

PROCESS-PLC

With the help of this instruction, an automatic run, for
example, can be interrupted at any position. Then, a
manual mode or EMERGENCY STOP program can be
processed.

3.10.2 Taskcontinue

The instruction

TASKCONTI NUE #<TaskNo>

causes an interrupted parallel branch to continue
processing.

3.10.3 Taskrestart

By the instruction

TASKRESTART #<TaskNo>

processing of the defined parallel branch is started
afresh, that is, from the beginning of the task.

230 Programming

Programming

3.10.4 Examples of the Task Instructions

;e.g. manual node
; progr am

;€.9. automatic node
; progr am

;e.g. further prograns

IN -101 ; Enmergency stop switch is

; pressed
THEN

TASKBREAK #0

TASKBREAK #1

TASKBREAK #2

TASKBREAK #3

AXARR axi s21

AXARR axi s31

AXARR axi s41

VWHEN
Qur 101 ; Emergency stop switch
; deact i vat ed
THEN

AXARR axi s-21

AXARR axi s- 31

AXARR axi s-41

TASKCONTI NUE #0

TASKCONTI NUE #1

TASKCONTI NUE #2

TASKCONTI NUE #3

GOTO 4

For further examples and general information on
multitasking see Chapter

Programmin@31

PROCESS-PLC

3.11 Various Instructions

In this chapter, the following instructions will be described:

START- TI MER

TI MER- END?

NCP

SPECI ALFUNCTI ON
LIMTS

Wrd Processi ng WAND, WOR, WKOR

3.11.1 Time Instructions

3.11.1.1 The Instructions START-TIMER and TIMER-END?

The instructions have got the following syntax:
START-TIMER [register no., value (tine)]

TI MER-END? [register no.]

Those two instructions are written into together here, as
they belong to the same function, that is, they depend
on each other.

232 Programming

Programming

The
START- TI MER

respectively
Tl MER- END?

instructions
can be
parameterised
in indirect
mode

The parameter of the START- TI MER instruction can be
defined as a number or as a register number using
indirect mode

With the help of START- TI MER and the TI MER- END?
instructions, time can be monitored. In the START-
Tl MER instruction the required time, as well as the register
the value is to be stored in, is contained, and the
monitoring time is started in the running program by this
instruction. The Tl MER- END? instruction serves querying,
that is, it is defined, whether the time set by the START-
TI MER instruction has expired Unlike after the DELAY
instruction, the program will go on running for the defined
time. even if it is in the same task. This function can, e.g.
be used to limit the duration of processes, as, for
example, warming up an item. There is no direct
connection between the content of a defined register
and a defined time. Thus, it is not easy to check how
much time has already expired, that is, how much still
remains!

All user registers can also serve as time monitoring
registers.

Between the START-TIMER and the corresponding
TI MER- END? instruction, no assignment must be made
to the selected register, as otherwise the the TI MER-
END? instruction will not render a result that is useful!

Internal Processing of START- TI MER, Tl MER_END?

In case of the START- Tl MER instruction the time given
in the instruction is added to the content of a time base
register that can be selected, while the sum is stored in
the register defined in the instruction. The addition is
caried out as a 22 Bit operation without sign. This means,
that the maximum monitoring time can be 4 milion time
iIncrements.

Programmin@33

PROCESS-PLC

In the TI MER- END? instruction the stored value is
compared with the present content of the time base
register. If the time base register is still smaller than the
stored value, the TI MER- END? instruction will have the
result "false" (0). If the time base register is equal with, or
greater than the stored value, bit 23 of the defined
register is set (negative) and the result is "true" (1; time has
expired).

This means that after the START- Tl MER instruction, the
TI MER- END? instruction has to render the result "true" at
least once within a time of 4 million time increments, in
order for the reqister to be set to negative, before
number overflow takes place. On the other hand, the
"timeout" status can be enforced by setting the used
register onto a negative value.

The number of the time base register can be defined in
one register. After switching on, the "runtime register" (in
user increments) is used. Yet, any user register can be
applied.

Example:

PCS [Achse=21, Pos=..., v=...]
START- TI MER [Reg=r Moni tori ng, tine=100]

DELAY 20

VHEN
TI MER- END? Reg=r Moni t ori ng
oR
AXARR 21
THEN

234 Programming

Programming

3.11.1.2 Special Registers for Time Instructions

Special Registers "User Time Base in ms"

In this register, the time increments of the controller are
defined, namely in units of ms (miliseconds). After reset
this value is 100, that is, the time increments is 100 ms by
definition. Into this register, values from 1 to 255 can be
input, whereas values that are smaller than 10 should not
be input.

In case of the DELAY instruction, the respective number is
loaded into the time register of the task, which is then
waited to become zero. The following two program
sequences are to demonstrate this (Example NANO-B):

TASK O TASK O
REG STER _LQOAD [2300 with 10] DELAY 10
VWHEN Ca
REGZERO 2300
THEN

These two program arts have got exactly the same
function. In some cases it may be useful, though, to use
a time register, as between loading the time register and
querying on zero still further instructions can be carried
out.

Programmin@35

PROCESS-PLC

if Note:
Using time registers can also be quite tricky! Thus, it is very

dangerous and not to be recommended to directly load
the DELAY function, as well as the time register of the
task, into the very same task. This way, "infinite" delays
may result. For this reason, rather use START- TI MER and
Tl MER- END? instructions.

236 Programming

Programming

3.11.2 NOP

The

NCP

instruction is only of importance for the operating system.

As NOP is considered to be a "real" instruction, it wil be
processed in the program, which helps to have very short
deceleration times in programs implying difficult timing.

3.11.3 The Commentary Character

The ";" (colon) actually is not an instruction, but it only
helps to add a commentary line to the program text.
Thus, more extensive commentaries can be written than
those that can be filled into the commentary column
behind an instruction.

As a mere commentary will follow, the entire line will be
eliminated by the controller compiler during translation of
the source program. Thus, neither memory space nor
program processing time will be needed in the controller.

Programmin@37

PROCESS-PLC

3.11.4 Special Functions

Special-
functions

only for PASE-E
and DELTA

Indirect
addressing
is possible

Three internal controller functions can be called up by
the

SPECI ALFUNCTI ON

instruction:

Function 1: Initialise axis
Function 4: BCD -> HEX transfer
Function 5: HEX -> BCD transfer

The parameters pl and p2 can be indirectly defined for
all functions.

Axis Initialisation

For axis initialisation use

SPECI ALFUNCTI ON [#1, pl=<Par 1>, p2=<Par2>]

This function is to serve initialisation of axis boards.
Register values are copied from one memory range to
another. This instruction has been described extensively in

Chapter

238 Programming

Programming

BCD switches,
for example,
can be
queried

BCD -> HEX Transfer

The

SPECI ALFUNCTI ON [#4, pl=<Par 1> p2=<Par 2>]
serves the transfer of binary coded decimal numbers
(BCD) into binary numbers.

This transfer can, for example be used for the location of
values that have been written by BCD switches, that are
connected to an input board.

The two parameters of this function are

Parameter 1 -=> Source Register Number
Parameter 2 -> Destination Register Number

The bits of a source register are interpreted as a BCD
number, then they are transferred into a binary number
and written into the destination register. Four bits of the

source register wil make up a decimal place. Four
places can be dealt with as a maximum.

BCD number in the source reqister:

Bit Oto 3 -> last decimal place ("unit places")

Bit 4to 7 -> second but last decimal place
("tens places")

Bit 8to 11 -> third but last decimal place
("hundreds places")

Bit 12 to 15-> fourth but last decimal place
("thousands places")

Programmin@39

PROCESS-PLC

BCD-
controlled
displays, for
example, can
be controlled
this way

Example:

Register 100 is to have the following value:
0101 1000 0011 0110 = 22582

but the value of the BCD number stored this way is

5 8 3 6 = 5836

The instruction
SPECI ALFUNCTI ON [#4, p1=100, p2=101]

causes register 101 to have value 5836.

HEX -> BCD Transfer

SPECI ALFUNCTI ON [#5, pl=<Par 1> p2=<Par 2>]

serves the transfer of binary numbers into binary coded
decimal numbers (BCD). Thus it corresponds to the
reversed special function 4.

Parameter 1 -> source register number
(binary number)

Parameter 2 -> destination register number
(BCD number)

240 Programming

Programming

3.11.5 The LIMITS Instruction

— 11
"‘1-:.

LIMTSin
input
condition

LI M TSin the
output
instruction

A very helpful instruction saving program codes:

LIMTS [reg.no, lower limt, upper limt]
This instruction can be applied in many ways:
1.LI M TS after | F or ELSE

Here the value of the register specified by the LIM TS
instruction is checked on being in the interval which is
defined by an upper and lower limit. The result of this
operation is true (1) or false (0).

2. LI M TS after THEN or ELSE

Here the value of the register specified as well by the
LI M TS instruction is checked on being in the interval
which is defined by an upper and lower limit. The result of
this operation is the following, though:

a) The value is lower than the interval:
In this case this value is replaced by the value of
the lower limit.

b) The value is higher than the interval:
In this case this value is replaced by the value of
the upper limit.

c) The value is in between the limits of the interval:
This value is kept.

Limits can also be defined by indirect or double indirect
addressing.

Programmin@41

PROCESS-PLC

3.11.6 Word Processing

In this chapter, the following instructions will be explained:

WAND
VWOR

VWKOR
With the help of these three instructions entire registers
can be logically connected with each other bit by bit.

These logic connection instructions can be applied in the
same way as the arithmetic operators + - * /

They can be used in one and the same operation, yet
there are no differences in priority.

Following, the instructions will be explained with the help
of examples:

242 Programming

Programming

Using O the
bits are reset.
Using 1 the
bits are kept.

