
 
JVM-407 

HMI 
 

 

 

 
 

 



 

2 Jetter AG 
 

Introduction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Variant: Jetter 
Item # 60877112 
Revision 1.17.4 
November 2011 / Printed in Germany 
 
Jetter AG reserve the right to make alterations to their products in the interest of technical progress. These alterations will 
not necessarily be documented in every single case. 
This user manual and the information contained herein have been compiled with due diligence. However, Jetter AG 
assume no liability for printing or other errors or damages arising from such errors. 
The brand names and product names mentioned in this manual are trade marks or registered trade marks of the 
respective title owner. 

 
 



 

Jetter AG 3 
 

JVM-407 Introduction 

How To Contact us: 
 

Jetter AG  

Graeterstrasse 2  

D-71642 Ludwigsburg  

Germany  

  

Phone - Switchboard: +49 7141 2550-0 

Phone - Sales: +49 7141 2550-433 

Phone - Technical Hotline: +49 7141 2550-444 

  

Fax - Sales: +49 7141 2550-484 

E-Mail - Sales: sales@jetter.de 

E-Mail - Technical Hotline: hotline@jetter.de 

 

This user manual is an integral part of JVM-407: 
 

Type:  

Serial #:  

Year of construction:  

Order #:  

 

 
 
To be entered by the customer: 
 

Inventory #:  

Place of operation:  
 
 

 

Address 

Assignment to Product 

mailto:sales@jetter.de
mailto:hotline@jetter.de


 

4 Jetter AG 
 

Introduction 

 

 

Significance of this user manual 
 

The user manual is an integral part of JVM-407: 

 It must be kept in a way that it is always at hand, until the JVM-407 will be 
disposed of. 

 If the JVM-407 is sold or loaned/leased out, the user manual has to be 
passed on. 
 

In any case you encounter difficulties to clearly understand this user manual, 
please contact the manufacturer. 
We would appreciate any suggestions and contributions on your part and 
would ask you to contact us by our e-mail address info@jetter.de. This will 
help us to produce manuals that are more user-friendly and to address your 
wishes and requirements. 
 
This user manual contains important information on how to transport, erect, 
install, operate, maintain and repair the JVM-407. 
Therefore, the persons carrying out these jobs must carefully read, understand 
and observe this user manual, and especially the safety instructions. 
 
Missing or inadequate knowledge of the user manual results in the loss of any 
claim of liability on part of Jetter AG. Therefore, the operating company is 
recommended to have the instruction of the persons concerned confirmed in 
writing. 

 
 

Significance 

mailto:info@jetter.de


 

Jetter AG 5 
 

JVM-407 Contents 

Table of Contents 

1 Safety Instructions 11 

Basic Safety Instructions .............................................................................................................. 12 
Instructions on EMI ...................................................................................................................... 14 

2 Product Description and Design 17 

Product Description - JVM-407 .................................................................................................... 18 
Parts and Interfaces ..................................................................................................................... 19 
Order Reference / Options ........................................................................................................... 23 
Physical Dimensions .................................................................................................................... 24 

3 Identifying the JVM-407 27 

3.1 Identification by Means of the Nameplate ............................................................................... 28 
Nameplate .................................................................................................................................... 29 

3.2 Version Registers ....................................................................................................................... 30 
Software Versions ........................................................................................................................ 31 

4 Installing the JVM-407 33 

4.1 Interfaces .................................................................................................................................... 34 
Example of Wiring Layout ............................................................................................................ 35 
Connecting the Power Supply ...................................................................................................... 36 
Connecting Digital Inputs and Outputs ........................................................................................ 38 
HMI Switch Off Delay ................................................................................................................... 41 
Ethernet Interface......................................................................................................................... 43 
CAN Interface ............................................................................................................................... 45 
Specification - CANopen® Bus Cable .......................................................................................... 49 
Connecting a Video Camera ........................................................................................................ 51 

4.2 Interfaces on the Center Console with Mounted Support Arm ............................................. 54 
Connection Cable - Power Supply ............................................................................................... 55 
Connection Cable - Inputs and Outputs ....................................................................................... 57 
Connection Cable - CANopen® ................................................................................................... 59 
Connection Cable - Video ............................................................................................................ 61 

4.3 Installing the JVM-407 ............................................................................................................... 62 
Installing the HMI ......................................................................................................................... 63 
Mounting the Support Arm ........................................................................................................... 66 

4.4 IP Configuration ......................................................................................................................... 68 
Factory Settings ........................................................................................................................... 69 
Configuration Memory .................................................................................................................. 70 
Configuration File cfgvar.ini .......................................................................................................... 71 
Configuration Registers ............................................................................................................... 75 
Modifying the IP Address of the Controller................................................................................... 76 
Setting the IP Address via the File cfgvar.ini ................................................................................ 77 
Setting the IP Address During Runtime ....................................................................................... 78 
Using Names for IP Address ........................................................................................................ 79 

5 Initial Commissioning 81 

Preparatory Work for Initial Commissioning................................................................................. 82 



 

6 Jetter AG 
 

Contents 

Initial Commissioning in JetViewSoft........................................................................................... 83 
Initial Commissioning in JetSym ................................................................................................. 86 

6 CANopen® STX API 93 

STX Function CanOpenInit ......................................................................................................... 94 
STX Function CanOpenSetCommand ........................................................................................ 96 
STX Function CanOpenUploadSDO ........................................................................................... 98 
STX Function CanOpenDownloadSDO .................................................................................... 103 
STX Function CanOpenAddPDORx ......................................................................................... 108 
STX Function CanOpenAddPDOTx ........................................................................................... 114 
CANopen® Object Directory for JVM-407 ................................................................................ 120 

7 SAE J1939 STX API 123 

Content of a J1939 Message .................................................................................................... 124 
STX Function SAEJ1939Init ...................................................................................................... 126 
STX Function SAEJ1939SetSA ................................................................................................ 128 
STX Function SAEJ1939GetSA ................................................................................................ 129 
STX Function SAEJ1939AddRx ................................................................................................ 130 
STX Function SAEJ1939AddTx ................................................................................................ 134 
STX Function SAEJ1939RequestPGN ..................................................................................... 138 
STX Function SAEJ1939GetDM1 ............................................................................................. 141 
STX Function SAEJ1939GetDM2 ............................................................................................. 144 
STX Function SAEJ1939SetSPNConversion ........................................................................... 147 
STX Function SAEJ1939GetSPNConversion ........................................................................... 149 

8 File System 151 

8.1 Properties ................................................................................................................................. 152 
Flash Disk - Properties .............................................................................................................. 153 
SD Card - Properties ................................................................................................................. 154 
USB Stick - Properties ............................................................................................................... 155 

8.2 User Administration ................................................................................................................ 156 
User Administration ................................................................................................................... 158 
As-Delivered Condition / Predefined Users and Keys .............................................................. 160 
Assigning a Lock ....................................................................................................................... 161 
Assigning Names to Locks/Keys ............................................................................................... 163 

8.3 Reviewing the Flash Disk Capacity Used ............................................................................. 165 
Flash Disk Capacity Used ......................................................................................................... 166 

8.4 Operating System Update and Application Program .......................................................... 169 
8.5 Formatting and Checking ....................................................................................................... 170 

Formatting the Flash Disk ......................................................................................................... 171 
Formatting the SD Card ............................................................................................................ 172 
Formatting the USB Stick .......................................................................................................... 173 
Checking the SD Card ............................................................................................................... 174 
Checking the USB Stick ............................................................................................................ 175 

9 FTP Server 177 

Login .......................................................................................................................................... 178 
Supported Commands .............................................................................................................. 179 
Example: Windows FTP Client .................................................................................................. 180 



 

Jetter AG 7 
 

JVM-407 Contents 

10 HTTP Server 181 

10.1 Server Side Includes ................................................................................................................ 182 
Name Space Tag ........................................................................................................................ 183 
Inserting Realtime Controller Values .......................................................................................... 184 
Example of an HTML page ........................................................................................................ 189 

11 Programming 191 

Abbreviations, Module Register Properties and Formats .......................................................... 192 
11.1 Memory Overview .................................................................................................................... 193 

Operating System Memory ........................................................................................................ 194 
File System Memory .................................................................................................................. 195 
Application Program Memory ..................................................................................................... 196 
Memory for Volatile Application Program Variables ................................................................... 197 
Memory for Non-Volatile Application Program Registers ........................................................... 198 
Memory for Non-Volatile Application Program Variables ........................................................... 199 
Special Registers ....................................................................................................................... 201 
Inputs and Outputs ..................................................................................................................... 202 
Flag ............................................................................................................................................ 203 

11.2 Inputs and Outputs .................................................................................................................. 205 
Function Keys ............................................................................................................................ 206 
Digipot ........................................................................................................................................ 207 
Digital Inputs and Outputs .......................................................................................................... 208 
Ignition and Switching Off Delay ................................................................................................ 209 

11.3 Realtime Clock (RTC) .............................................................................................................. 211 
Technical Data ............................................................................................................................ 212 
Sample Program for Real-Time Clock ....................................................................................... 213 

11.4 Runtime Registers ................................................................................................................... 215 
Description of Runtime Registers .............................................................................................. 216 
Sample Program - Runtime Registers ....................................................................................... 218 

11.5 Monitoring the Interface Activity ............................................................................................ 219 
Operating Principle .................................................................................................................... 220 
Programming .............................................................................................................................. 222 

11.6 E-Mail ......................................................................................................................................... 224 
11.6.1 Configuring the E-Mail Feature............................................................................................... 225 

Configuration File "/EMAIL/email.ini" ......................................................................................... 226 
Section [SMTP] .......................................................................................................................... 227 
Section [POP3]........................................................................................................................... 229 
Section [DEFAULT] .................................................................................................................... 231 
Configuration File - Examples .................................................................................................... 232 

11.6.2 Creating E-Mails ....................................................................................................................... 233 
Name of the E-Mail Template File .............................................................................................. 234 
Structure of the E-Mail Template File ......................................................................................... 235 
Inserting Realtime Controller Values .......................................................................................... 237 

11.6.3 Sending an E-Mail .................................................................................................................... 240 
Sending E-Mails Using the System Function ............................................................................. 241 
Sample Program ........................................................................................................................ 242 

11.6.4 Registers ................................................................................................................................... 244 
Overview of Registers ................................................................................................................ 245 
Register Description ................................................................................................................... 246 

11.7 Modbus/TCP ............................................................................................................................. 249 
11.7.1 Modbus/TCP Server ................................................................................................................. 250 

Addressing ................................................................................................................................. 251 
Supported Commands - Class 0 ................................................................................................ 252 
Supported Commands - Class 1 ................................................................................................ 253 



 

8 Jetter AG 
 

Contents 

Supported Commands - Class 2 ............................................................................................... 254 
11.7.2 Modbus/TCP Client ................................................................................................................. 255 

System Function 65: Acyclical Reading of Registers ................................................................ 257 
System Function 67: Acyclical Reading of Registers ................................................................ 259 
System Function 66: Acyclical Writing of Registers .................................................................. 261 
System Function 68: Acyclical Writing of Registers .................................................................. 263 
Example of an Application ......................................................................................................... 265 

11.8 User-programmable IP Interface ............................................................................................ 268 
11.8.1 Programming ........................................................................................................................... 270 

Initializing the User-Programmable IP Interface ........................................................................ 271 
Establishing a Connection ......................................................................................................... 272 
Sending Data ............................................................................................................................. 276 
Receiving Data .......................................................................................................................... 278 
Terminating a Connection.......................................................................................................... 281 