WAND

1) REGO

b010101010101010101010101
VAND
b001001001001001001001001

The first bit of the first number is connected by AND with
the first bit of the second number.

The second bit of the first number is connected by AND
with the second bit of the second number.

etc.

In Word-by-word AND-connection, the resulting bit will only
be '1', where the corresponding bits of the first number
and of the second number have been set (= 1).

By the AND-connection of a certain bit with '0', the result
bit is set to '0'; by the AND-connection with '1', the status
of the bit is taken over into the result.

The result of each connection is stored as the
corresponding bit in register REG 0, in order for value
b000001000001000001000001 = 266305 to be written
into REG 0.

2) REGO

REG 1
VAND
hOOOOFF

In this attribution the eight bits of lowest value (hOOOOFF =
bb000000000000000011111111) that have been written
into REG 1 are taken over into REG 0 just as they are.
The bits of higher value belonging to REG 0 are setto '0'.

Programmin@43

PROCESS-PLC

Using 1 the
bits are set.
Using O the
bits are kept

The bits are
inverted by 1.
The bits are
kept by 0.

WOR

1) REGO
REG 1
WOR

b000000000000111100001111

In Word-by-word OR-connection, the resulting bits are set
(=1), where the respective bits of the first number or the
bits of the second number or the bits of both numbers
are '1'.

In the OR-connection of a certain bit with '0' the status of
the bit is taken over into the result bit; by connection with
'1' the result is set to '1'.

The result, which has been stored in REG 0 is designed
as follows: REG 0 = bxxxxxxxxxx1111xxxx1111. x is to
define the bits, which are dependent on REG 1.

REG 100

46398
WKOR
123098

In the Word-by-word EXclusive-OR-connection those
result bits are set to '1', where the respective bits of the
two numbers have got different logic conditions. If the
conditions are the same, the result will be '0'.

When a certain bit is connected with '0' by an exclusive-
OR-connection, the status of this bit is taken over; in a
connection with '1', the inverse bit value is written into the
result bit.

244 Programming

Programming

46398 - -
123098 - -
XOR

87524 <-- 0 0000001010101 0111100100

>000000001011010100111110
>000000011110000011011010

In register REG 100 value 87524 will stand in register REG
100 after the attribution.

2) REG 100

REG 100
VKOR
hFFFFFF

Every bit of REG 100 is inverted by this attribution.

Programmin@45

PROCESS-PLC

3.12 Network Instructions

Mono-master-
network

JETWay-R

126 slaves
can be
connected

Easy
network
access by
50000-er
numbers

A network is a connection of several controllers, remote
I/Os or valve blocks. These can communicate with each
other, that is, register values can be transferred from one
unit to another one by the two following instructions. This
network is a "mono-master network". This means, that one
unit is the master (humber 1), while the other units are the
slaves (number 2 ...). This number can be defined in a
register. Please note, that the two following instructions
may only be input in the program of the master unit.
Otherwise they will be considered as not defined.

The instructions

N- GET- REA STER

N- SEND- REG STER

serve taking register values from any controller into the
master-controller and sending register values from the
master-controller onto another controller.

Network operation by 50000-er numbers (Chapter
B.12.3 Network Operation by 50000er Numbers)

246 Programming

Programming

3.12.1 Sending Register Values to Slave Controllers

Indirect
addressing
is possible

Network errors
are indicated
by a special
flag

This is done by the following instruction:

N- SEND- REG STER [To <net wor k no. > from
reg. <Sour ceReg> t o Reg. <Desti nati onReg>]

In this case, the number of the controller that is to be
addressed must stand in the place of network no. This is
the number of the slave controller, which is to be given
the register value.

Source Register Number is to define the register which
must be read. This is a register belonging to the master
controller. The parameter can also be defined indirectly
(for example R10).

Destination Register Number is to define the slave
controller register, into which the value must be written.
This register number can also be addressed indirectly the
pointer register being in the master controller.

The "Network Timeout" special flag wil indicate, whether
an error (transfer error or timeout) occurred in the last
transfer. For this reason, the flag should be checked after
each transfer. If the flag is set, an error must have
occurred, and data transfer can be repeated.

Programmin@47

PROCESS-PLC

Transfer errors
are indicated
by special
flag

"network
timeout"

Example:

FLAG 100
N-SEND REA STER [To 2 fromreg. 100 to reg. 200]
| F
FLAG f sNet wor k- Ti nmeout
THEN
GOTrO 100
THEN

In this example the value of register 100 is sent from the
master controller to controller no. 2. If an error occurs, the
special flag "network timeout" will be set, otherwise it will
be reset; for this reason the program will return to label
100 to repeat the sending procedure. In this example,
sending of the reqister value will be repeated over and
over again, untl the transfer has been caried out
successfully.

3.12.2 Getting Register Values from a Slave Controller

This is done by the instruction

N GET REA STER [from <Net No>Reg. <Sour ceReg>, Reg
her e=<Dest i nat i onReg>]

The parameters to be defined have got the following
meaning:

Network No.

is the network number of the slave controller out of which
a register is to be read.

248 Programming

Programming

Indirect
addressing
is possible

Spezial flag
"Network-
Timeout" is to
report network
errors

Source Register Number

is the number of the slave controller register which is to
be read (indirect addressing is possible).

Destination Register Number

Is a register number of the "own" controller, into which the
value is to be written (indirect addressing is possible).

Remark:

In the case of indirect addressing the registers, into which
the source and destination register numbers have been
written, are always on the master controller.

Here "Network-Timeout" will also be set in case of an error.

Examples:

1)
LABEL 100
N GET- REA STER [from 2Reg. 100, Reg her e=200]
| F
FLAG f sNet wor k- Ti nmeout
THEN
GOTrO 100
THEN

Here register 100 is read by the slave controller of network
number 2 before being copied into register 200 of the
master controller. With the help of special flag "network
timeout" enquiry is made, whether an error has occurred.

Programmin@49

PROCESS-PLC

If this is the case, register 100 of the slave controller is
read again.

2) REG STER _LOAD [100 wi t h 1000]
LABEL 100
N-GET REGQ STER [from 2Reg. R100, Reg her e=R100]
| F
FLAG f sNet wor k- Ti meout
THEN
G&Oro 100
THEN
REG NC 100
| F
REG 100
<
1030
THEN
G&Oro 100
THEN

By this program a whole register range (registers 1000 to
1029) are copied by the slave controller of network
number 2 onto the master controller, as well as into
registers ranging from 1000 to 1029.

A "collective report" of whether a transfer eror has ever
occurred, can be found in the special flag "Collective
Report of a Network Error’, which will be set in case of an
error, yet wil not be reset by the operating system.
Resetting can only be done from the user program.

250 Programming

Programming

3.12.3 Network Operation by 50000er Numbers

3.12.3.1 Addressing the Registers

The same
access to
master and
slave registers

Access to control registers by a master controller only
differs from an internal REG STER _LQAD instruction in
the parameter numbers. Apart from this number the
program sequences for access to an internal register
and a slave register are identical.

Register Number 00...99

The register number has got the following pattern:

[T T TT]

|_|.= Regi st er Number 00...99

Net wor k No. of the Sl ave 2..99

Digit 5

With the help of these register numbers the master
controller can have access to a window of 100 registers
in the slave controller.

Programmin@51

PROCESS-PLC

By the numeric
offset register,
"windows" for
slave register
access are set

Example:

Register 62 of the slave controller with the network
number 32 is addressed by the master controller by the
instruction

REG STER LOAD [100 with R(53262)]

If access to a register is to be made, the number of
which is greater than 99, a number offset value is to be
input into the special register "number offset register".
When the registers of the slave controller are accessed
by the master controller, this value is added to the
register number in the program of the master controller.

The instruction

REG STER LOAD [100 with R(53262)]

in the program of the master-controller plus a value of
200 in the special register "number offset register" of the
slave-controller of network number 32 has effective
access to register 262 of the slave controller.

Special Register "Register Number Offset"

This value is added to the register number in the
program of the master controller. The sum shows the
number of the register, which, in the slave controller, is

really accessed by the master controller.

Value after reset: O

252 Programming

Programming

Note:

By the N-SEND REQ STER instruction the ‘register
window" is set into the required range by the special
register "register number offset'. Then, operations can be
made in this "window" with the help of the 50000er-

numbers.

L

[REGISTER

Programmin@53

PROCESS-PLC

3.12.3.3 Addressing of Inputs, Outputs and Flags

The same
access to
master and
slave
inputs

"Windows" for
the slave input
access are set

with the help
of the number

offset register!

Addressing of Inputs

Access to inputs of the slave-controller by the master-
controller only differ from an internal master input
instruction in their parameter number. Apart from this
number, the program sequences for an access to a
master input and a slave input are identical.

The input number is designed according to the
following pattern:

[T T TT]

|—|-= | nput Nunber 1..8

Sl ave Net wor k No. 2..99

Digit 5

The number value out of the coresponding number
offset register for inputs is added to the input number
defined in the input parameter. The resulting input will be
addressed.

Special Register "Input Number Offset":

Number offset for inputs; the register is on the slave
controller.

This value is added to the input number, which is in the
program of the master-controller. The sum makes up the
number of the input in the slave controller, which is
actually accessed by the master controller.

254 Programming

Programming

Example:

Input 108 in the slave controller of network number 5 is
addressed from the master-controller by the input

I NPUT 50508

Before this,, value 100 must be written into special register
"input number offset" (on the slave controller).

Programmin@55

PROCESS-PLC

The same
access to
master and
slave outputs

"Windows" for
the slave
output access
are set with
the help of the
number-offset
register!

Addressing the Outputs

Access by the master controller to outputs of the slave
controller only differ from an internal master output
instruction in the parameter number. Besides this
number, the program sequences for access to both a
master and a slave output are identical.

The output number is made up according to the
following pattern:

[T T TT1
|_|.= Qut put Number 1..8
Sl ave Networ k No. 2..99
Digit 5

The number value of the number offset register for
outputs is added to the corresponding output number
that has been defined in the output parameter. The
resulting output will be accessed.

Special Register "Output Number Offset":

Output number offset: the register is on the slave
controller.

This value wil be added to the output number in the
program of the master controller. The sum shows the
number of the output, which, in the slave controller, is
really accessed by the master controller.

256 Programming

Programming

Example:

Output 108 in the slave-controller of network number 5 is
addressed by the instruction

QUTPUT 50508

of the master controller.

Before this, value 100 must be written into the special
register "Output Number Offset” (in the slave controller).

Programmin@57

PROCESS-PLC

The same
access to
master and
slave flags

"Windows" for
the slave
output access
are set with
the help of the
number-offset
register!

Addressing the Flags

Access to flags of the slave-controller by a master
controller only differs from an internal master-flag
instruction in the parameter number. Apart from this
number, the program sequences for access to a master-
flag and a slave-flag are identical.

The flag number has got the following pattern:

[T T T 1]
|—|-= Nunber of the flag 1...99
Sl ave Networ k No. 2..99
Digit 5

The number value of the number offset register for
outputs is added to the corresponding output number
that has been defined in the output parameter. The
resulting output will be accessed.

Special Register "Flag Number Offset":

Flag number offset; the register is on the slave controller.
This value wil be added to the output number in the
program of the master controller. The sum shows the
number of the output, which, in the slave controller, is
really accessed by the master controller.

258 Programming

Programming

Example:

Flag 154 in the slave controller of network number 12 is
accessed by the master controller with the instruction

FLAG 51254

Before this, value 100 must be wrtten into the special
register "Flag Number Offset" (in the slave controller).

Programmin@59

PROCESS-PLC

3.12.4 Special Registers / Flags for Network Operation

Flag 2110

Errors in the latest network instruction are indicated (check
sum or timeout).

Flag 2111 "Collective Report of a Network Error"

Errors that have occurred at a network instruction since
reset of the controller (which is accumulating flag 2110).

Register "Network Number Network 1"

Network number network 1.

Register "Network Number Network 2"

Network number network 2.

Register "Network Reaction Time"

The network reaction time is defined in miliseconds. The
timing is started, when a network instruction is carried out,
and it ends, when the response of the other controller
has arrived via network (this is mostly dependent on the
load of the other controller). Any of these functions refers
to the master network of a controller - this is the network
of a controller to which this master belongs. A controller
can only be master of one network at one time as a
maximum.

260 Programming

Programming

Register "Execution Time Network Instruction”

The processing time of the network instruction carried out
last has been written into this register (in milliseconds). This
is the time written in the register "network reaction time"
plus the time it will take, until the response of the other
controller has been processed by the corresponding
program task of the own controller, and until this task is
continued (dependent on the load of the other and the
own controller). Any of these functions refers to the
master network of a controller - this is the controller
network to which these masters belong. A controller can
only be master of one network at one time as a
maximum.

Register "Timeout Network Access"

Timeout time in miliseconds. Presetting: 250. After this
time the network instruction wil be terminated, as the
accessed controller has not answered (it might have
switched off).

Register "Number of Check Sum Errors in
Network Reception”

Check sum error. The content is increased by one. To

evaluate the quality of network transfer, this register can
be read from time to time.

Programmin@61

PROCESS-PLC

4. Description of the Memory

This overview
has been kept
in as general
terms as
possible and
has

not been
specified on
any certain
controller

The memory that is available to the user of the control
system is divided into registers and flags. This chapter is to
inform about the design of the entire memory. Many
registers used by the operating system wil also be
described, as they can be useful in some cases. Yet,
please be careful when special registers are to be
changed.

4.1 Basics on Registers and Flags

4.1.1 Registers

Registers are
th memories of
the controller,
in which the
data are kept

Registers are the memaories of the controller, where all the
necessary numeric values are stored. The operator can
use part of these registers as well, namely to store values
or to use them for calculating. The registers can either be
loaded from the program, or with the help of SYMPAS by
transferring whole data blocks to the controller via PC This
can be helpful in many cases, as loading registers in a
more complex program can take lots of space.

A difference is made between integer registers, floating
point registers and special registers. All registers are
marked by a number. Below, the three register types will
be explained:

262 Programming

Programming

Integer Registers

Register width:
24 Bit ->
23 Bit plus sign

The specific
register
numbers can
be taken from
the respective
manual

These registers are 24 Bit wide registers in which an
integer number between - 8388608 and 8388607 has
been stored. The sign of the number is stored by the Bit of
highest value. The value of these registers can also be
defined as a binary (b) or a hexadecimal number (h
.. ..). For this, see the coding further below.

The register numbers can be taken from the respective
controller manuals. Here a general survey over the
PROCESS-PLC reqisters is to be given:

The Structure of a Register:
In the 24" Bit the sign, in the other 23 Bits a number is
stored, which corresponds to the binary value of these 23

Bits:

If the sign bit is zero, this value will exactly be the same as
the register value.

If the sign bit is one, though, the number can be

calculated by adding this binary value to -8388608 (= -
h800000).

Programmin@63

PROCESS-PLC

Examples:

Binary Number (24 Bit): Hex Number Dec Number
b000000000000000001101111 hO0006F 111
b0111111112111211121117111 h7FFFFF 8388607
b100000000000000000000000 h800000 - 8388608
b1111121111211121112111111 hFFFFFF -1
b100000000000000011010011 h8000D3 - 8388397

Floating Point Registers

There is no
floating point
register in
NANO-A

These registers are 32 Bit wide and serve storing real
numbers, which are, generally spoken, any fractures in
the range of

-10*° to + 10"

The amount of the smallest possible number is around
10,

The accuracy of calculating is around 7 significant
places, as only this amount of places can be stored in
32-Bit registers.

They serve detailed calculating, even of fractions. When
fractions are assigned to an integer register, the decimal
places wil always get lost. If, for example, value -2,5
(result of a division) is loaded into an integer register,
value -2 will be written there.

Another important function of floating point registers is the
calculation of expressions, where results greater than 8
millions must be expected. In an integer register this can

264 Programming

Programming

lead to actually undefined values. The example below is
to illustrate this problem:

The register numbers can be taken from the respective
controller manuals. Below, a general overview over the
PROCESS-PLC registers is to be given.

Example: Simple assignment

5' 000' 000

When value 10'000'000 is assigned to the integer register
1, there will be the following result:

The number, which is presented as a binary number is
loaded into the register. Yet, as the number is longer than
the register, Bits from the beginning will get lost, or, to put
it differently, Bit 23 (sign) is occupied. The result will be the

following:
10' 000' 000 = h989680
= Db1001' 1000' 1001' 0110' 1000' 0000
-> Reg 1 = -6'777' 216

Special Register

Mainly, there are two kinds of special registers: One kind is
placed on inteligent expansion modules to store
parameters or status information of these modules (these
will be extensively described in the respective controller
manuals in context with the specific modules). Further,

Programmin@65

PROCESS-PLC

Please be
careful when
using special

registers

there are registers which are used by the operating
system of the controller.

The numbers of the special registers can be taken from
the respective controller manuals. Below, a general
survey will be given on the registers of the PROCESS-PLC.

Registers Combining Flags:

Exemplary
combining is
illustrated by

NANO-B
numbering

The special register numbers combining flags can be
taken from the respective controller manuals. Below,
NANO-B is used as an example. Flags 0 to 255 are
combined in registers 2600 to 2610.

Reg 2600 FI ags 0 to 23
Reg 2601 FI ags 24 to 47
Reg 2602 FI ags 48 to 63
Reg 2603 FI ags 64 to 87
Reg 2610 Fl ags 240 to 255 *)

“) Register 2610:

As all registers, register 2610 consists of 24 Bit. In only the
first 16 Bits of these, flags 240 to 255 are combined.

266 Programming

Programming

Flag-Register combination: Examples of registers 0, 1,2

Flags 0 to 23:

Regi ster 2600 -

It
unber
| ag
unber

nZz o2

OCO—AN WO
O —A—AN LM~
O N—N O 0
OM—ANLOO®
O<T—N OO
OoOU—N O
CO—NON
OoON~N—NOMm
O WW—N O <
oOCOoO—NOLW
—1O—N © ©
= —«N O ™~
—I N—N © ©
—AM—N O O®
—AF—NMNO
—ALWO—N M-
—O—ANM~N
—AMN—NMN~M
00— M <+
—O—N LD
NO—ANIMN~ O
AN A —N N~ N~
AN N—N N~ 0
NM—ANMN~O

be read fromtop to

respectively flag nunbers nust

The bit-

bottom

Fl ags 24 to 47:

Regi ster 2601 -

1t
unber
| ag
unber

oz L2

OO—N WO
O ——N 00
O N—NO0WN
oOM—NW M
O<—NOW <
O WO—N 0 LW
O OW—N 0w ©
O MN—N 00~
O 00 —CN 00 00
OOoO—N WO
A O—N OO
I H—N O
A N—NO N
AM—NO M
AFT—NO T
—AIO—N O LW
—O—N O ©
—AN—N O ™~
~— 00 —N O O
—AO0O—N O O
NO—mM OO
N—A—M O
NN—M O N
NMN—M O M

be read fromtop to

respectively flag nunbers must

The bit-

bottom

Fl ags 48 to 63:

Regi ster 2602 -

nZz o2

t
unber
| ag
unber

OCO—MOoO <
OdA—mMmMOoLuw
ON—MO ©
oOM—MO N~
OoOT—mMO
oOUO—MO O
CO—mM—HO
OoOMN~N—M
O W—mM— N
OCOoO—M—Mm
TAO—M - <
A —M -0
—TAN—M — ©
—AM—M -~
- <F—M «—
—AN—MM O
—O—M N O
—AMN—OM N -
—00—M N N
AOO—M AN M
NO—M AN <
N —A—MmM N L
NAN—M N ©
ANM—M N M~

be read fromtop to

respectively flag nunbers nust

The bit-

bottom

Programmin@67

PROCESS-PLC

Registers Combining Inputs or Outputs

Easy access to In various controller registers, 8, 16 or 24 inputs have
several inputs been combined in one register. The same applies to

or outputs ..
combined in digital outputs..

registers _ . _ o
The numbers of special registers overlapping with inputs

or outputs can be taken from the respective controller
manuals. Please find an illustration using DELTA below.