11.8.2 Registers .................................................................................................................................. 282 
Register Numbers ..................................................................................................................... 283 
Register Description .................................................................................................................. 284 

11.8.3 Sample Programs .................................................................................................................... 287 
Server ........................................................................................................................................ 288 
Client ......................................................................................................................................... 292 

11.9 User-Programmable CAN-PRIM Interface ............................................................................. 296 
User-programmable CAN-PRIM interface - Operating Principle ............................................... 297 
Restrictions Regarding the CAN-PRIM Interface ...................................................................... 298 
Programming the CAN-PRIM Interface ..................................................................................... 299 
Internal Processes of the CAN-PRIM Interface......................................................................... 302 
Register Description - CAN-PRIM Interface .............................................................................. 303 
CAN-PRIM Interface - Sample Program ................................................................................... 309 

12 Automatic Copying of Controller Data 312 

12.1 Operating Principle ................................................................................................................. 314 
Activating the AutoCopy Feature ............................................................................................... 315 
Executing AutoCopy Commands .............................................................................................. 316 
Terminating AutoCopy Mode ..................................................................................................... 317 

12.2 The File "autocopy.ini" ........................................................................................................... 318 
Section [OPTIONS] ................................................................................................................... 319 
Command Sections ................................................................................................................... 320 
Example of a Command File ..................................................................................................... 328 

12.3 Log File ..................................................................................................................................... 330 
File Contents ............................................................................................................................. 331 

12.4 Data Files .................................................................................................................................. 332 
File Format ................................................................................................................................ 333 

13 Operating System Update 335 

13.1 Updating the Operating System of the HMI .......................................................................... 336 
Operating System Update from within JetSym ......................................................................... 337 
Operating System Update by Means of FTP ............................................................................ 338 
Automatic OS Update from SD Card and USB stick ................................................................. 339 
Operating System Update from within the Application Program ............................................... 340 

14 Application Program 343 

Loading an Application Program ............................................................................................... 344 
Application Program - Default Path ........................................................................................... 345 
Storing the Application Program to an SD Card ........................................................................ 346 



 

Jetter AG 9 
 

JVM-407 Contents 

15 Quick Reference JVM-407 349 

Appendix  353 

A: Technical Data .......................................................................................................................... 354 
Technical Data ............................................................................................................................ 355 
Physical Dimensions .................................................................................................................. 357 
Operating Parameters - Environment and Mechanics ............................................................... 360 
Operating Parameters - EMC .................................................................................................... 361 

B: Index .......................................................................................................................................... 362 
  





 

Jetter AG 11 
 

JVM-407 Safety Instructions 

1 Safety Instructions 

This chapter informs the user of general safety instructions and warns of 
residual dangers, if applicable. Furthermore, it contains information on EMC. 
 

 

Topic Page 
Basic Safety Instructions .............................................................................. 12 
Instructions on EMI ....................................................................................... 14 

 
 
 

Introduction 

Contents 



 

12 Jetter AG 
 

1  Safety Instructions 

Basic Safety Instructions 

This device complies with the valid safety regulations and standards. Special 
emphasis was given to the safety of the users. 
Of course, the user should adhere to the following regulations: 

 relevant accident prevention regulations; 
 accepted safety rules; 
 EC guidelines and other country-specific regulations 
 

Usage according to the intended conditions of use implies operation in 
accordance with this user manual. 
The device has been designed for use in commercial vehicles and mobile 
machines. The device JVM-407 is an HMI with integrated controller for 
exchange of data with peripheral devices. 
The HMI JVM-407 meets the requirement of the European Automotive EMC 
Directive for electric/electronic subassemblies. 
The HMI JVM-407 must be operated within the limits and conditions 
established in the technical specifications. The operating voltage of the HMI 
JVM-407 is classified as SELV (Safety Extra Low Voltage). Therefore, the HMI 
JVM-407 is not subject to the EU Low Voltage Directive.  
 

This device must not be used in technical systems which to a high degree 
have to be fail-safe, e.g. ropeways and aeroplanes. 
The JVM-407 is no safety-related part as per Machinery Directive 2006/42/EC. 
This device is not qualified for safety-relevant applications and must, 
therefore, NOT be used to protect persons. 
If the device is to be run under ambient conditions which differ from the 
allowed operating conditions, Jetter AG is to be contacted beforehand. 
 

Depending on the life cycle of the product, the persons involved must possess 
different qualifications. These qualifications are required to ensure proper 
handling of the device in the corresponding life cycle. 
 

Product Life Cycle Minimum Qualification 

Transport / Storage: Trained and instructed personnel with knowledge in 
handling electrostatic sensitive components. 

Mounting / Installation: Specialized personnel with training in 
electrical/automotive engineering, such as automotive 
mechatronics fitters. 

Commissioning / 
Programming: 

Trained and instructed experts with profound 
knowledge of, and experience with, automotive / 
automation technology, such as automotive 
engineers for mobile machinery. 

Operation: Trained, instructed and assigned personnel with 
knowledge in operating electronic devices for mobile 
machinery. 

Decommissioning: Specialized personnel with training in 
electrical/automotive engineering, such as automotive 
mechatronics fitters. 

 

Introduction 

Intended Conditions of 
Use 

Usage Other Than 
Intended 

Personnel Qualification 



 

Jetter AG 13 
 

JVM-407 Safety Instructions 

 

 

For safety reasons, no modifications and changes to the device and its 
functions are permitted. 
Any modifications to the device not expressly authorized by Jetter AG will 
result in a loss of any liability claims to Jetter AG. 
The original parts are specifically designed for the device. Parts and 
equipment from other manufacturers are not tested on our part, and are, 
therefore, not released by Jetter AG. 
The installation of such parts may impair the safety and the proper functioning 
of the device. 
Any liability on the part of Jetter AG for any damages resulting from the use of 
non-original parts and equipment is excluded.  
 

The JVM-407 contains electrostatic sensitive components which can be 
damaged if not handled properly. 
To exclude damages to the JVM-407 during transport it should only be 
shipped in its original packaging or in packaging protecting against 
electrostatic discharge. This is particularly true for transport via mail.  

 Use an appropriate outer packaging to protect the JVM-407 against impact 
or shock. 

 In case of damaged packaging inspect the device for any visible damage. 
Inform your freight forwarder and the manufacturer, if applicable. 

 

When storing the JVM-407 observe the environmental conditions given in the 
technical specification. 
 

This device must not be repaired by the operators themselves. The device 
does not contain any parts that could be repaired by the operator. 
The device must be sent to Jetter AG for repair. 
 

When disposing of devices, the local environmental regulations must be 
complied with. 

 
 

Modifications and 
Alterations to the Device 

Transport 

Storing 

Repair and Maintenance 

Disposal 



 

14 Jetter AG 
 

1  Safety Instructions 

Instructions on EMI 

To meet the requirements with regard to EMI the shielding of the CAN cable 
must be connected to the housing of the device. If you connect only pin 16 
(shield), effective shielding is not ensured.  
Connect the shielding of the CAN cable to the stud bolt of the device housing:  
 

 
 
Caption:  
 

Number Element 

1 Threaded stud of the device housing  

2 Plain washer  

3 Wire lug  

4 Lock washer  

5 Nut  

 

To meet the requirements with regard to EMI the shielding of the Video cable 
must be connected to the housing of the device. If you connect only ground 
connections (pin 4 and pin 7), effective shielding is not ensured.  
Connect the shielding of the video cable to the stud bolt of the device housing:  
 

 
 

Wiring Instructions - 
CAN Cable 

Wiring Instructions - 
Video Cable 



 

Jetter AG 15 
 

JVM-407 Safety Instructions 

 

Caption:  
 

Number Element 

1 Threaded stud of the device housing  

2 Plain washer  

3 Wire lug  

4 Lock washer  

5 Nut  

 
 





 

Jetter AG 17 
 

JVM-407 Product Description and Design 

2 Product Description and Design 

This chapter covers the design of the device, as well as how the order 
reference is made up including all options. 
 

 

Topic Page 
Product Description - JVM-407 ..................................................................... 18 
Parts and Interfaces...................................................................................... 19 
Order Reference / Options ........................................................................... 23 
Physical Dimensions .................................................................................... 24 

 
 
 

Introduction 

Contents 



 

18 Jetter AG 
 

2  Product Description and Design 

Product Description - JVM-407 

The HMI JVM-407 is extremely versatile thanks to its compact design and the 
integrated controller. 
The JVM-407 can replace a complete instrument cluster. 
The JVM-407 has been specially designed for use in the harsh environment of 
commercial vehicles and mobile machines. 
 

The features of this product are listed below: 
 

 

 Display: 7" TFT with LED backlight 

 Resolution: WVGA (800 x 480 pixels) 

 4 function keys 

 1 digipot 

 10 status LEDs available for selection via 10 
digital inputs, rated for a power supply of 12 V 
and 24 V on the vehicle 

 Adjustable night-lighting 

 Buzzer (93 dB) 

 Powerful programming language JetSym STX 

 Non-volatile registers: 6,000 

 RAM memory: 16 MBytes 

 Flash memory: 64 MBytes 

 1 Ethernet interface 

 3 CAN-2.0B interfaces 

 An additional 5 digital inputs freely available, 
rated for a power supply of 12 V and 24 V on the 
vehicle 

 1 protected digital output, 3 A 

 1 composite color signal (FBAS) video input for 
rearview camera  

 1 USB port 

 SD card slot for SD cards up to 8 GBytes 

 Real-time clock with battery backup 

 Integrated Web server / e-mail feature 

 Modbus/TCP 
 
 

HMI JVM-407 

Product Features 



 

Jetter AG 19 
 

JVM-407 Product Description and Design 

Parts and Interfaces 

This chapter describes the parts and interfaces for the JVM-407. 
 

The diagram shows the controls on the front panel. 
 

521 3 46  
 

Number Control  

1 USB port behind protective cover  

2 Function key F1  

The digipot functions and the 
function keys are defined by the 
customer in the program.  

3 Function key F2 

4 Function key F3 

5 Function key F4 

6 Digipot (control dial with 
pushbutton feature) 

 

Introduction  

Controls  



 

20 Jetter AG 
 

2  Product Description and Design 

 

The diagram shows the display elements on the front panel. 
 

1

2

3

4

5

6

7

8

9

10

11

 
 

Number Control or display element  

1 LED 1 

The LEDs illuminate the 
pictograms on the display. 

2 LED 2 

3 LED 3 

4 LED 4 

5 LED 5 

6 LED 6 

7 LED 7 

8 LED 8 

9 LED 9 

10 LED 10 

11 Display screen 

 

Displays 



 

Jetter AG 21 
 

JVM-407 Product Description and Design 

 

The diagram shows the connectors and parts on the rear panel. 
 

 
 

Number Connector or part  

1 CANopen® connector 

2 Name plate 

3 Video connector 

4 Power supply connector, inputs and outputs 

5 4 threaded pins for installation panel 

6 Backup battery on the circuit board  

7 Buzzer 

 

The diagram shows the connectors and parts on the underneath panel. 
 

 
 
 

Connectors and Parts on 
the Rear Panel 

Connectors and Parts on 
the Underneath Panel 



 

22 Jetter AG 
 

2  Product Description and Design 

Number Connector or part  

1 Connector jack for the ethernet cable 

2 SD memory card slot 

 

The diagram shows the LEDs for the connector jack for the Ethernet cable. 
 

 
 
 

Number Color Description 

1 amber blinks when active (data transfer) 

2 green lights up when connection established  

 
 

LEDs on the Underneath 
Panel  



 

Jetter AG 23 
 

JVM-407 Product Description and Design 

Order Reference / Options 

The following variants exist for the JVM-407. They can be ordered from 
Jetter AG using the following part numbers. 
 