32 registers
of 8 inputs These 8 inputs are written into Bits O to 7; all the other Bits
each (8 bis 23) are 0. This means there is a value range for
these registers from 0 to 255. The 32 registers from
62464 to 62495 have got 8 inputs each:

Exemplary
UL RegNO Inputs | |RegNo__llnputs |
DELTA 62464 [101-108 62480 |301- 308
62465 |109-116 62481 |309 - 316
62466 |117 - 124 62482 |317-324
62467 |125-132 62483 |325-332
62468 |133-140 62484 |333-340
62469 |141-148 62485 |341-348
62470 |149-156 62486 |349 - 356
62471 |157 - 164 62487 |357 - 364
62472 |201-208 62488 | 401 - 408
62473 |209-216 62489 | 409 - 416
62474 |217 -224 62490 | 417 - 424
62475 |225-232 62491 |425-432
62476 |233-240 62492 | 433-440
62477 |241-248 62493 |441- 448
62478 |249 - 256 62494 | 449 - 456
62479 |257 - 264 62495 | 457 - 464

268 Programming

Programming

32 registers
of 16 These 16 inputs are wrtten into Bits O to 15, all the other
inputs each bits (16 to 23) are 0. This makes a value range from O to
65535 for these registers. The 32 registers from 62528 to
62559 correspond to 16 inputs each:

Exemplary
UCUL S U B RegNo _Inputs | |RegNo__Inputs |
DELTA 62528 [101- 116 62544 |301- 316
62529 | 109 - 124 62545 | 309 - 324
62530 |117-132 62546 |317-332
62531 | 125 - 140 62547 |325- 340
62532 [133-148 62548 |333-348
62533 [141-156 62549 |341-356
62534 |149-164 62550 | 349 - 364
62535 |157 - 164 62551 | 357 - 364
62536 |201-216 62552 | 401 - 416
62537 | 209 - 224 62553 | 409 - 424
62538 |217-232 62554 | 417 - 432
62539 |225-240 62555 | 425 - 440
62540 |233-248 62556 | 433 -448
62541 |241-256 62557 | 441 - 456
62542 | 249 - 264 62558 | 449 - 464
62543 | 257 - 264 62559 | 457 - 464

Programmin@69

PROCESS-PLC

32 registers These 24 inputs are written into Bits 0 to 15, all the other
of 24 inputs Dbits (16 to 23) are 0. The sign of the resulting integer value
each is determined by Bit 23, which always corresponds to the
input of the highest number. The value range of these
registers equals the value range of all integer registers,
this is, from -8388608 to 8388607. The 32 registers from

62592 to 62623 correspond to 24 inputs each:

Exemplary
numbering [T L L T

DELTA 62592 [101- 124 62608 | 301 - 324
62593 [109 -132 62609 |309 - 332
62594 |117 - 140 62610 |317-340
62595 |125-148 62611 |325-348
62596 |133-156 62612 |333-356
62597 |141-164 62613 |341-364
62598 |149-164 62614 |349-364
62599 | 157 - 164 62615 | 357 - 364
62600 |201-224 62616 | 401 - 424
62601 |209 - 232 62617 |409 - 432
62602 |217 - 240 62618 417 - 440
62603 |225-248 62619 |425-448
62604 |233-256 62620 |433-456
62605 |241-264 62621 |441-464
62606 |249 - 264 62622 449 - 464
62607 |257-264 62623 | 457 - 464
Examples:
1)

REG STER LOAD [62528 with 255]

Here, value 255 is loaded into the register corresponding
to inputs N 101 to I N 116. This way, the bits of lowest
value are set, while the other ones are cleared. In
consequence, inputs I N 101 to I N 108 are set (this s,
active), while inputs I N 109 to I N 116 are cleared.

270 Programming

Programming

Easy masking
of inputs and
outputs

2)

These registers can also be very useful, in connection with
the register instructions WAND, WOR and WKOR.

REG 62784

REG 62784
VAND
b000000001010101010101010

This assignment causes all odd-numbered outputs of
QUT 101 to QUT 116 (QUT 101, QUT 103, QUT 105
etc.) to be blinded out, respectively cleared. The other
outputs will be kept as they are.

Programmin@71

PROCESS-PLC

4.1.2 Flags

Flags have got
value 1 or 0

Please be
careful when
dealing with
special flags!

Flags are actually one-bit registers; that is, values 1 or O
can be stored in them. The flags can be used for
marking certain conditions. Thus, very easiy
programmable timing of various tasks can be achieved.
For flsgs, a difference will be made between special and
"normal" flags. The special flags are used by the
operating system to store one status each, for example
pressing a key of the input keyboard, error reports, etc.

All flags can be changed by flag instructions - they can
be set, cleared or just queried. A detailed description of
those flag instructions can be found in Chapter[3.6.5
Flags and Flag Instructions.

Special Flags

The special flags are used by the operating system to
indicate certain conditions, or for function control.

The numbers of special flags can be taken from the
respective controller manuals, where a general overview
over registers and flags of the PROCESS-PLC has been
given.

272 Programming

Programming

5. Realtime Clock

5.1 Overview, Function

The realtime
clock will be
explained by
the example
of DELTA
register
numbers

A realtime clock has been integrated into various
PROCESS-PLCs, which is battery buffered independently
from the RAM store.

The register numbers used as an example here refer to
the DELTA.

There are two register sets of 8 registers each. Register set
1 (62920 to 62927) can be written into and read. By
these register numbers, writing access is directly made
into the realtime clock module (setting of the time),
reading access is directly made out of the time module.

Besides that, there is register set 2 (62912 to 62919). This
second register set has got the following meaning: If, by
the program, a certain time is waited for, change of the
operands (time, ...) during the comparison operation
must be prevented. For this reason, all realtime data are
copied into the registers of register set 2 at each reading
access to register set 1. There, they wil be available
without having been changed, untl another reading
access to a register of set 1 is made (see exemplary
program).

For setting the clock the values are written into register set

2 and then completely transferred to the realtime clock
by writing into one of the registers of set 1.

Programmin@73

PROCESS-PLC

5.2 Register Description

Regi ster set 1 Regi ster set 2 Dat a Range
writel/read read/ wite

direct buf fer

62920 62912 seconds 0-59
62921 62913 m nut es 0-59
62922 62914 hour s 0-23
62923 62915 12/ 24h for mat 0,128
62924 62916 day of the week 1-7
62925 62917 day (date) 1-31
62926 62918 nont h 1-12
62927 62919 year 0-99

The following special function has been hidden in register
62924: The content of this register is "Day of the Week"
1=Sunday, 2=Monday, 3=Tuesday, etc.

In order to display, respectively print, the time in the usual
way, the value range of special register 61454 has been
expanded. If this register has got value 2, the sign place
Is suppressed in a DI SPLAY_REG instruction (see
exemplary program).

274 Programming

Programming

5.3 Realtime Clock: An Exemplary Program

An exemplary
illustration of
the realtime
clock will be

given here by

the NANO
register
numbers

With the help of a battery buffered register set access
can be made on the realtime clock functions.

Register Description

Register Set: Realtime Clock

2911 .. 2917
Register Function
2911 Seconds
2912 Minutes
2913 Hours
2914 Day of the Week
2915 Day
2916 Month
2917 Year

Programmin@75

PROCESS-PLC

Exemplary Program: Realtime Clock

In the following exemplary program, the data of the
realtime clock will be presented on the user interface.
The following trick has been applied to get leading zeros,
when minutes and seconds are displayed:

In flush left number display with the help of register 8205,
it can be determined how many places are to be
displayed. If less places are permitted than there are
significant places in the number, leading places will be
omitted.

This fact is made use of in the program by adding value
100 to seconds and minutes and not displaying the
leading 1 afterwards.

0: TASK O ----mmmmmmmmm e e e e
1 ;
2 REG STER LOAD [2816 with 1] ;no sign
3: REG STER LOAD [2812 with 3] ; 2-pl ace nunbers
4: DI SPLAY_TEXT [#0, cp=1, "_The tine is now "]
5: ;
6: LABEL 100
7: SUBROUTI NE 900
8: DELAY 5
9: GOTO 100
10: ;
11: LABEL 900 ;-> DI SPLAY
12: DI SPLAY_TEXT [#0, cp=27, ". .19 , : "]
13 DI SPLAY_REG [#0, cp=25, Reg=2915] ; Day
14: DI SPLAY_REG [#0, cp=28, Reg=2916] ; Mont h
15: DI SPLAY_REG [#0, cp=33, Reg=2917] ; Year
16: ;
17: pee--- Tine Display -------
18: ;
19: DI SPLAY_REG [#0, cp=36, Reg=2913] ; hour
20: REG 900 TRICK, to
21: = ; di spl ay
22: REG 2912 ;tens place,
23: + ;even if it has
24: 100 ;got val ue zero
25: DI SPLAY_REG [#0, cp=39, Reg=900] ;M nute
26: REG 900 TRICK, to
27: = ; di spl ay
28: REG 2911 ;tens place,
29: + ;even if it has
30: 100 ;got val ue zero
31: DI SPLAY_REG [#0, cp=42, Reg=900] ; second
32: RETURN

276 Programming

Programming

6. Demonstrating Example: Handling-System

6.1 Problem Description

As an example, the controller program for a two axis
machine has been explained below according to the
following figure:

<- Hydraulic Cylinder (OUT 107) ->

The vertical axis is moved downward by setting output
107 and upward again by resetting (hydraulic cylinder).
Inputs 108 and 107 are active, when the basic position

Programmin@77

PROCESS-PLC

(IN 108), respectively the working position (IN 107) of the
vertical cylinder have been reached.

The horizontal cylinder is a servo-NC axis. The gripper is
opened, respectively. closed, with the help of output 2.

Certain parts have to be taken, one after the other, from
the basic position to three different depositing positions,
which are free programmable by the user in teach-in
mode; in manual mode the required position is driven to
and stored by pressing a key on the display module.
Besides the automatic mode all motions are to be
carried out by hand as well.

Further, the process will be supported by interactive input
and output on the user interface.

The following keys on the user interface (LCD9, LCD 10)
can be used for process control:

Key: Function:

F1 Automatic mode ON, manual mode OFF

F2 Gripper OPEN/CLOSED

F7 Manual mode ON, automatic mode OFF

F8 Teach-In; storing the basic position and the

three stacker positions
<- Manual mode "backwards"
-> Manual mode "forward"
The program is divided into three main tasks. On the
following pages an extensive overview over the structure
of the three tasks, over program listing and symbol listing

is to be given. Detailled comments are to explain the
program structure.

278 Programming

Programming

6.2 Flow Charts of the Three Tasks

6.2.1 TASK 0 - Control Task

(TASKO)

Load parometer
Manual mode ON
Set refpoint

LABEL 40

F1 key
pushed?

Switch on

automatic mode

F7 key No

pushed?

Switch off

automatic mode

No

<- key
pushed?

Manual mode

Drive
backyards

Yes 5 key
pushed?

Manual mode
Drive
foryards

No

F2 key
autom. OFF
1

Manual mode
Open gripper
resp. close

F8 key
autom. OFF
1

Manual mode
Define
Teach-In pos)

GOTO
LABEL 40

Programmin@79

PROCESS-PLC

6.2.2 TASK 1 - Automatic Task

No

No

No

No

280 Programming

Cycle starts

Drive to home
position
Open gripper

ome poslitio
reached?

Drive vertical
axis
doynyards

Close
gripper

Walt 0,5 sec

Drive
vertical axis
upwords

Top
reached?

No

No

No

Calculate
unloading point
—-> Drive
horiz. axis

Axis
arrived?

Yes

Drive vertical
axls
doynyards

Open gripper
Wait 05 sec

Drive vertical
axls
upyords

Top
reached?

Yes

Drive horiz.
axls to
home position

No

Axls
arrived?

Yes

New adJjustment
lposition countenr
(-2-3-1-2-.0

End of
cycle

GaTo
TASK1

Programming

6.2.3 TASK 2 - Display Task

TASKEZ

Yes No

Automatic
selected?

Automatic Monual
NP:1511 AP:10ee NP:1511 AP:102e

Wait 0,1 sec

NP: Nominal position
AP: Actual position

Programmin@81

PROCESS-PLC

6.3 Program Listing

NANG- B -

282 Programming

Program Li sting page 1

JETTER PROCESS- PLC NANO- B

Ver s

CANOIATRWONERO

i on#

LABEL

1

TASK tlnitialisation

R E R SRR S SRR EEEEEEEEEEEEEEEEEEEEEEESEE SRS
’

TASK tlnitialisation

Initializes controller, carries out
; reference run and scans the function keys.

IR E R SRR S EEEEEEEEEEEEEEEEEEEEEEEEEESEE SRS

THEN

DELAY 2 VWit 2/10 sec!
COPY [n=4, from Start ranp to Start_Ofset]
Fix registers for start and stop ranp,

destinati on wi ndow range and offset are

; set.

- FLAG f Aut omati c ; manual node

- FLAG f Cycl ei sWor ki ng ;no cycle is working
- FLAG f Aut oLED ;switch of f auto-LED
FLAG f Manual LED ;switch on nmanual LED
REGQ STER LQAD [rCommandreg with 3] ;set reference point
QUT oRel ay ;switch relay on

REGQ STER LQAD [r Sl aveConfig with 3] ;activate servo axis
REGQ STER LQAD [rCycl eCounter with 1];set cycle counter=1

’
* * *

; After switching on the cycle counter is
; set to "1", so the nachine starts in
; autonmatic node with the first position

for the workpi ece put off.
* *

; Loop function key scanning

| Fct scan

Scanni ng di splay keys F1 and F7.
(Aut omat i ¢/ manual mode swit chi ng)

Programming

45:
46:
A47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:

69:

70:
71:
72:
73:
74:
75:
76:
77

78:

79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:

93:

94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:

107:

108:
109:

IF

IF

IF

FLAG f Key_F1
THEN

FLAG f Aut omati c

FLAG f Aut oLED

- FLAG f Manual LED

FLAG f Key_F7
THEN

- FLAG f Aut omati c

- FLAG f Aut oLED

FLAG f Manual LED

; F1 key pushed?

;switch on automatic
;activate auto LED
;deacti vate manual LED

; F7 key pushed?
;switch off automatic

;deactivate auto LED
;activate manual LED

Scanni ng cursor keys - and ® for axis

nmotion in manual node

** The followi ng three conditions are **

** | ogically AND-Iinked.

i:LAG f KeyBackwar ds
- FLAG f Aut omati c

- FLAG f Cycl ei sWor ki ng

THEN
CALL Manual Backwar ds

** Following three conditions are

** | ogically AND |inked.

i:LAG f KeyFor war d
- FLAG f Aut omati c

- FLAG f Cycl el sWor ki ng

THEN
CALL Manual Forwar ds

* %

; <- key pushed?
;autonmatic switched
;of f?

;automatic cycle

; ended?

;* manual backwards *

* %
* %

;-> key pushed?

; autonmatic switched
;off?

;automatic cycle

; ended?

;* manual forwards *

** The followi ng three conditions are **

** | ogically AND I|inked

FLAG f Key F2
-FLAG f Aut omati c

- FLAG f Cycl ei sWor ki ng

THEN
CALL Gi pper

* %

; F2 key pushed?
;autonatic sw tched
;of f 2

;automatic cycle

; ended?

;* i pper OPEN CLOSED *

** The following three conditions are **

** | ogically AND-Iinked

FLAG f Key F8
-FLAG fautomati c

- FLAG f Cycl el sWor ki ng

THEN
CALL Teach_ln

* %

; F8 key pushed?
;autonatic sw tched
;of f?2

;automatic cycle

; ended?

; *Teach-In put-of f
; pos*

Programmin@83

PROCESS-PLC

110: ;

111: THEN ;repeat function key
; scanni ng

112: QOTO Fct scan ; (end of |oop)

113: ;

114: ; *** End of function key scanning! ***

115: ; KE* (End of Loop) i

116: e LR LR TR P

117: L R R T T

118: ;

119: ;

120: TASK t AutonmaticCycle

121 ’ khkkhkhkkkkhkhkhkkkhhkhkkkhhkhkhkkhhhkkkhhhkhkkhhhkkkhkk*x

122: ; TASK t Aut omati cCycl e

123: ;

124: ; Automatic cycle:

125: ; the workpi eces are put down

; sequentially

126: ; at the put-down positions 1 to 3.

127 ’ IR E R SRR S SRR EEEEEEEEEEEEEEEEEEEEEEESEE SRS

128: ;

129: VWHEN

130: FLAG f Aut omati c ; Autonati c node
; swi t ched on?

131: ;* * *

132: ; The switching on procedure autonatic

133: ; ONOFF is programmed in TASK

134: ; "lInitialisation" (0).

135: ;* * *

136: THEN

137: ;

138: L

139: ; Drive to hone position

140: R R

141: ;

142: FLAG f Cycl el sWor ki ng ;automatic cycle
;starts

143: ;o * *

144: ; This flag is reset at the end of this

145: ; task, which is the end of the automatic cycle.

146: ;

147: ; If the user switches off the automatic

148: ; during and working autonatic cycle,

149: ; the cycle is operated until its end,

150: ; before nmanual operations can be started.

151: ;

152: ; (This flag is scanned in the TASK "I ni -

153: ; tialisation" during the scanning of the

154: ; function keys several tines!)

155: ;ox * *

156: -QUT oDriveVerti cal ;drive vertical
;cylinder

157: -QUT oGi pper Opend ose ; upwar ds and open
; gri pper

158: NOP ; (hone position!)

159: NOP ;

160: WHEN

161: I N i HonePosi tion ;vertical cylinder
; above?

162: THEN

163: ;* * *

164: ; Drive axis with automatic speed to

165: ; hone position!

166: ;ox * *

167: PGS [axi s=1, pos=R(Honepos), v=R(SpeedAutomatic)]

168: VWHEN ; Hori zontal axis
; reached

169: AXARR axi s=1 ; home position?