Part Number Order Reference Name 

10000821 JVM-407-K00-O01 HMI with support arm 

10000822 JVM-407-K00-O12 HMI for panel mounting 

 
 

Order Reference 



 

24 Jetter AG 
 

2  Product Description and Design 

Physical Dimensions 

This chapter details the physical dimensions of the JVM-407 and the 
conditions for installation. 
 

The diagram shows the dimensions of the JVM-407. 
 

 
 

The diagram shows the positions permitted for installation. 
 

 
 

Introduction  

Physical Dimensions  

Permissible Installation 
Positions 



 

Jetter AG 25 
 

JVM-407 Product Description and Design 

 

Explanations are as follows:  
 

Number  Permissible Installation Positions  

1  horizontally or tilted 

2  vertical or tilted 

 

The diagram shows the positions prohibited for installation. 
 

 
 
The rear panel of the HMI JVM-407 has no moisture protection, particularly 
against spray or water droplets. If the installation location cannot be 
guaranteed to be moisture-free, this method of installation (see diagram 
above) is prohibited. The accumulation of moisture and water droplets in the 
device can lead to current leakages and corrosion.  
 

The diagram shows the space required for the HMI JVM-407. 
 

 
 
Ensure there is enough space around the housing for servicing requirements. 

 It should be possible to disconnect the connector at any time. 
 It should be possible to exchange the SD card at any time. 
 It must be possible to easily loosen the wing nut on the SD card locking 

device. 
 

Prohibited Installation 
Positions  

Space Required for 
Installation and Service  



 

26 Jetter AG 
 

2  Product Description and Design 

 

Explanations are as follows: 
 

Number  Description 

1  Connectors for CANopen®, video, power supply, inputs and outputs 

2  Wing nut to secure the SD card 

3 Network connector 

4 SD memory card 

 

The diagram indicates the safe distance to protect against overheating. 
 

 
 
Please note:  

 The JVM-407 increases the temperature of the environment as a result of 
heat emission under load. 
Power consumption is 7.8 W. 

 The JVM-407 operates without interruption at an ambient temperature of 
up to +65 °C. 

 
Consider the heat emission from the device, in particular when installing it in a 
critical environment: 

 in the vicinity of the fuel tank 
 in the vicinity of the fuel pipe 
 in the vicinity of flammable vehicle components 
 in the vicinity of thermally malleable vehicle components 
 

The JVM-407 must be installed in the driver's cab. 
 

 
 

Space Required to 
Protect Against 
Overheating 

Installation Location 



 

Jetter AG 27 
 

JVM-407 Identifying the JVM-407 

3 Identifying the JVM-407 

This chapter is for supporting you in identifying the following information with 
regard to JVM-407: 
 

 Hardware revision. 
 Electronic data sheet (EDS). Numerous manufacturing-relevant data are 

stored to EDS. 
 OS release of the controller and software components. 
 

To be able to identify technical data about the HMI JVM-407 the following 
prerequisites must be fulfilled: 
 

 The controller is connected to a PC. 
 The programming tool JetSym 4.1.2 or higher is installed on the PC. 
 

If you have to contact the hotline of Jetter AG in case of a problem, please 
have the following information on the HMI JVM-407 ready: 
 

 Serial number 
 OS release of the HMI 
 Hardware revision 
 

 

Topic Page 
Identification by Means of the Nameplate .................................................... 28 
Version Registers.......................................................................................... 30 

 
 
 

Purpose of this Chapter 

Prerequisites 

Information for Hotline 
Requests 

Contents 



 

28 Jetter AG 
 

3  Identifying the JVM-407 

3.1 Identification by Means of the Nameplate 

Each HMI JVM-407 can be identified by its nameplate attached to its 
enclosure. If you have to contact the hotline of Jetter AG in case of a problem, 
you need to have the hardware revision data and the serial number at hand. 
 

 

Topic Page 
Nameplate ..................................................................................................... 29 

 
 
 

Introduction 

Contents 



 

Jetter AG 29 
 

JVM-407 Identifying the JVM-407 

Nameplate 

The nameplate of a JVM-407 contains the following information: 
 

 
 

Number Description 

1 Serial number 

2 Hardware revision 

3 HMI 

4 Part number 

 
 

Nameplate 



 

30 Jetter AG 
 

3  Identifying the JVM-407 

3.2 Version Registers 

The operating system of the JVM-407 provides several registers which can be 
used to read out the version numbers of the OS and its components. You will 
need this information when contacting the hotline of Jetter AG in case of a 
problem. 
 

 

Topic Page 
Software Versions ......................................................................................... 31 

 
 
 

Introduction 

Contents 



 

Jetter AG 31 
 

JVM-407 Identifying the JVM-407 

Software Versions 

The HMI JVM-407 features software with unique version numbers which can 
be read out via special registers. 
 

The software version number of the HMI JVM-407 is a four-figure value. 
 

1 . 2 . 3 . 4 
 

Entry Description 

1 Major or main version number 

2 Minor or secondary version number 

3 Branch or intermediate version number 

4 Build version number 

 

A released version can be recognized by both Branch and Build having got 
value zero. 
 

The following registers are used for reading out software versions: 
 

Register Description 

200168 Boot loader version 

200169 Operating system version 

210001 Version of the execution unit for the STX application program 
(JetVM version) 

 

The following screenshot shows a JetSym setup window displaying version 
registers. For displaying the version number in the setup window of JetSym, 
please select the format "IP address". 

 
 

Number Entry Function 

1 V 1.15.01.00 OS version of the HMI. 
JetSym displays this information in the title bar of 
each setup window. 

 
 

Introduction 

Format of Software 
Version Numbers 

Released Version 

Overview of Registers 

Version Numbers in 
JetSym Setup 





 

Jetter AG 33 
 

JVM-407 Installing the JVM-407 

4 Installing the JVM-407 

This chapter supports the installing of the HMI JVM-407 in the vehicle as 
regards the following points: 
 

 Wiring layout for the JVM-407 
 Installation 
 Configuration of the IP interface for the JVM-407 
 

 

Topic Page 
Interfaces ...................................................................................................... 34 
Interfaces on the Center Console with Mounted Support Arm ..................... 54 
Installing the JVM-407 .................................................................................. 62 
IP Configuration ............................................................................................ 68 

 
 
 

Purpose of this Chapter 

Contents 



 

34 Jetter AG 
 

4  Installing the JVM-407 

4.1 Interfaces 

The connector has the following functions: 
 

 Power supply for the JVM-407 
 Digital I/Os 
 

The function of the RJ45 jack is as follows: 
 

 Ethernet interface to a PC 
 

The function of the CAN interfaces is as follows: 
 

 Interface CAN 0: Configurable as CAN-PRIM interface 
 Interfaces CAN 0 through CAN 2: Configurable as CANopen® bus 

interface 
 

The connector has the following functions: 
 

 Option to connect a video camera, e.g. a rearview camera, with a voltage 
rating of 12 VDC. 

 

 

Topic Page 
Example of Wiring Layout ............................................................................. 35 
Connecting the Power Supply ...................................................................... 36 
Connecting Digital Inputs and Outputs ......................................................... 38 
HMI Switch Off Delay .................................................................................... 41 
Ethernet Interface ......................................................................................... 43 
CAN Interface ............................................................................................... 45 
Specification - CANopen® Bus Cable .......................................................... 49 
Connecting a Video Camera ......................................................................... 51 

 
 
 

Connector for the Power 
Supply and the Digital 
Inputs/Outputs 

Ethernet Interface 

Three CAN interfaces 

Connector for Video 
Camera 

Contents 



 

Jetter AG 35 
 

JVM-407 Installing the JVM-407 

Example of Wiring Layout 

This chapter uses an example to show how the JVM-407 is connected.  
 

The diagram shows an example of a wiring layout. 
 

 
 
Explanations are as follows:  
 

1  CANopen® bus 

2  Video camera 

3  Power supply (battery) 

4  Ignition lock 

5  Input to control the display LEDs  

6  Output, e.g. to control a bypass relay 

 
 

Introduction 

Example 



 

36 Jetter AG 
 

4  Installing the JVM-407 

Connecting the Power Supply 

This chapter describes the pin assignment for the connector for the JVM-407 
power supply. The connector type is the 22-pin Molex Micro-Fit 3.0 connector 
(manufacturer's item number 43045-2218). 
 

This connector is also used for digital inputs and outputs. 
 

 

The diagram shows the pin assignment for the connector for the power supply 
(cable panel view): 
 

 
 
The pin assignment is as follows: 
 

Pin Function Terminal name in vehicle 

1 Supply voltage +U BATT  
(+12 VDC or +24 VDC) 

KL 30 

2 Ignition (+) KL 15 

11 GND KL 31 

12 Supply voltage U BATT  
(+12 VDC or +24 VDC)  

KL 30 

22 GND KL 31 

 

In order to halve the current load on pins 1 and 12, as well as on pins 11 and 
22, all four pins should be connected to the supply voltage as per the above 
pin assignment. 
 

To start the JVM-407, pin 2 (ignition +) must be connected with pin 1 or pin 12. 
The ignition control signal is issued when the key is in position "Ignition ON". 
When the key is in position "Ignition OFF", the JVM-407 is able to keep its 
status as ON. 
 

Introduction 

Use of the Connector 

Power Supply 

Important Note on 
Supply Voltage 

Note on Ignition 



 

Jetter AG 37 
 

JVM-407 Installing the JVM-407 

 

 

Parameter Description 

Rated voltage DC 12 V or DC 24 V 

Permissible voltage range 9 ... 32 VDC 

Input current without camera typ. 650 mA for DC 12 V 

Input current without camera typ. 320 mA for DC 24 V 

Power consumption without camera 7.8 W 
 

 

When the JVM-407 is switched on, the current consumption is temporarily 
higher. To ensure that the JVM-407 can be activated, the supplied current 
should be at least 3-times the typical current. 
 

Compatible mating parts for the 22-pin Molex Micro-Fit 3.0 connector are as 
follows: 
 

 

Manufacturer Molex 

Manufacturer's item number - case 43025-2200 

Manufacturer's item number - crimp 
contact (jack)  

43030-0007 

Diameter of the cable apt for 
connecting 

0.2 ... 0.5 mm2  
(AWG 24 ... 20) 

 

 

 

Manufacturer Würth 

Manufacturer's item number - case 662 022 113 322 

Manufacturer's item number - crimp 
contact (jack)  

662 001 137 22 

Diameter of the cable apt for 
connecting 

0.2 ... 0.5 mm2  
(AWG 24 ... 20) 

 
 

Technical Data 

 

 

 

 

Note on Current 
Consumption 

Mating Parts 



 

38 Jetter AG 
 

4  Installing the JVM-407 

Connecting Digital Inputs and Outputs 

This chapter describes the pin assignment for the connector for the inputs and 
outputs on the JVM-407. The connector type is the 22-pin Molex Micro-Fit 3.0 
connector (manufacturer's item number 43045-2218). 
 

This connector is also used for the power supply. 
 

 

The diagram shows the pin assignment for the connector for inputs and 
outputs (cable panel view):  
 

 
 
The pin assignment is as follows:  
 

Pin Function 

3 Output 1  

4 Input # 2  

5 Input # 4  

6 Input # 6  

7 Input # 8  

8 Input # 10  

9 Input # 12  

10 Input # 14  

11 GND 

12 Supply voltage (+12 VDC or +24 VDC)  

13 Output 1  

14 Input # 1  

15 Input # 3  

16 Input # 5  

17 Input # 7  

18 Input # 9  

Introduction  

Use of the Connector  

Pin Assignment of Inputs 
and Outputs  



 

Jetter AG 39 
 

JVM-407 Installing the JVM-407 

Pin Function 

19 Input # 11  

20 Input # 13  

21 Input # 15  

 

Because output 1 can source a current of up to 3 A, output 1 has been 
assigned to pins 3 and 13. This halves the current load on the individual pins. 
For this reason, both pins need to be connected. 
 