170: THEN

171: ;

172: ; mmmmmmmemeee-a---

173: ; Pi ck up workpi ece at home position

174: LR R T T

284 Programming

Programming

175:
176:
177:
178:
179:
180:
181:
182:

183:
184:
185:
186:
187:
188:
189:

190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:

207:
208:
209:

210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221.
222:
223:
224:
225:
226:
227.
228:
229:
230:
231:
232:
233:
234:
235:

236:
237:
238:
239:

* * *
; Drive the vertical cylinder
downwar ds!
* * *
QUT oDriveVerti cal ;cylinder downwards
VWHEN
I N i Wor ki ngPosi ti on ;vertical cylinder
; down?
THEN
QUT oGi pper Opend ose ; cl ose gri pper
DELAY 5 ;wait 0.5 seconds
-QUT oDriveVertical ;drive vertical axis
NOP ; upwar ds!
VWHEN
I N i HonePosi tion ;vertical cylinder
; above?
THEN
Drive to put-off position, which cor-
; responds to the register "CycleCounter".
Do * *
; Wth the help of the put-off position nunmber
; (content of register "CycleCounter") the
; register nunber is calculated, in which
; the noninal position is stored.
! * * *
i?EG r Posi ti onReg ; Cal cul ation of
;register
= ; nunber whi ch cont ai ns
REG r Cycl eCount er ; the nominal position
+ ;of the corres. put
; down pos.
RegrOffset 1
! * * *

Drive horizontal axis to put-off position
with the nunber, which is stored in re-

; gister "CycleCounter".

. * *

*

i:’(IS [axi s=1, pos=RR(PositionReg), v=R(SpeedAutomatic)]
VWHEN

AXARR axi s=1 ;axi s reached put of f
NOP ; position?

; Put off workpiece at the actual put-off
posi tion.

Drive vertical cylinder downwards!

* * *
QUT oDriveVerti cal ;cylinder downwards
WHEN

I N i Wor ki ngPosi tion ;vertical cylinder

; down?
THEN

-QUT oGi pper Opend ose ;open gri pper

DELAY 5 ;wait 0.5 seconds

-QUT oDriveVerti cal ;drive vertical
;cylinder

Programmin@85

PROCESS-PLC

286 Programming

240:
241
242:

243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:
269:
270:
271:
272:
273:
274.

275:

276:
277:
278:
279:
280:
281:
282:

283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297.
298:
299:
300:
301:
302:
303:
304:

NOP ; upwar ds
VWHEN
I N i HonePosi tion ;vertical cylinder
; above?
THEN

: Drive back to home position

Do * *

; Drive back horizontal axis to home
posi tion
* * *

PCS [axi s=1, pos=R(HomePos), v=R(SpeedAutomatic)]
WHEN

AXARR axi s=1 ;axi s reached hone
NOP ; posi tion?

* * *

The sequence of the three put-off positions,
; which is realized during autonatic node
;ois: 1-2-3-1-2-3-1-....

; The followi ng instructions secures, that

; the value of the register "CycleCounter"

; represents this sequence of put-off pos.

. * * *

I F
REG r Cycl eCount er ;the third put-off
; posi tion
< ;of the cycle was
; served?
3 ;
NCOP ;
THEN
REG NC Cycl eCount er ;increnent cycle counter
NOP ; by one!
ELSE
REGQ STER LQAD [Cycl eCounter with 1] ;repeat fromthe
; begi nni ng
NOP ;
THEN
; End of cycle

*

; The neaning of this flag is described
; at the beginning of this task (TASK

; "AutomaticCycle")

. * *

*

C‘OTO Aut omat i cCycl e ;repeat fromthe beginning

TASK iD’ spl ay

EEEEEE RS SRR EEEEEEEEEEEEEEEEEEEEEEEEESES

TASK Di spl ay

Di spl ays the operation of automatic
; or manual node and the noninal and
actual position additionally.

Programming

305:
306:
307:
308:
309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:
321.
322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341.
342:
343:
344:
345:
346:
347.
348:
349:
350:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:
361.:
362:
363:
364:
365:
366:
367:
368:
369:

EE R R R R R R EEEEEEEEEEEEEEEEEEEEREEEE]

I F

FLAG f Autonatic ;automatic sel ected?
THEN

If automatic is selected the LCD

; displays "AUTQOVWATI C'.

$ = erases up to end of |ine!

i] SPLAY_TEXT [#0, cp=1, "AUTOVATIC$ "]
ELSE

If manual node is selected the LCD

di spl ays " MANUAL".
: $ = erases rest of the first line!
i] SPLAY_TEXT [#0, cp=1, "MANUALS$ "]

THEN

; Both cases display the val ues
of the nom nal and actual position
; in the second line.

Dl SPLAY_TEXT [#0, cp=25, "NP: "]

DI SPLAY_REG [#0, cp=28, reg=Nom nal Position]
DI SPLAY_TEXT [#0, cp=37, "AP: "

DI SPLAY_REG [#0, cp=41, reg=Actual Position]

Additionally there is a delay of 0.1 se-

; conds inserted. Wthout this delay the

; this task would consune to nuch CPU tine,

; because it would refresh the display content
; steadily. This capacities would not be

; available for the other tasks.

DELAY 1
GOTO Di spl ay

khkkhkhkkkkhhkhkhkkhhhkhkkhhkhkhkhhhkhhhhkhkkhhhkhhhhkkhhkx*x

SUBROUTI NES

khkkhkhkkkkhhkhkkkhhhkhkkhhhkhkhhhkhkhhhkhkkhhhkhhhhkhhkhhkx*x

LABEL’ | Manual Backwar ds

CALL Manual Backwar ds

’ In manual node the horizontal axis is
; noved backwards, until the key <-
is rel eased.

Programmin@87

PROCESS-PLC

370:
371:
372:
373:
374:
375:
376:
377:
378:
379:
380:
381.:
382:
383:
384:
385:
386:
387:
388:
389:
390:
391:
392:
393:
394:
395:
396:
397:
398:
399:
400:
401:
402:
403:
404:
405:
406:
407:
408:
409:
410:
411:
412:
413:
414:
415:
416:
417:
418:
419:
420:
421
422:
423:
424:
425:
426:
427.
428:
429:
430:
431:
432:
433:
434:

288 Programming

THEN

. * * *
Drive backwards with nanual

; speed!

P * *

i:’(IS [axi s=1, pos=Backwards, v=R(SpeedManual)]
VWHEN

- FLAG f KeyBackwar ds ; key <- rel eased?
THEN
AXARR axi s=1 ;stop axis

RETURN

LABEL’ | Manual For war ds

: CALL Manual Forwar ds
: In manual node the horizontal axis is
; noved forward until the -> key

is rel eased.

THEN
Do * *
; Drive forward with nmanual
; speed!
P * *

i:’(IS [axi s=1, pos=Forward, v=R(SpeedManual)]
VWHEN

- FLAG f KeyFor war ds ; key <- rel eased?
THEN
AXARR axi s=1 ;stop axis

RETURN

LABEL | @i pper

CALL Gi pper

The gripper is closed respectively
; opened by the subroutine.

; Because this manual routine displays

; the opening or closing of the gripper
; on the LCD display, the task "D splay"
; has to be stopped, else the LCDis

; filled with the character output

; of the "Display" task.

* * *
I F

QUT oGi pper Opend ose ; gri pper closed?
THEN

TASKBREAK #Di spl ay ;interrupt display

DI SPLAY_TEXT [#0, cp=1, "_ Opening gripper"]

-QUT oG i pper Opend ose ;open gri pper
ELSE

Programming

435:
436:
437.
438:
439:
440:
441
442:
443:
444:
445:
446:
447.
448:
449:
450:
451:
452:
453:
454:
455:
456:
457.
458:
459:
460:
461
462:
463:
464:
465:
466:
467.
468:
469:
470:
471
472:
473:
474:
475:
476:
477.
478:
479:
480:
481
482:
483:
484:
485:
486:
487.
488:
489:
490:
491:
492:
493:
494:
495:
496:
497.
498:
499:

TASKBREAK #Di spl ay

;interrupt display

DI SPLAY_TEXT [#0, cp=1, "_ Cosing gripper"]
QUT oGi pper Opend ose ; cl ose gri pper
VWHEN
- FLAG f Key_F2 ; key F2 rel eased?
THEN
DI SPLAY_TEXT [#0, cp=1, "_ "]
TASKCONTI NUE #Di spl ay ;activate display
RETURN
LABEL | Teach_In

IF

CALL Teach_ln

Wth the help of this subroutine the user
defines the three put-off positions

and the home position.

*

The hone position and the three put-off

positions are defined by the user
driving to the positions manual |y
defining with the display keys

which of the four positions is to

by
and

be set.

Because al so in this subroutine the

communi cation is nanaged with the

LCD

the "Display" task has to be interrupted

for teach-in tine.

* *

THEN

TASKBREAK #Di spl ay

* *

;interrupt display

*

The user is asked for position definition

followi ng the pattern:

home position

1. put-off position

2. put-off position

3. put-off position
*

FNWN R

*

i:)l SPLAY_TEXT [#0, cp=1, "lnput position no. (1-4)"]
DI SPLAY_TEXT [#0, cp=25, "1=HonePos.)$ "]
USER | NPUT [#0, cp=40, reg=Wr ki ngRegi ster]

* *

The validity of the user defined

position nunbers is checked (range

between 1 and 4).

* *

LIMTS [reg=Wr ki ngRegi ster, |ow=1,
THEN

* *

*

up=4]

Now the regi ster nunber, in which the

actual position should be stored,
cal cul ated using the user defined

is

Programmin@89

PROCESS-PLC

500:
501:
502:
503:
504:
505:
506:
507:
508:
509:
510:
511:
512:
513:
514:
515:
516:
517:
518:
519:
520:
521.
522:
523:
524:
525:
526:
527.
528:
529:
530:
531:
532:
533:
534:
535:
536:
537:
538:
539:
540:
541.
542:
543:
544:
545:

; position nunber.
PR * *

hEG r Wor ki ngRegi st er ;Cal cul ation of the
= ; regi ster nunber
REG r Wr ki ngRegi st er

+

RegOi fset _2

. * * *
’

; Then the actual positionis stored in

; the register calcul ated before.

; Now the user is infornmed about correct

; data input with the help of the display.
; After a delay of 0.5 seconds the task

; "Display" is activated again.