Because inputs 1 through 10 are directly connected with LEDs, the vehicle 
status can be displayed even when the display is disabled. A possible vehicle 
status can be e.g. full beam, flashing indicators, fault, etc. 
 

 

Parameter Description 

Type of inputs Transistor, npn 

Rated voltage DC 9 ... 32 V 

Threshold level OFF ~ 8.5 V, 10 mA 

Threshold level ON ~ 8.3 V, min. 50 mA 

Electrical isolation none 
 

 

 

Parameter Description 

Type of outputs Transistor, pnp 

Rated voltage Supply voltage 

Signal voltage OFF < 1.0 V 

Signal voltage ON USupply - 0.025 V 

Load current max. 3.0 A 
 

 

Note on Output 1 

Note on LEDs 

Technical Data of Digital 
Inputs 

 

 

 

 

Technical Data of Digital 
Outputs 

 

 

 

 



 

40 Jetter AG 
 

4  Installing the JVM-407 

 

Compatible mating parts for the 22-pin Molex Micro-Fit 3.0 connector are as 
follows: 
 

 

Manufacturer Molex 

Manufacturer's item number - case 43025-2200 

Manufacturer's item number - crimp 
contact (jack)  

43030-0007 

Diameter of the cable apt for 
connecting 

0.2 ... 0.5 mm2  
(AWG 24 ... 20) 

 

 
 

 

Manufacturer Würth 

Manufacturer's item number - case 662 022 113 322 

Manufacturer's item number - crimp 
contact (jack)  

662 001 137 22 

Diameter of the cable apt for 
connecting 

0.2 ... 0.5 mm2  
(AWG 24 ... 20) 

 
 

Mating Parts 



 

Jetter AG 41 
 

JVM-407 Installing the JVM-407 

HMI Switch Off Delay 

This chapter describes how the switch off delay for the HMI JVM-407 is 
implemented. 
 

After switching off the ignition, the HMI should still remain switched on for a 
specific length of time. Only after this time has elapsed, it should switch itself 
off automatically.  
 

The duration for the switch off delay is defined in the JVM-407 program.  
 
 

The diagram shows the wiring for the switch of delay (cable panel view for 
jacks):  
 

1

2

3

4
 

 
Explanations are as follows:  
 

1 Battery 

2 Ignition lock 

3 Bypass relay 

4 Vehicle 

 

Introduction 

Objective  

Duration of Switch Off 
Delay  

Wiring  



 

42 Jetter AG 
 

4  Installing the JVM-407 

 

The pin assignment is as follows:  
 

Pin Function Terminal name in vehicle 

1 Supply voltage +U BATT (+12 VDC 
or +24 VDC)  

KL 30 

2 Ignition (+) KL 15 

3 Bypass relay - 

11 GND KL 31 

12 Supply voltage +U BATT (+12 VDC 
or +24 VDC)  

KL 30 

22 GND KL 31 

 
 

Pin Assignment  



 

Jetter AG 43 
 

JVM-407 Installing the JVM-407 

Ethernet Interface 

This chapter describes the pin assignment for the connector jack for the 
ethernet cable on the HMI JVM-407. 
 

The diagram shows the pin assignment for the connector jack for the Ethernet 
cable: 
 

 
 
The pin assignment is as follows:  
 

Pin Function 

1 TX+  

2 TX-  

3 RX+  

6 RX- 

 

 

Parameter Description 

Type of terminal RJ45 Ethernet jack 

Number of ports 1 

Baud rate 10 Mbit/s, 100 Mbit/s 

Auto cross-over Yes 
 

 

For connecting devices to the ethernet interface, you can order the following 
cables separately from Jetter AG : 
 

Item # Item 

60537500 Patch cable 1:1, 1 m gray Hirose, Cat 5e, shielded 

60854512 Patch cable 1:1, 2 m grey Hirose, Cat 5e, shielded 

60854514 Patch cable 1:1, 5 m grey Hirose, Cat 5e, shielded 

60854515 Patch cable 1:1, 10 m grey Hirose, Cat 5e, shielded 

60854078 Patch cable cross-over, 1 m gray Hirose, Cat 5e, shielded 

Introduction  

Pin Assignment of 
Ethernet Interface 

Technical Data 

 

 

 

 

Cable for Ethernet 
Interface 



 

44 Jetter AG 
 

4  Installing the JVM-407 

Item # Item 

60851216 Patch cable cross-over, 3 m blue Hirose, Cat 5e, shielded 

60854079 Patch cable cross-over, 5 m gray Hirose, Cat 5e, shielded 

 
 



 

Jetter AG 45 
 

JVM-407 Installing the JVM-407 

CAN Interface 

This chapter describes the pin assignment for the connector for the 
CANopen® bus on the JVM-407. The connector type is the 16-pin Molex 
Micro-Fit 3.0 connector (manufacturer's item number 43045-1618). 
 

The diagram shows the pin assignment for the connector for the CANopen® 
bus 0 (cable panel view): 
 

 
 
The pin assignment is as follows:  
 

Pin Function 

1 IN_CAN_0_H 

2 TERM_CAN_0 

3 OUT_CAN_0_L 

9 IN_CAN_0_L 

10 OUT_CAN_0_H 

16 Shield 

 

Introduction  

Pin Assignment 
CANopen® 0  



 

46 Jetter AG 
 

4  Installing the JVM-407 

 

The diagram shows the pin assignment for the connector for the CANopen® 
bus 1 (cable panel view):  
 

 
 
The pin assignment is as follows:  
 

Pin Function 

11 IN_CAN_1_H 

4 IN_CAN_1_L 

12 TERM_CAN_1 

5 OUT_CAN_1_H 

13 OUT_CAN_1_L 

16 Shield 

 

The diagram shows the pin assignment for the connector for the CANopen® 
bus 2 (cable panel view):  
 

 
 

Pin Assignment 
CANopen® 1  

Pin Assignment 
CANopen® 2  



 

Jetter AG 47 
 

JVM-407 Installing the JVM-407 

 

The pin assignment is as follows:  
 

Pin Function 

6 IN_CAN_2_H 

7 TERM_CAN_2 

8 OUT_CAN_2_L 

14 IN_CAN_2_L 

15 OUT_CAN_2_H 

16 Shield  

 

To enable the resistor in the JVM-407 as the bus termination resistor, the 
TERM_CAN_x pin must be connected to the Pin OUT_CAN_x_H.  
 

To satisfy EMC requirements, the CAN cable shield must be connected to the 
module housing. Connection of pin 16 (shield) alone is insufficient for effective 
shielding.  
Connect the video cable shield to the threaded pins of the module housing:  
 

 
 
Explanations are as follows:  
 

Number Part 

1 Threaded pins of the module housing  

2 Washer  

3 Cable lug  

4 Lock washer  

5 Screw nut  

 

Activating the Bus 
Termination Resistor 

Shield  



 

48 Jetter AG 
 

4  Installing the JVM-407 

 

Compatible mating parts for the 16-pin Molex Micro-Fit 3.0 connector are as 
follows: 
 

 

Manufacturer Molex 

Manufacturer's item number - case 43025-1600 

Manufacturer's item number - crimp 
contact (jack)  

43030-0007 

Diameter of the cable apt for 
connecting 

0,2 ... 0.5 mm2  
(AWG 24 ... 20) 

 

 

 

Manufacturer Würth 

Manufacturer's item number - case 662 016 113 322 

Manufacturer's item number - crimp 
contact (jack)  

662 001 137 22 

Diameter of the cable apt for 
connecting 

0,2 ... 0.5 mm2  
(AWG 24 ... 20) 

 
 

Mating Parts 



 

Jetter AG 49 
 

JVM-407 Installing the JVM-407 

Specification - CANopen® Bus Cable 

Jetter AG CANopen® devices are wired in accordance with the following 
diagram. 
 

O
U

T_
C

A
N

_H

CAN_H CAN_H

CAN_LCAN_L

O
U

T_
C

A
N

_H

O
U

T_
C

A
N

_H

IN
_C

A
N

_H

IN
_C

A
N

_H

IN
_C

A
N

_H

IN
_C

A
N

_L

IN
_C

A
N

_L

IN
_C

A
N

_L

O
U

T_
C

A
N

_L

O
U

T_
C

A
N

_L

O
U

T_
C

A
N

_L

120 Ohm 120 Ohm

1

2

 
 

Number Description 

1 CAN bus 

2 Jetter AG CANopen® devices 
 

 
There is an option to enable a resistor in the device as a bus termination 
resistor of 120 Ohm. 
The stub length with this type of wiring is practically zero. 
The CAN_L and CAN_H cables must be twisted together. 
 

Layout of CAN Bus 
Wiring 



 

50 Jetter AG 
 

4  Installing the JVM-407 

 

Parameter Description 

Core cross-sectional area 1000 kBaud: 0.25 ... 0.34 mm2 
500 kBaud: 0.34 ... 0.50 mm2 
250 kBaud: 0.34 ... 0.60 mm2 
125 kBaud: 0.50 ... 0.60 mm2 

Cable capacitance 60 pF/m max. 

Resistivity 1000 kBaud: max. 70 Ω/km 
500 kBaud: max. 60 Ω/km 
250 kBaud: max. 60 Ω/km 
125 kBaud: max. 60 Ω/km 

Number of cores 2 

Shield Complete shielding, no paired shielding 

Twisting Core pairs CAN_L and CAN_H are twisted 
 

 

The maximum permitted cable length depends on the baud rate used and the 
number of CANopen® devices connected. 
 

Baud Rate Cable length Stub length Overall stub length 

1000 kBaud max. 25 m max. 0.3 m 3 m 

500 kBaud max. 100 m max. 1.0 m 39 m 

250 kBaud max. 200 m max. 3.0 m 78 m 

125 kBaud max. 200 m - - 

 
 

CAN Bus Cable 
Specification 

 

 

 

 

Cable Lengths 



 

Jetter AG 51 
 

JVM-407 Installing the JVM-407 

Connecting a Video Camera 

This chapter describes the pin assignment for the connector for the video 
camera on the JVM-407. The connector type is the 8-pin Molex Micro-Fit 3.0 
connector (manufacturer's item number 43045-0818). 
 

The diagram shows the pin assignment for the connector for the video camera 
(cable panel view):  
 

 
 
The pin assignment is as follows:  
 

Pin Function 

1 Supply voltage (+12 VDC) e.g. for a camera 

2 Video signal (+)  

3 Shield  

4 Ground (GND) 

5 Video signal (-)  

6 Ground (GND) 

7 Video signal (-)  

8 Reserved (do not connect!)  

 

If no differential video signal is used, video signal (-) (pin 7) and GND (pin 6) 
should be connected. 
 

 

To satisfy EMC requirements, the video cable shield must be connected to the 
module housing. The ground connections (pin 4 and pin 7) are insufficient for 
effective shielding.  
Connect the video cable shield to the threaded pins of the module housing:  

Introduction  

Pin Assignment - Video 
Input  

Note on Video Signal 

Shield  



 

52 Jetter AG 
 

4  Installing the JVM-407 

 

 
 
Explanations are as follows:  
 

Number Part 

1 Threaded pins of the module housing  

2 Washer  

3 Cable lug  

4 Lock washer  

5 Screw nut  

 

 

Parameter Description 

Power supply for a camera DC 12 V, max. 1 A 

Type of video input analog, differential composite color 
signal (FBAS) video input with PAL 
signal or NTSC signal. 

 

 

Compatible mating parts for the 8-pin Molex Micro-Fit 3.0 connector are as 
follows: 
 

 

Manufacturer Molex 

Manufacturer's item number - case 43025-0800 

Manufacturer's item number - crimp 
contact (jack)  

43030-0007 

Diameter of the cable apt for 
connecting 

0.2 ... 0.5 mm2  
(AWG 24 ... 20) 

 

 

Technical Data 

 

 

Mating Parts 



 

Jetter AG 53 
 

JVM-407 Installing the JVM-407 

 

 

 

Manufacturer Würth 

Manufacturer's item number - case 662 008 113 322 

Manufacturer's item number - crimp 
contact (jack)  

662 001 137 22 

Diameter of the cable apt for 
connecting 

0.2 ... 0.5 mm2  
(AWG 24 ... 20) 

 
 



 

54 Jetter AG 
 

4  Installing the JVM-407 

4.2 Interfaces on the Center Console with Mounted 
Support Arm 

This chapter covers the layout of the connection cables already installed in the 
support arm, if the HMI JVM-407 is mounted on the support arm. 
It also covers the connector types required to connect the JVM-407 to the 
center console. 
 
In the support arm, connection cables have been installed for the following 
purposes: 
 

 Power supply 
 Digital inputs/outputs 
 CANopen® interfaces 
 Video 
 

 

Topic Page 
Connection Cable - Power Supply ................................................................ 55 
Connection Cable - Inputs and Outputs ........................................................ 57 
Connection Cable - CANopen® .................................................................... 59 
Connection Cable - Video ............................................................................. 61 

 
 
 

Interconnecting Cable to 
the Center Console 

Contents 



 

Jetter AG 55 
 

JVM-407 Installing the JVM-407 

Connection Cable - Power Supply 

The diagram shows the wiring for the power supply in the support arm (cable 
panel view in each case):  
 

 
 
Explanations are as follows:  
 

A Connector for the HMI JVM-407  

B Connector for the center console  

 

The pin assignment is as follows:  
 

Pin (A) Function Terminal name in vehicle Pin (B) 

1 +U BATT  KL 30 1 

2 Ignition (+)  KL 15 3 

11 GND KL 31 21 

12 +U BATT  KL 30 2 

22 GND  KL 31 22 

 

This connector is also used for digital inputs and outputs. 
 
 

 

Type  AMP Junior Power Timer (male) 

Number of pins  22 
 

 

Wiring  

Pin Assignment  

Use of Connector B 

Specification of 
Connector B 
 



 

56 Jetter AG 
 

4  Installing the JVM-407 

 

The following is a compatible mating part for the 22-pin connector AMP Junior 
Power Timer: 
 

 

Manufacturer AMP 

Manufacturer's item number - 
Socket housing 

929504-7 

Manufacturer's item number - Crimp 
contact (jack) 

927771 (reel) 
927779 (single) 

Diameter of the cable apt for 
connecting 

0.5 ... 1.0 mm2  
(AWG 20 ... 16) 

 
 

Mating part 



 

Jetter AG 57 
 

JVM-407 Installing the JVM-407 

Connection Cable - Inputs and Outputs 

The diagram shows the wiring for the digital inputs and digital outputs in the 
support arm (cable panel view in each case):  
 

 
 
Explanations are as follows:  
 

A Connector for the HMI JVM-407  

B Connector for the center console  

 

The pin assignment is as follows:  
 

Pin (A) Function Pin (B) 

3 Output 1   4 

4 Input # 2  

To control the LEDs for pictogram 
illumination on the display area  

7 

5 Input # 4  9 

6 Input # 6 11 

7 Input # 8  13 

8 Input # 10  15 

9 Input # 12  
For free use  

17 

10 Input # 14  19 

11 GND   21 

13 Output 1   5 

14 Input # 1  

To control the LEDs for pictogram 
illumination on the display area  

6 

15 Input # 3  8 

16 Input # 5  10 

17 Input # 7  12 

18 Input # 9  14 

Wiring  

Pin Assignment  



 

58 Jetter AG 
 

4  Installing the JVM-407 

Pin (A) Function Pin (B) 

19 Input # 11  

For free use  

16 

20 Input # 13  18 

21 Input # 15  20 

 

Because the ignition coil is controlled via output 1 and consumes a high 
volume of power, output 1 has been assigned to pins 3 and 13 (A) or 4 and 5 
(B).  This halves the current load on the individual pins. For this reason, both 
pins need to be connected. 
 

This connector is also used for the power supply. 
 
 

 

Type  AMP Junior Power Timer (male) 

Number of pins  22 
 

 

The following is a compatible mating part for the 22-pin connector AMP Junior 
Power Timer: 
 

 

Manufacturer AMP 

Manufacturer's item number - 
Socket housing 

929504-7 

Manufacturer's item number - Crimp 
contact (jack)  

927771 (reel) 
927779 (single) 

Diameter of the cable apt for 
connecting 

0.5 ... 1.0 mm2  
(AWG 20 ... 16) 

 
 

Note on Output 1 

Use of Connector B 

Specification of 
Connector B 
 

Mating part 



 

Jetter AG 59 
 

JVM-407 Installing the JVM-407 

Connection Cable - CANopen® 

The diagram shows the wiring for the CAN cable in the support arm (cable 
panel view in each case):  
 

 
 
CAN_0_H and CAN_0_L must be twisted together.  
CAN_1_H and CAN_1_L must be twisted together. 
 
Explanations are as follows:  
 

A Connector for the HMI JVM-407  

B Connector for the center console  

 

The pin assignment is as follows:  
 

Pin (A) Function Pin (B) 

1 IN_CAN_0_H  1 

2 TERM_CAN_0   

3 OUT_CAN_0_L  4 

4 IN_CAN_1_L  6 

5 OUT_CAN_1_H   

6 IN_CAN_2_H   

7 TERM_CAN_2   

8 OUT_CAN_2_L   

9 IN_CAN_0_L  2 

10 OUT_CAN_0_H  3 

11 IN_CAN_1_H  5 

12 TERM_CAN_1   

13 OUT_CAN_1_L   

14 IN_CAN_2_L   

Wiring  

Pin Assignment  



 

60 Jetter AG 
 

4  Installing the JVM-407 

Pin (A) Function Pin (B) 

15 OUT_CAN_2_H   

16 Shield  9 

10 

 
CAN 1 is terminated on the connector for JVM-407 (jumper between pin 6-8).  
 

 

Type  AMP Junior Power Timer (male) 

Number of pins  10 
 

 

The following is a compatible mating part for the 10-pin connector AMP Junior 
Power Timer: 
 

 

Manufacturer AMP 

Manufacturer's item number - 
Socket housing 

929504-4 

Manufacturer's item number - Crimp 
contact (jack)  

927771 (reel) 
927779 (single) 

Diameter of the cable apt for 
connecting 

0.5 ... 1.0 mm2  
(AWG 20 ... 16) 

 
 

Specification of 
Connector B 
 

Mating part 



 

Jetter AG 61 
 

JVM-407 Installing the JVM-407 

Connection Cable - Video 

The diagram shows the wiring for the video cable in the support arm (cable 
panel view in each case):  
 

 
 
Explanations are as follows:  
 

A Connector for the HMI JVM-407  

B Connector for the center console  

 

The pin assignment is as follows:  
 

Pin (A) Function Pin (B) 

1 Supply voltage +12 V  2 

2 Video signal (+)  4 

3 Shield  1 

4 Ground  3 

5 Video signal (-)  5 

6 Ground  3 

7 Video signal (-)  5 

8 Reserved (do not connect!)   

 

By default, cables in the support arm are connected to A pin 6 and 7, i.e. no 
differential video signal is used. 
 

 

 

Type  Jack M12 

Number of pins  5 
 

 

The 5-pin M12 connector is a compatible mating part. 
 

 
 

Wiring  

Pin Assignment  

Note on Video Signal 

Specification of 
Connector B 
 

Mating Part 



 

62 Jetter AG 
 

4  Installing the JVM-407 

4.3 Installing the JVM-407 

This chapter describes how to install the JVM-407. 
 

 

Topic Page 
Installing the HMI .......................................................................................... 63 
Mounting the Support Arm ............................................................................ 66 

 
 
 

Introduction 

Contents 



 

Jetter AG 63 
 

JVM-407 Installing the JVM-407 

Installing the HMI 

This chapter describes how to install the HMI JVM-407.  
 

Select a suitable place for the device to be mounted.  
A place is suitable if it fulfils the following requirements:  
 

 The installation surface must be made from one of the following materials:  
 aluminum plate  
 galvanized steel plate  
 lacquered steel plate  
 plastic  

 The installation surface must be level.  
 The installation surface should be no more than 5 mm thick.  
 The installation location must allow air to circulate.  
 The installation location must be accessible for servicing.  
 The installation location must be of sufficient size.  
 

Do not install the device in inappropriate locations.  
The following installation locations are unsuitable for mounting the HMI:  
 

Unsuitable installation 
location  

Reason  

Outdoor installation The HMI must not be exposed to rain or a jet of 
water. Therfore, do not use a steam jet or other such 
devices to clean the HMI. 

Unventilated installation 
location  

The HMI could overheat as heat builds up.  

Installation location close to 
heat-sensitive materials   

The materials could become warped or misshapen as 
a result of heat produced by the HMI.  

Installation surfaces are 
uneven  

The installation surface could become misshapen 
when fitting the HMI.  
Installation is unstable and precarious.  

 

Consider ergonomic principles.  
Select a user-friendly place for installation:  

 The controls must be easy to reach.  
 The HMI screen must be easy to read.  
 
Avoid installation locations that are ergonomically unsuitable:  

 Extreme angles, which could make it difficult to see the HMI  
 Unsuitable lighting conditions with reflection and glare  
 Concealed installation locations that are difficult for the user to access  
 

Introduction  

Selecting a Place for 
Installation  

Avoiding Unsuitable 
Installation Locations  

Consider Ergonomic 
Principles  



 

64 Jetter AG 
 

4  Installing the JVM-407 

 

Make a square opening.  
The diagram shows the dimensions:  
 

. .

.

 
 
Explanations are as follows:  
 

1 Opening  

2 Outline of the front panel  

 

The diagram shows how to install:  
 

 
 
Explanations are as follows:  
 

1 Threaded pins on the JVM-407 housing 

Preparing for Installation  

Installing the HMI  



 

Jetter AG 65 
 

JVM-407 Installing the JVM-407 

2 Opening  

3 Fitting panel  

5 SD card holder  

6 4 x wing nut  
 

Step Action 

1 Insert the HMI into the front of the opening.  

2 Attach the fitting panel at the back.  
Ensure it is correctly positioned: Hole over the buzzer.  

3 Push the SD card holder onto the threaded pins for the SD card slot.  

4 Screw the holder firmly into place with a wing nut.  

5 Screw the fitting panel firmly into place with the remaining three wing nuts.  

 

Install the strain relievers for the connection cable.  
Take care to leave enough space for the connectors.  
Connectors should not be obstructed, so that they can be removed in the 
event of a service requirement.  
 

 
 
 

Installing the Strain 
Relief  



 

66 Jetter AG 
 

4  Installing the JVM-407 

Mounting the Support Arm 

This chapter describes how to mount the support arm for the HMI JVM-407.  
 