’
P * *
’

i?EGI STER LQOAD [R(rWor ki ngRegi ster) with R(rActual Positon)]
DI SPLAY_TEXT [#0, cp=1, "_ok! "]

DELAY 5 ;wait 0.5 seconds
TASKCONTI NUE #D spl ay ;activate display
RETURN

ELSE
- * *

Error message!

The display signals unvalid data
; input for 1 second, then the user is
; asked for data input again.

*

. * *
’

DI SPLAY_TEXT [#0, cp=1, " Invalid Pos.No.,"]

DI SPLAY_TEXT [#0, cp=25, "Please repeat!"]

DELAY 10 ;wait 1 second
THEN

QOrO Teach_In ; begin again

’
Cokkkkkkkkkkkkkkhkkhkkhkkkkhkkhkkhkkkkkk kK
’

; END OF PROGRAM
rokkkkkkkkkkkkkkhkkhkkhkkkkhkkhkkhkkkkkk kK
’

. R E R SRR S SRR EEEEEEEEEEEEEEEEEEEEEEESEE SRS

The following registers have to be initialized before
program start in the setup screen:

. Register 100 (start ramp) with 10
. Register 101 (stop ramp) with 10
(

. Register 102 (destination window range) with 0

. Register 103 (digital offset) with 32

. Register 110 (speed in automatic mode) with
10000

. Register 111 (speed in manual mode) with 1000

290 Programming

Programming

6.4 Symbol Listing

The corresponding symbol listing is carried out as follows:
NANO- B - Synbol listing of "DEMOPROG' V1 page 1

JETTER Aut omati on Techni que, NANO B

EE R R R I R S S R S R R R S

SsymMmMBOL EDI T OR

R I S

TASKS

tinitialisation 0 The controller is initialised,
the reference run i s nanaged
and the function keys are
scanned.

t Aut omati cCycl e 1 The wor kpi eces are picked from
t he home position by the auto-
mati ¢ task and put down at the
put -down positions 1 to 3.

t Di spl ay 2 Activation of the autonatic or
manual node and the current
val ues of nom nal and actual
position are displayed.

Manual Backwar ds 200 Drives the horizontal axis in
manual node backwards, until
the <- key is rel eased.

Manual For war ds 201 Drives the horizontal axis in
manual node forwards, until
the -> key is rel eased.

Gi pper 202 If the gripper is open, it
will be closed by the
subrouti ne.

If the gripper is closed, it
wi Il be opened by the
subrouti ne.

Teach_In 203 Wth the help of this
subroutine the user defines the
home position and the
t hree put-down positions.

| Fct scan 40 This label is the entrance
into the task "Initialisation",
which is junped to at the end
of this task again; so endl ess
function key scanning is
secur ed.

Programmin@91

PROCESS-PLC

i HonmePosi ti on

i Wor ki ngPosi tion

The input is active, if the
vertical axis is placed at hone
posi tion (above).

The input is active, if the
vertical axis is placed
at working position (down).

oDriveVerti cal

oG i pper Opend ose

oRel ay

After the output is set, the
hydraul i c cylinder noves
downwar ds, after reset of the
out put the hydraulic
cyl i nder noves upwards.

If the output is set the
gri pper closes, if the output
is reset the gripper opens.

This output sw tches the relay
for the servo driver output
in the MSP1 simulator ON

REGI STERS

r St art Ranp
r St opRanp
r Dest W ndow

rDigital Ofset
r SpeedAut onmati c

r SpeedManua

r Homepos

r Wor ki ngPos_1
r Wor ki ngPos_2
r Wor ki ngPos_3
r Cycl eCount er

r Posi ti onReg

r Wor ki ngRegi st er

111

120

121

122

123

130

131

200

start ranp register

stop ranp register
destinati on wi ndow range
register

digital offset value register
automati c node axis speed
register

manual nobde axis speed
register

posi tion val ue of honme
position

(Teach-1n!)

position value of the 1%
put-of f position (Teach-In!)
position value of the 2™
put-of f position (Teach-In!)
position val ue of the 3¢
put-of f position (Teach-In!)
cycle counter (put-off
positions 1-2-3-1-2-3-1-2...)
This register contains the

val ue of the current

put - down (wor ki ng) position
Into this register the user
can input the position nunbers
(1 to 4, 1 = hone position) in
Teach- I n node.

292 Programming

Programming

XED REGI STERS

r CommandReg

r Nom nal Posi tion

rStart_Ofset

r Act ual Posi tion

r Sl aveConfig

1101
1102

1105

comand regi ster (the reference
point is set wth value 3)
contains the value of the
current nominal position, which
is used in the task "D spl ay"
This register is used as offset
bet ween the nunber of the
registers, in which the slave
paraneters and the
correspondi ng sl ave registers

t hensel ves are stored (100...)
Contains the value of the
actual position of the axis.
(The value is used in the
Teach-1n task)

To activate the slave process
servo controller of the PASE-
Mkro this register is
initialized with value 3 at

t he begi nning of the program

Programmin@93

PROCESS-PLC

FLAGS

f Aut omati c 1 Set, if automatic node is
sel ect ed.

f Cycl el sWorki ng 2 Set, during operation of the

automatic cycle.

FLAGS FOR KEYBOARD
SCANNI NG

f Key_F1 221 flag for key F1 scanning
(automati c node ON)

f Key_F2 222 flag for key F2 scanning
(gri pper open/close)

f Key_F7 227 flag for key F7 scanning
(automati c node OFF)

f Key_F8 228 flag for key F8 scanning
(Teach-1IN)

f KeyBackwar ds 217 flag for <- key scanning

f KeyFor war ds 218 flag for -> key scanning

f Aut oLED 201 flag for activation of the F1
key LED

f Manual LED 207 flag for activation of the F7
key LED

NUMBERS
Regof fset _1 120 Di fference value, which is

added to the val ue of
Cycl eCounter (register 130) to
cal cul ate the val ue of the put
of f position value register.
Regof f set _2 119 Di fference val ue, which is used
for calculation of the
register, in which the position
nunber (1 to 4) of the user
input is stored.
Backwar ds - 500000 Nom nal position for manual
node driving backwards. See
subrouti ne "Manual Backwar ds".
For war ds 500000 Nom nal position for manual
node driving forwards. See
subroutine "Manual Forwards".

294 Programming

Programming

Index

50000er Numbers
Addressing the Flags 255
Addressing the Inputs 251
Addressing the Outputs 253
Addressing the Registers 248
Arithmetic Comparison 143
Arithmetic Expressions 149
AUTOEXEC.BAT 10; 13
Block 47
SYMPASin the Network 105
Block 47
Input AUTOEXEC.BAT 47
Menu 45
Boolean Expressions 140
Change Directory 41
Change Environment 41
Change scale 64
Combined Flags 263
Combined Inputs 265
Combined Outputs 265
Command Line Parameters 105
Commentaries 100
Controller Type 7
Convert Symbol Language 37
Copy (Ctrl K-C) 46
Copy Tools 7
DA-File 51; 52
Setup 52
Destination Directory 7
Diaogue Language 8; 66
Display ref. file... 64
DOS surface 42
Edit view box 62
Editor -> File ENB 48
Editor -> NANO-B 51
Elementary Conditions 140
Erase (Ctrl K-Y) 46
Eraseref. display 64
Error Messages 87
Miscellaneous Errors 95
Symbol Errors 88
Syntax Check 89
Example
CLEAR_FLAGS 191
Field
Text Register Field 33
Fields 28
File 54
FileDA -> Register ... 51
FileENB -> Editor ... 49
FileENB -> NANO-B ... 51
Files
Program and System Files Sympas 50
Files (in General) 97
Backup Program File 97
Backup Symbol File 97
Configuration File 98

Configuration Setup 98
Desk file 98
Object File 99
Print File 98
Program File 97
ReverseTable 99
Symbol File 97
Find 43
Find Text 44
Flags 141; 269
Combined 263
Specia Flags 269
Floating point register
Assignment 154
Formfeed 55
Functions 165
Definition 165
Definition of the Function Text 166
Example
Input Condition 168
Example Output Instruction 167
Function Call-Up 166
Hardware Installation 5
Hardware Requirements 4
INCLUDE Files 81
in the Program Editor 81
in the Symbol Editor 84
INCLUDE Instruction 81
Main File 36; 82
Pick List 83
Indirect Addressing 100
Input 141
Input Field 29
INSTALL.EXE 6
Installation 6
Start 8
Instructions
50000er Numbers 248
AXARR 220
BIT_CLEAR 186
BIT_SET 186
Boolean Expressions 140
CALL (Subroutine) 160
COPY 178
Delay 20; 137
Destination
GOTO 21
DISPLAY_REG 201
DISPLAY_TEXT 197
FLAG 190
Flags 141
Functions 165
Input 142; 192
Instruction Set 127
Instructions IF..THEN..ELSE 134
LABEL 157
LIMITS 238

Programmin@95

PROCESS-PLC

N-GET REGISTER 245
NOMINALPOS 225
NOP 234
N-SEND REGISTER 244
Numbers 150
Output 142; 194
Reset 20
Output Parameter 18
REG 183
REGDEC 184
REGINC 184
Register Bit 142
REGISTER_LOAD 175
REGZERO 184
SPECIALFUNCTION 180; 235
START-TIMER 229
SUBROUTINE 157
Subroutine (CALL) 160
Task 17; 157
TASKBREAK 226
TASKCONTINUE 227
TASKRESTART 227
TIMER-END? 229
USER_INPUT 205
WAND 240
WHEN..THEN 130
WHEN_MAX... THEN 132
WOR 241
WXOR 241
Instructions Input 16
Interface 66
JETWay-H 9; 10
Board for the PC 10
Settingin SYMPAS 12
JETWay-H Board for the PC
AUTOEXEC.BAT 10
DIL Switches 11
Left margin 55
Listing 46
Load block 46
Load Environment 42
Main File 36; 82
Menu 34
Edit 43
File 39
Listing 54
File... 54
Formfeed 55
Left margin 55
Page settings ... 55
Printer 54
Sheet length 55
Monitor 56
NANO-B continue 57
NANO-B start 56
NANO-B stop 56
Setup 56
Project 35
Pull-down Menus 15
Scope 58
Display ref. file ... 64
Edit view box ... 62
Eraseref. display 64
PCX-File 64
ScaeY-axis... 63
Stop recording 61