Select a suitable place for the device to be mounted.  
A place is suitable if it fulfils the following requirements:  
 

 The installation surface must be level. The surface should not be uneven.  
 The mounting surface must be rigid to be able to withstand the leverage 

force of the support arm.  
 Underneath the mounting area, there must be enough space for cable 

guides.  
 The installation location must be accessible for tightening and loosening 

screws.  
 

Consider ergonomic principles.  
Select a user-friendly place for installation.  

 The controls must be easy to reach.  
 The HMI screen must be easy to read.  
 
Avoid installation locations that are ergonomically unsuitable:  

 Extreme angles, which could make it difficult to see the HMI.  
 Unsuitable lighting conditions with reflection and glare  
 Concealed installation locations that are difficult for the user to access  
 

Drill the following holes. The diagram shows the dimensions:  
 

35

35

5.5

 
 
Deburr the holes. 

Introduction  

Selecting a Place for 
Installation  

Consider Ergonomic 
Principles  

Preparing for Installation  



 

Jetter AG 67 
 

JVM-407 Installing the JVM-407 

 

Explanations are as follows:  
 

1 Holes for screws and cable feed-through  

2 Outline of the support arm base   

 

The diagram shows how to install:  
 

 
 
Explanations are as follows:  
 

1 4 x screws M 5 x 14 mm + thickness of mounting surface  
(It is permitted to use e.g. hexagon socket head cap screws DIN 912) 

2 4 x lock washers 

3 4 x screw holes  

5 Support arm base  

6 Support arm  
 

Step Action 

1 Place the support arm on the installation surface.  

2 Screw the support arm firmly into place from underneath using four screws 
and four lock washers.  

3 Guide the cable through the support arm base.  

4 Push the support arm onto the support arm base. It must click into place.  

5 Loosen the locking lever.  

6 Adjust the angle of the HMI so that it is comfortable for the user.  

7 Lock the HMI into place by tightening the locking lever.  

 
 

Mounting the Support 
Arm Base  



 

68 Jetter AG 
 

4  Installing the JVM-407 

4.4 IP Configuration 

This chapter describes how the IP configuration for the HMI JVM-407 is 
implemented. To this end, the following parameters can be set: 
 

 IP address of the HMI 
 Subnet mask 
 IP address of default gateway 
 IP address of DNS server 
 HMI name 
 IP port number for the JetSym debugger 
 Base port number for communication via JetIP 
 

To carry out IP configuration of the HMI JVM-407, knowledge of IP networks is 
required, for example: 
 

 IP addressing (e.g. IP address, port number, subnet masks etc.) 
 FTP (connection setup, data transmission, etc.) 
 

 

Topic Page 
Factory Settings ............................................................................................ 69 
Configuration Memory ................................................................................... 70 
Configuration File cfgvar.ini........................................................................... 71 
Configuration Registers ................................................................................ 75 
Modifying the IP Address of the Controller ................................................... 76 
Setting the IP Address via the File cfgvar.ini ................................................. 77 
Setting the IP Address During Runtime ........................................................ 78 
Using Names for IP Address ......................................................................... 79 

 
 
 

Introduction 

Engineer's Skills 
Required 

Contents 



 

Jetter AG 69 
 

JVM-407 Installing the JVM-407 

Factory Settings 

Before the HMI JVM-407 is shipped, various parameters are set to a certain 
value. 
These parameters can be modified by the user. 
 

 

Parameter Value 

IP address of the controller 192.168.10.15 

Subnet mask 255.255.255.0 

IP address of default gateway 0.0.0.0 

IP address of DNS server 0.0.0.0 

Controller name JVM-4xx 

IP port number for debugger 52000 

IP port number for JetIP 50000 

Administrator password admin 

System password system 
 

 
 

Introduction 

Factory Settings 

 

 

 



 

70 Jetter AG 
 

4  Installing the JVM-407 

Configuration Memory 

The parameters for initializing the IP interface are uploaded from the 
configuration memory by the HMI during the boot process. Data stored to the 
configuration memory can be accessed in the following ways:  

 Configuration data can be read out of a file located in the system directory 
of the file system. They can also be modified in this file. 

 Configuration data can be read out via registers. 
 

The HMI reads data located in the configuration memory only during the boot 
process. If changes are made to the configuration memory, the HMI must be 
rebooted for these changes to become effective. 

 

Before data from the configuration memory are used, the HMI checks them for 
plausibility. If entries are invalid or absent, the following default values are 
used: 
 

Parameter default 

IP address of the controller 192.168.10.15 

Subnet mask 255.255.255.0 

IP address of default gateway 0.0.0.0 

IP address of DNS server 0.0.0.0 

Controller name JVM-4xx 

Suffix type of the name 0 

IP port number for debugger 52000 

IP port number for JetIP 50000 

 

 
 Configuration File cfgvar.ini on page 71 
 Configuration Registers on page 75 

 
 

Introduction 

Enabling Conditions 

Default Values 

Related Topics 



 

Jetter AG 71 
 

JVM-407 Installing the JVM-407 

Configuration File cfgvar.ini 

The configuration file cfgvar.ini can be used to access the configuration 
memory of the JVM-407.  
 

 The file can be accessed via the file system of the HMI. 
 For an FTP connection, the user must have administrator or system rights. 
 This file is located in the subdirectory "/System". 
 This file cannot be deleted; it can only be overwritten. 
 Formatting the flash disk has no impact on this file. 
 

This configuration file is a text file, the entries of which are grouped into 
several sections. For missing IP configuration parameters default values are 
used. 
 

This is an example for a configuration file cfgvar.ini: 
 
;JVM-407 System Configuration 

;Copyright (c) 2009 by Jetter AG, Ludwigsburg, Germany 

 

[IP] 

Address    = 192.168. 50.  1 

SubnetMask = 255.255.255.  0 

DefGateway = 192.168. 50. 11 

DNSServer  = 192.168.  1. 44 

 

[HOSTNAME] 

SuffixType = 0 

Name       = JVM-4xx 

 

[PORTS] 

JetIPBase = 50000 

JVMDebug  = 52000 

 

Introduction 

Properties 

File Structure 

Example for cfgvar.ini 



 

72 Jetter AG 
 

4  Installing the JVM-407 

 

In the section [IP] the required IP addresses and the subnet mask are 
specified. 
 

Address 

In the given example 192.168.50.1 

Function IP address of the HMI 

Allowed values  > 1.0.0.0  
 < 223.255.255.255 

Illegal values  Network address 
 Broadcast address 

in the event of an illegal 
value 

the HMI will set all 4 values to their default values. 

SubnetMask 

In the given example 255.255.255.0 

Function Subnet mask 

Allowed values  >= 128.0.0.0 

Illegal values  1 and 0 mixed 

in the event of an illegal 
value 

the HMI will set all 4 values to their default values. 

DefGateWay 

In the given example 192.168.50.11 

Function IP address of the gateway to other subnets; 
The HMI must be able to reach the subnet 
(Address/SubnetMask), otherwise it will set this 
parameter to 0.0.0.0. 

Allowed values  > 1.0.0.0 and 
 < 223.255.255.255 

Illegal values  Network address  
 Broadcast address 
 A value (Address/SubnetMask) which cannot be 

reached by the HMI. 
 The address value 

in the event of an illegal 
value 

will be set to 0.0.0.0 by the controller. 

DNSServer 

In the given example 192.168.1.44 

Function IP address of the server for the Domain Name System. 

Allowed values  1.0.0.0 
 223.255.255.255 

in the event of an illegal 
value 

the HMI will set the value to 0.0.0.0 

 

Section [IP] 



 

Jetter AG 73 
 

JVM-407 Installing the JVM-407 

 

In the section [HOSTNAME] the name of the HMI is specified. The HMI is able 
to generate an individual name automatically. This host name is not currently 
used. 
 

SuffixType 

In the given example 0 

Function The type of the automatically generated suffix is 
attached to the HMI name. 

Allowed values  0: No attachment 
 1: Low-order byte of the IP address in decimal 

notation. 
 2: Low-order byte of the IP address in hexadecimal 

notation. 
in the event of an illegal 
value 

0 

Name 

In the given example JVM-4xx 

Function Specifies the HMI name. 

Allowed values  First character: 'A' ... 'Z', 'a' ... 'z' 
 Next character: 'A' ... 'Z', 'a' ... 'z', '0' ... '9', '-' 

in the event of an illegal 
value 

JVM-4xx 

 

In the section [PORTS] the IP port numbers of data and debug servers within 
the HMI are specified. These values must be consistent with the values set in 
JetSym, for example the port numbers. 
 

JetIPBase 

In the given example 50000 

Function IP port for OS update and communication with the PC 

Allowed values  1024 ... 65535 

In the event of an illegal 
value 

50000 

JVMDebug 

In the given example 52000 

Function IP port for debugger/setup in JetSym 

Allowed values  1024 ... 65535 

In the event of an illegal 
value 

52000 

 

Section [HOSTNAME] 

Section [PORTS] 



 

74 Jetter AG 
 

4  Installing the JVM-407 

 

 

Step Action 

1 Use a text editor to create a configuration file on your PC named cfgvar.ini 
and make the corresponding entries. 

2 Open an FTP connection between the PC and JVM-407. 

3 Log in as user with administrator or system rights. 
Standard: 
User: admin; Password: admin 

4 Browse to subdirectory "/System" of the JVM-407. 

5 Copy the configuration file cfgvar.ini you created on the JVM-407. 

6 Close the FTP connection. 

7 Reboot the device. 
Result: The new configuration is active. 

 

 

 
 Configuration Memory on page 70 
 Configuration Registers on page 75 

 
 

Changing IP 
Configuration 

 

 

Related Topics 



 

Jetter AG 75 
 

JVM-407 Installing the JVM-407 

Configuration Registers 

The IP configuration parameters can be read via configuration registers. A 
range of registers holds the data contained in the configuration memory. 
Another range contains the parameters actually used for initializing the IP 
interface. 
 

The basic register numbers of both ranges are dependent on the device. The 
register number is calculated by adding the number of the module register 
(MR) and the basic register number. 
 

HMI Data Range Basic 
Register 
Number 

Register Numbers 

JVM-407 
 

Configuration 
Memory 

101100 101100 ... 101165 

Used parameter 101200 101200 ... 101265 

 

The following table provides an overview of the registers of both ranges, as 
well as their connection to the entries in the configuration file 
"/System/cfgvar.ini". 
 

Registers Section in 
config.ini 

Name in 
config.ini 

Function 

MR 0 IP 
 

Address IP address of the controller 

MR 1 SubnetMask Subnet mask 

MR 2 DefGateWay IP address of the gateway to other 
subnets 

MR 3 DNSServer IP address of the server for the Domain 
Name System. 

MR 32 HOSTNAME 
 

SuffixType The type of the automatically generated 
suffix is attached to the controller name. 

MR 33 to  
MR 51 

Name Specifies the controller name 

MR 64 PORTS 
 

JetIPBase IP port for OS update and 
communication between controllers 

MR 65 JVMDebug IP port for debugger/setup in JetSym 

 

 
 Configuration Memory on page 70 
 Configuration file cfgvar.ini on page 71 

 
 

Introduction 

Register Numbers 

Configuration Registers 

Related Topics 



 

76 Jetter AG 
 

4  Installing the JVM-407 

Modifying the IP Address of the Controller 

To be able to communicate with the JVM-407 via Ethernet, a unique IP 
address has to be set on the HMI. 
 

The IP address can be configured in the following ways: 
 

 Default IP address 
 Configuration via the file cfgvar.ini 
 Configuration during runtime via special registers 
 

 
 Setting the IP Address via the File cfgvar.ini on page 77 
 Setting the IP Address During Runtime on page 78 

 
 

Introduction 

Configuration Options 

Related Topics 



 

Jetter AG 77 
 

JVM-407 Installing the JVM-407 

Setting the IP Address via the File cfgvar.ini 

The IP address of the HMI JVM-407 can be set using the "cfgvar.ini" file. 
 

[IP] 

Address    = aaa.bbb.ccc.ddd 

... 
 

Element Function 

Address Line for entering the IP-address 

aaa 1st byte of IP address 

bbb 2nd byte of IP address 

ccc 3rd byte of IP address 

ddd 4th byte of IP address 

 

The IP address setting in the file cfgvar.ini is only copied if the data in the 
configuration memory are not OK. 
 

 

Step Action 

1 Establish an FTP connection to the JVM-407. 

2 Log in as user with administrator or system rights. 
Standard: 
User: admin; Password: admin (default) 

3 Open the directory /System. 

4 Copy the cfgvar.ini file into the directory /System. 

5 Clear the FTP connection. 

6 Restart the JVM-407. 
 

 

 
 

The File cfgvar.ini 

Note 

Transmitting the File 
cfgvar.ini 

 

 



 

78 Jetter AG 
 

4  Installing the JVM-407 

Setting the IP Address During Runtime 

The parameters for initializing the IP interface are read out of the configuration 
memory during the boot process. The following settings can also be changed 
during the runtime of the JVM-407 via registers: 

 IP Address 
 Subnet mask 
 IP address of default gateway 
Settings made during runtime do not affect the parameters stored in the 
configuration memory, but will be lost when the JVM-407 is switched off. 
 

 These settings must only be made when there is no active communication 
via IP interface, otherwise data may be lost. 

 It must be ensured that the values entered are valid (e.g. through proper 
programming within the application program), as the JVM-407 will not 
validate the values which are set during runtime. 

 

 

Registers Description 

104531 IP address of JVM-407 

104532 Subnet mask 

104533 IP address of default gateway 
 

 

To set the IP address and the subnet mask proceed as follows: 
 

Step Action 

1 Enter the value 0.0.0.0 into 104533. 

2 Enter the value 0.0.0.0 into 104532. 

3 Enter the desired IP address of the JVM-407 into 104531. 

4 Enter the desired subnet mask into 104532. 

5 Enter the desired IP address of the default gateway into 104533. 
 

Result: The settings are made and communication is enabled. 
 

 
 Configuration Memory on page 70 

 
 

Introduction 

Prerequisites 

Overview of Registers 

 

 

Setting IP Addresses and 
Subnet Mask 

Related Topics 



 

Jetter AG 79 
 

JVM-407 Installing the JVM-407 

Using Names for IP Address 

When specifying IP addresses of target systems (e.g. when configuring the 
e-mail client), names can be used as IP addresses. Then the JVM-407 
translates these names into IP addresses. A configuration file or the Domain 
Name System is used to assign names to their corresponding IP address. 
 

Names are resolved to IP addresses in the following way: 
 

Stage Description 

1 During the boot process the JVM-407 reads the IP address of the DNS 
server from the configuration memory. 

2 During the boot process the JVM-407 reads the file "/etc/hosts", creates a 
translation table with the names and IP addresses found in this file. 

3 After the boot process the JVM-407 detects a name instead of an IP 
address. 

4 Based on this translation table, the JVM-407 tries to resolve the name into 
a related IP address. 

 

If ... ... Then ... 

the name was resolved the JVM-407 continues with step 6 

the name could not be resolved the JVM-407 continues with step 5 

  

5 The JVM-407 tries to resolve the name into a related IP address by 
sending a request to the DNS server. 

 

If ... ... Then ... 

the name was resolved it enters the name and IP address 
into the translation table and 
proceeds with step 6 

the name could not be resolved the controller aborts the function 
(e.g. system function for sending an 
e-mail) with an error message 

  

6 The IP address found is used for further communication. 

 

A static assignment between name and IP address is specified in this file. This 
file is read once when the JVM-407 is booting. 
 

File format: Text 

Location: /etc 

File name: hosts 
 
Example: 

# Example hosts file for JC-9xx 

192.168.33.209    jetter_mail 

Introduction 

Name Resolution 

Configuration File 
"hosts" 



 

80 Jetter AG 
 

4  Installing the JVM-407 

192.168.33.208    jetter_demo 

192.168.1.1       JC940MC 

192.168.1.2       JC940MC 

 

If a name cannot be found in the file "/etc/hosts", the controller tries to resolve 
the IP address by obtaining the corresponding IP address from a DNS server. 
During the booting process of the JVM-407, the IP address of the DNS server 
is read from the configuration memory. 
 

 
 Configuration Memory on page 70 

 
 

Domain Name System 
(DNS) 

Related Topics 



 

Jetter AG 81 
 

JVM-407 Initial Commissioning 

5 Initial Commissioning 

This chapter covers the initial commissioning of the JVM-407 with the aid of 
the following steps: 
 

 Creating IOP files in JetViewSoft for the JVM-407 device. 
 Transferring the IOP files to the JVM-407 device. 
 Creating an STX project in JetSym and configuring the hardware. 
 Including the .iop.h file in the STX project. 
 Including the ISO library in the STX project. 
 Creating a compilable program. 
 
Everything is then prepared as far as possible for creating a program. 
 

The instructions for initial commissioning apply to JetSym from version 4.3 
and JetViewSoft from version 3.2. 
 

The ISO functions are defined in the ISO 11783-6 standard. 
 

 

Topic Page 
Preparatory Work for Initial Commissioning ................................................. 82 
Initial Commissioning in JetViewSoft ............................................................ 83 
Initial Commissioning in JetSym ................................................................... 86 

 
 
 

Purpose of this Chapter 

Minimum Requirements 

ISO Functions 

Contents 



 

82 Jetter AG 
 

5  Initial Commissioning 

Preparatory Work for Initial Commissioning 

The HMI JVM-407 default IP address is 192.168.10.15. Configure the Ethernet 
interface of your PC so that it is able to communicate with the JVM-407 via 
this IP address. 
 

The JVM-407 only powers up if the supply voltage +U BATT is applied to the 
ignition (+). 
 

If you press function keys F1 and F3 at the same time when powering up, the 
application program is not launched. 
 

The default application program launched on the JVM-407 after powering up 
displays the following input mask on the JVM-407 display.  
 

F1

+10 -10+ -

F2 F3 F4

NodeID:       30
IP-Adresse:  192.168.10.15
MAC-Adresse:  00-50-cb-00-af-30
OS-Version:  1.15.1.0

 
 
The node ID displayed is the address of the CANopen® 0 bus set in the 
JVM-407. This address can be set by using the function keys F1 to F4.  
The function key F1 increases the address in steps of 10. The function key F4 
decreases the address in steps of 10. 
The function key F2 increases the address in steps of 1. The function key F3 
decreases the address in steps of 1. 
 
The IP address, MAC address and OS version are also displayed. 

 
 

 

Ethernet Connection to 
the Controller 

Requirement for 
Power-up 

Behavior after Power-up 

Default Display 



 

Jetter AG 83 
 

JVM-407 Initial Commissioning 

Initial Commissioning in JetViewSoft 

With JetViewSoft, the IOP files are created for the HMI JVM-407 and 
transferred to the device. The following is detailed here: 
 

 Creating a project in JetViewSoft 
 Executing Project Settings 
 Creating an IOP file and transferring it to the HMI 
 
The visualization created is programmed with JetSym STX. 
 

The following requirements must be satisfied: 
 

 JetViewSoft is installed on the PC used 
 JetViewSoft has been licensed (see online help in JetView Soft) 
 An active Ethernet connection between the PC and the HMI is set up 
 

A new project for the HMI is created in JetViewSoft as follows: 
 

Step Action 

1 Start JetViewSoft 

2 Open the menu item File and select the entry New. 
Result: 
The following dialog box opens: 

 
3 In Project name, enter the name of the project. 

4 If necessary, change the project menu path under Location. 

5 Under Target platform, select JetView ER-STX(S). 

6 Under Display template, select the appropriate one for the HMI. 

7 Under Display name, select a program-internal name for the HMI. 
Several displays can be created in one project. 

Introduction 

Prerequisites 

Creating a Project 



 

84 Jetter AG 
 

5  Initial Commissioning 

Step Action 

8 Confirm your settings by clicking OK. 
Result: 
The dialog box closes and the Add New Mask dialog box opens. 

 

9 Under Name, enter the name of the first DataMask. You can retain the 
other settings. This mask is automatically the active mask when launching 
the HMI. 

10 Confirm by clicking OK. 
 

Result: A project has now been created. 
 

In order to be able to transfer the IOP files created with JetViewSoft to the 
HMI, the required deployment settings need to be made: 
 

Step Action 

1 Open the menu item Project and select the entry Properties. 
Result: 
A dialog box with the same name opens. 

2 Open the Deployment pane from the navigation panel on the left-hand 
side of the dialog box. 

 

3 Under Deployment Target (right at the top of the dialog box), select FTP. 

4 Click on the + sign next to Target to expand the settings. 

5 Under Host Name/IP, enter the IP address for the HMI. The default IP 
address for a JVM-407 is 192.168.10.15. 

6 Confirm your settings by clicking OK. 
 

Result: The Deployment settings have now been made and the IOP files can 
now be transferred to the HMI. 
 

The IOP files are created and transferred from a JetViewSoft project as 
follows: 

Configuring Deployment 

IOP Files 



 

Jetter AG 85 
 

JVM-407 Initial Commissioning 

 

Step Action 

1 Open the menu item File and select the entry Save all. 

2 Press the F7 key for a project build. 
Result: 
The IOP files are created as long as no errors have occurred. 

3 Open the menu item Build and select the entry Deploy. 
Result: 
The IOP files are transferred to the HMI as long as no errors have 
occurred. 

4 Restart the HMI so that the IOP files can be imported 
 

Result: The IOP files are now displayed on the device. 
 
 



 

86 Jetter AG 
 

5  Initial Commissioning 

Initial Commissioning in JetSym 

The STX program for the visualization of the HMI JVM-407 is created with 
JetSym. The following is detailed here: 
 

 Creating a project in JetSym 
 Configuring the Hardware 
 Including the JetViewSoft .iop.h file 
 Including the ISO Library 
 Creating a program that can be compiled and transferred to the HMI 
 

The following requirements must be satisfied: 
 

 JetSym is installed on the PC used. 
 JetSym has been licensed (see online help in JetSym). 
 An active Ethernet connection between the PC and the HMI is set up. 
 Initial commissioning in JetViewSoft has been completed. 
 

A new project for the programming is created in JetSym as follows: 
 

Step Action 

1 Start JetSym. 

2 Open the menu itemFile and select the entry New. 
Result: 
The dialog box New opens 

 

3 Select JetSym STX project as the project type. 

4 Enter the project name. 

5 Confirm your settings by clicking OK. 
 

Result: A project has now been created. 
 

Introduction 

Prerequisites 

Creating a Project 



 

Jetter AG 87 
 

JVM-407 Initial Commissioning 

To establish a connection between JetSym and the HMI, you need to 
configure the hardware as follows: 
 

Step Action 

1 Switch to the Hardware view by clicking on the tab with the same name. 

 

2 Fully expand the Hardware tree. 

3 Double-click on CPU, if the HMI JVM-407 is not set as the hardware. 
Result: 
The Configuration pane opens. 

 

4 Under Controller/Type, select JVM-407. 

5 Under Interface/IP address, enter the IP address for the HMI. The 
default IP address for a JVM-407 is 192.168.10.15. 

6 Test the connection by clicking on the Test button. If this is unsuccessful, 
check the IP address and the Ethernet connection for the JVM-407. 

7 Save your settings using the shortcut Ctrl + S. 
 

Result: The hardware settings are now configured in JetSym. 
 

In order for the description of the ISO objects and masks for visualization to be 

Configuring the 
Hardware 

Header File .iop.h 



 

88 Jetter AG 
 

5  Initial Commissioning 

available for programming, the .iop.h file must be included as follows: 
 

Step Action 

1 Switch to Files view. 

 

2 Expand the Program folder. 

3 Click on the Include folder and open the context menu (right-click with the 
mouse). 

4 Select the context menu entry Add Files to Directory. 
Result: 
An Explorer window opens, which can be used to select a file. 

5 Navigate to the Output folder for the JetViewSoft project. The default 
location for this is under Own Files/JetViewSoft Projects/Name of JVS 
project/Output. 

6 Select file type All Files (*.*). 

7 Select the .iop.h file. 

8 Click the Open button. 

 
 

Result: The .iop.h file is now included in the JetSym project. 
 



 

Jetter AG 89 
 

JVM-407 Initial Commissioning 

In order for the ISO library with the ISO functions to be available in JetSym, it 
must be included as follows: 
 

Step Action 

1 Open the menu item Tools and select the entry Library Manager. 
Result: 
A dialog box with the same name opens. 

 
2 Click the Add button. 

Result: 
An Explorer window opens in the Lib folder of the JetSym installation. 

3 Select ISO_Library_1.0.0.0.libpackage. 

4 Click the Open button. 
Result: 
The libpackage file is included in Library Manager and can now be 
included in the JetSym project. 

5 Switch to Files view. 

 

6 Select the Library folder and open the context menu by right-clicking with 
the mouse. 

Including the ISO library 



 

90 Jetter AG 
 

5  Initial Commissioning 

Step Action 

7 Select the option Add Libraries. 
Result: 
The Library Manager opens. 

8 Select the libpackage file and click on the Use button. 

 
 

Result: The file is now included in the project. 
 



 

Jetter AG 91 
 

JVM-407 Initial Commissioning 

 

A compilable program is created and compiled as follows: 
 

Step Action 

1 Switch to Files view. 

 

2 Double-click on the program file (in this example 
JS_Sample_Project_JVM407_Manual.stxp). The program file has the 
same name as the project, plus the extension stxp. 
Result: 
The program file opens in JetSym-Editor. 

3 Enter the following program code. The .iop.h file has the same name as 
the project, plus the extension iop.h. 
Please note this for the Include instruction. 
#Include "JVS_Sample_Project_JVM407_Manual.iop.h"; 
Task Main Autorun 
End_Task; 

4 Press the F7 key to trigger a project build. 
Result: 
The ISO functions and the IOP header file are now available for 
programming. 

 

Result:  
The program can now be enhanced. In IntelliSense (Ctrl + Space Bar), the 
ISO functions and the information from the IOP header file are now available. 
You can use the shortcut Ctrl+F5 to transfer the program to the HMI . 
However, it has no function as yet. 
 

 
 Initial Commissioning in JetViewSoft on page 83 

 
 

Creating a Compilable 
Program. 

Related Topics: 





 

Jetter AG 93 
 

JVM-407 CANopen® STX API 

6 CANopen® STX API 

This chapter describes the STX functions of the CANopen® STX API. 
 

CANopen® is an open standard for networking and communication in the 
automobile sector, for example. 
The CANopen® protocol has been further developed by the CiA e.V. (CAN in 
Automation) and works on the physical layer with CAN Highspeed in 
accordance with ISO 11898. 
 

These STX functions are used in communication between the controller 
JVM-407 and e.g. the peripheral modules JXM-IO-E02, JXM-IO-E09, 
JXM-IO-E10, JXM-IO-E11 and JXM-MUX. 
 

The CANopen® specifications can be obtained from the CiA e.V. 
http://www.can-cia.org homepage. The key specification documents are: 
 

 CiA DS 301 - This document is also known as the communication profile 
and describes the fundamental services and protocols used under 
CANopen®. 

 CiA DS 302 - Framework for programmable devices (CANopen® Manager, 
SDO Manager) 

 CiA DR 303 - Information on cables and connectors 
 CiA DS 4xx - These documents describe the behavior of a number of 

device classes in, what are known as, device profiles. 
 

 

Topic Page 
STX Function CanOpenInit ........................................................................... 94 
STX Function CanOpenSetCommand ......................................................... 96 
STX Function CanOpenUploadSDO ............................................................ 98 
STX Function CanOpenDownloadSDO ..................................................... 103 
STX Function CanOpenAddPDORx ........................................................... 108 
STX Function CanOpenAddPDOTx ............................................................ 114 
CANopen® Object Directory for JVM-407 .................................................. 120 

 
 
 

Introduction 

The CANopen® Standard 

Application 

Documentation 

Contents 

http://www.can-cia.org/


 

94 Jetter AG 
 

6  CANopen® STX API 

STX Function CanOpenInit 

Calling up the CanOpenInit () function initializes one of the CAN busses. The 
JVM-407 then automatically sends the heartbeat message every second with 
the following communication object identifier (COB-ID): Node ID + 0x700 
 

Function CanOpenInit ( 

    CANNo:Int, 

    NodeID:Int, 

    const ref SWVersion:String, 

) :Int; 

 

The CanOpenInit () function has the following parameters. 
 

Parameter Description Value 

CANNo CAN channel number 0 ... CANMAX 

NodeID Own Node ID 1 ... 127 

SWVersion Reference to own software 
version 
This software version is entered 
into the index 0x100A in the 
object directory. 

String up to 255 
characters 

 

The function transfers the following return values to the higher-level program. 
 

Return Value 

0 ok 

-1 Error when checking parameters 

-3 Initialization has not worked 

 

The value of the CANMAX parameter depends on the device. The following 
table provides information on this point. 
 

Device CANMAX 

JVM-407 2 

BTM 07 2 

BTM 012 1 - 2 

BTM 011 0 

JCM-350 4 

JCM-620 2 
 

 

 

Introduction 

Function Declaration 

Function Parameters 

Return Value 

Parameter CANNo 



 

Jetter AG 95 
 

JVM-407 CANopen® STX API 

 

Initializing the CAN bus 0. The JVM-407 has node ID 20 (0x14). 
 
Result := CanOpenInit(0, 20, 'Version: 01.00.0.00'); 

 

During initialization, the JVM-407 processes the following process steps:  
 

Stage Description 

1 First, the bootup message is sent as a heartbeat message. 

2 As soon as the JVM-407 goes into Pre-operational status, it sends the 
Pre-operational heartbeat message. 

 

The Object Directory can only be accessed via SDO, if the JVM-407 is in 
"Pre-operational" status. 
 

 

After initialization, NMT messages can be sent and received. The own 
heartbeat status can be changed with the "CanOpenSetCommand" function. 
 

 
 STX Function CanOpenSetCommand on page 96 

 
 

Using this Function 

How it Works 

Access to the Object 
Directory 

NMT Messages 

Related Topics: 



 

96 Jetter AG 
 

6  CANopen® STX API 

STX Function CanOpenSetCommand 

By calling up the CanOpenSetCommand () function, the own heartbeat status 
and the heartbeat status for all other devices (NMT slaves) can be changed on 
the CAN bus. 
 

Function CanOpenSetCommand ( 

    CANNo:Int, 

    iType:Int, 

    Value:Int, 

) :Int; 

 

The CanOpenSetCommand () function has the following parameters. 
 

Parameter Description Value 

CANNo CAN channel number 0 ... CANMAX 

iType Command selection CAN_CMD_HEARTBEAT: 
Only the own heartbeat 
status is changed. 
CAN_CMD_NMT: 
The heartbeat status is 
changed for all other devices 
or for a specific device on 
the CAN bus. 

Value Selection of the heartbeat status for command 
CAN_CMD_HEARTBEAT: 
CAN_HEARTBEAT_STOPPED (0x04) 
CAN_HEARTBEAT_OPERATIONAL (0x05) 
CAN_HEARTBEAT_PREOPERATIONAL (0x7F) 
 
Selection of the heartbeat status for command 
CAN_CMD_NMT (NMT master): 
CAN_NMT_OPERATIONAL (0x01) or CAN_NMT_START 
(0x01) 
CAN_NMT_STOP (0x02) 
CAN_NMT_PREOPERATIONAL (0x80) 
CAN_NMT_RESET (0x81) 
CAN_NMT_RESETCOMMUNICATION (0x82) 

 

The command CAN_CMD_NMT is selected via the macro function 
CAN_CMD_NMT_Value (NodeID, CAN_CMD_NMT).  
Values from 0 to 127 are permitted for the node ID parameter. 1 to 127 is the 
node ID for a specific device. If the command should be sent to all devices on 
the CAN bus, the parameter CAN_CMD_NMT_ALLNODES (0) is used. 
 

Introduction 

Function Declaration 

Function Parameters 

Note 



 

Jetter AG 97 
 

JVM-407 CANopen® STX API 

 

The value of the CANMAX parameter depends on the device. The following 
table provides information on this point. 
 

Device CANMAX 

JVM-407 2 

BTM 07 2 

BTM 012 1 - 2 

BTM 011 0 

JCM-350 4 

JCM-620 2 
 

 

 

The function transfers the following return values to the higher-level program. 
 

Return Value 

0 ok 

-1 Error when checking parameters 
Command not known 

 

The own heartbeat status should be set to Operational. 
 
Result := CanOpenSetCommand(0, CAN_CMD_HEARTBEAT, 
CAN_HEARTBEAT_OPERATIONAL); 

 

The own heartbeat status and the status of all other devices on the CAN bus 
should be set to Operational. 
 
Result := CanOpenSetCommand(0, 
CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES, CAN_CMD_NMT), 
CAN_NMT_OPERATIONAL); 

 

The heartbeat status of the device with the node ID 60 (0x3C) should be set to 
Operational. 
 
Result := CanOpenSetCommand(0, CAN_CMD_NMT_Value(60, CAN_CMD_NMT), 
CAN_NMT_OPERATIONAL); 

 
 

Parameter CANNo 

Return Value 

Using the Function 
(Example 1) 

Using the Function 
(Example 2) 

Using the Function 
(Example 3) 



 

98 Jetter AG 
 

6  CANopen® STX API 

STX Function CanOpenUploadSDO 

Calling up the CanOpenUploadSDO () function is aimed at accessing a 
particular object in the Object Directory of the message recipient and the value 
of the object is read. Data is exchanged in accordance with the SDO upload 
protocol. Supported transfer types are "segmented" (more than 4 data bytes) 
and "expedited" (up to 4 data bytes). 
 

Function CanOpenUploadSDO ( 

    CANNo:Int, 

    NodeID:Int, 

    wIndex:Word, 

    SubIndex:Byte, 

    DataType:Int, 

    DataLength:Int, 

    const ref DataAddr, 

    ref Busy: Int, 

) :Int; 

 

The CanOpenUploadSDO () function has the following parameters. 
 

Parameter Description Value 

CANNo CAN channel number 0 ... CANMAX 

NodeID Node ID of the message 
recipient 

1 ... 127 

wIndex Index number of the object 0 ... 0xFFFF 

SubIndex Sub-index number of the object 0 ... 255 

DataType Type of object to be received 2 ... 27 

DataLength Volume of data for the global 
variable DataAddr 

 

DataAddr Global variable into which the 
received value is to be entered 

 

Busy Status of the SDO transmission  

 

The function transfers the following return values to the higher-level program. 
 

Return Value 

0 ok 

-1 Error when checking parameters 

-2 