296 Programming

Transfer data... 62
Trigger setup 61
Zoom 63
Scope
Module Configuration 59
Start Recording... 60
Specid 65
Transfer 48

Compare Editor -> NANO-B 51

Editor -> File ENB 48
File. DA -> Register ... 51
File.ENB -> Editor ... 49
File.ENB -> NANO-B ... 51
NANO-B -> File.ENB 48
Register -> File.DA ... 51
Menu Block
Block on/off 45
Copy (Ctrl K-C) 46
Erase (Ctrl K-Y) 46
Listing 46
Load block ... 46
Move (Ctrl K-V) 45
Save block ... 47
Menu Edit
Find 43
Find Text ... 44
Next 44
Program 43
Replace ... 44
Replace Text ... 44
Restore Line 44
Symbol 43
Menu File
Change Directory 41
Change Environment 41
DOS surface 42
Load Environment 42
New Program 40
New Project 39
Open 39
Pick List 41
Program Editor 41
Save 40
Savedl 40
Saveas... 40
Setup Screen 42
Symbol Editor 41
Sympas 42
Menu Scope
Change scale 64
Module Configuration 59
Monitor Functions 214
Restriction of 214
Move (Ctrl. K-V) 45
NANO-B -> FileENB 48
NANO-B continue 57
NANO-B stop 56
New Program 40
New Project 39
Next 44
Numbers 150
Object File 50
Open 39
Output 141
Page settings 55
Password 103

Programming

PCX-File 64
Pick List 41; 83
Printer 54
Program 43
Program Editor 14; 41
Block Operations 23
Functions 22
Keys 22
Miscellaneous 24
Program Transfer 25
Storage of Cursor Position 24
Program Input 16
Program Language 67
Program Setup 107
Program Structure
Rules 113
Program Transfer 25
Programming
Exemplary Creation 16
Programming Language 8
Functions 165
Pull-Down Menu 34
Functions 34
Keys 34
README 4
Realtime Clock
An Exemplary Program 272
Realtime Clock
Overview 270
Recording ... 60
Register -> File.DA ... 51
Register Bit 142
Registers
Basics 259
Floating Point Registers 261
Integer Registers 260
Integer Registers - Assignment 152
Specia Registers 173; 262
Registersin General
Basics 171
Combined Flags 263
Combining Inputs 265
Combining Outputs 265
DA-file 99
Floating Point Registers 172
Include Table 99
Instructions - REGISTER_LOAD 175
Integer Registers 171
Slave Registers 173
Replace 44
Replace Text 44
Requirements 4
Restore Line 44
Save 40
Saveadl 40
Saveas... 40
ScaleY-axis... 63
Scope Function 58
Scope Screen 59

Screens
Definition 14
Settings 68
Setup 56
Setup Screen 14; 42
AxisField 30
Binreg Field 32
Display Field 32
Fields 28
Flag Field 30
Functions 27
Index Field 30
Input Field 1 29
Keys 27
Output Field 30
Overview 26
Refresh Cycle 33
Text Register Field 33
Sheet length 55
Software 4
Software Installation 6
Stop recording 61
Symbol 43
Symbol Editor 14; 41
Symbolic Notation 122
Symbolic Programming 74; 121
Example 123
Symbol Editor 74
Symbol Editor - Creating a Symbol File
78
Symbol Editor - Example of a Symbol
File 80
Symbol Editor - Functions 75
Symbol Editor - Keys 75
Symbol File 78
Symbolic Notation 122
Symbolic Notation - Example 123
SYMPAS 42
Programming Environment 2
SYMPAS Programming Environment
AUTOEXEC.BAT 13
Start 13
Syntax Check
(ON/OFF) 71
Error Messages 89
Tasks
Definition 113
Parallel Tasks 113
Program Structure - Rules 113
Rulesfor Task Switching 116
Task Structure 113
Transfer data.... 62
Trigger setup 61
User Interfaces
Cursor Position 198
Device Number 197
Display Text 199
Zoom 63

Programmin@97

	Programming Manual
	Table of Contents
	I. SYMPAS Programming Environment
	1. Survey
	2. The SYMPAS System
	2.1 Hardware (Requirements)
	2.2 Software
	2.3 Hardware Installation
	2.4 Software Installation
	2.4 SYMPAS for Several Networked Controllers (JETWay-H)

	3. Operation of the SYMPAS Programming Environment
	3.1. Starting of the SYMPAS Programming Environment
	3.2 Description of the Screens
	3.3 Program Input
	3.3.1 Keys and Functions in the Program Editor
	3.3.2 Program Transfer

	3.4 The Setup Screen (Setup Mode)
	3.4.1 Keys and Functions in the Setup Screen
	3.4.2 Description of the Fields

	3.5 Description of the Menus
	3.5.1 Keys and Functions in the Pull-Down Menus
	3.5.2 The "Project" Menu
	3.5.3 The "File" Menu
	3.5.4 The "Edit" Menu
	3.5.5 The "Block" Menu
	3.5.6 The "Transfer" Menu
	3.5.7 The "Listing" Menu
	3.5.8 The "Monitor" Menu
	3.5.9 The "Scope" Menu
	3.5.10 The "Special" Menu

	3.6 Symbolic Programming - the Symbol Editor
	3.6.1 Keys and Functions in the Symbol Editor
	3.6.2 Creating a Symbol File (in the Symbol Editor)

	3.7 INCLUDE Files
	3.7.1 INCLUDE Files in the Program Editor
	3.7.2 INCLUDE Files in the Symbol Editor

	3.8 Error Messages
	3.9 Files, Extensions, etc.
	3.10 Miscellaneous
	3.10.1 Indirect Addressing
	3.10.2 Commentaries
	3.10.3 Call-up by the /o Switch (Laptop, Notebook)
	3.10.4 The NOSYMPAS.EXE Program
	3.10.5 Switching to DOS
	3.10.6 Password
	3.10.7 SYMPAS Version 3.09 ff, and MIKRO up to 2.10
	3.10.8 SYMPAS and PASE-J (up to version 4.04)
	3.10.9 SYMPAS in the Network (PASE-E up to version 4.04)
	3.10.10 Further Command Line Parameters (Call-Up Switches)

	II. SYMPAS Programming
	1. Overview
	2. Fundamentals of Programming
	2.1 Principles of Program Setup
	2.1.1 Rules for Program Structure - Task Structure
	2.1.2 Special Registers / Flags for Task Control

	2.2 Symbolic Programming
	2.2.1 Recommendations on Symbolic Notation
	2.2.2 Examples of Symbolic Notation

	2.3 Remarks on the Program Examples

	3. The Programming Language
	3.1 Overview over Instructions
	3.2 Basic Instructions
	3.2.1 Waiting Condition WHEN ... THEN
	3.2.2 Waiting Condition WHEN_MAX ... THEN
	3.2.3 Branch Condition IF ... THEN ... (ELSE)
	3.2.4 The DELAY Instruction

	3.3 Boolean Expressions
	3.3.1 Phrasing Elementary Conditions
	3.3.2 Examples of Connected Expressions

	3.4 Arithmetic Expressions
	3.4.1 Numbers
	3.4.2 Arithmetic Expressions
	3.4.3 Assignment to Integer Registers
	3.4.4 Assignment to a Floating Point Register

	3.5 Tasks, Labels, Jumps and Subroutines
	3.5.1 Tasks, Flags and Jumps
	3.5.2 Subroutines
	3.5.3 Functions

	3.6 Registers and Flags
	3.6.1 Basic Information on Registers
	3.6.2 Instructions for Register Loading
	3.6.3 Calculating with Registers
	3.6.4 Register Bit Instructions
	3.6.5 Flags and Flag Instructions

	3.7 Inputs and Outputs
	3.7.1 Inputs
	3.7.2 Outputs

	3.8 Display Instructions and User Input
	3.8.1 Display of Texts
	3.8.2 Display of Register Contents
	3.8.3 Reading of Register Values by the Program
	3.8.4 Special Registers for User Input

	3.9 Instructions for Axis Controlling
	3.9.1 Positioning
	3.9.2 Enquiries on the Present Condition

	3.10 Task Instructions
	3.10.1 Taskbreak
	3.10.2 Taskcontinue
	3.10.3 Taskrestart
	3.10.4 Examples of the Task Instructions

	3.11 Various Instructions
	3.11.1 Time Instructions
	3.11.2 NOP
	3.11.3 The Commentary Character
	3.11.4 Special Functions
	3.11.5 The LIMITS Instruction
	3.11.6 Word Processing

	3.12 Network Instructions
	3.12.1 Sending Register Values to Slave Controllers
	3.12.2 Getting Register Values from a Slave Controller
	3.12.3 Network Operation by 50000er Numbers
	3.12.4 Special Registers / Flags for Network Operation

	4. Description of the Memory
	4.1 Basics on Registers and Flags
	4.1.1 Registers
	4.1.2 Flags

	5. Realtime Clock
	5.1 Overview, Function
	5.2 Register Description
	5.3 Realtime Clock: An Exemplary Program

	6. Demonstrating Example: Handling-System
	6.1 Problem Description
	6.2 Flow Charts of the Three Tasks
	6.2.1 TASK 0 - Control Task
	6.2.2 TASK 1 - Automatic Task
	6.2.3 TASK 2 - Display Task

	6.3 Program Listing
	6.4 Symbol Listing

	Index

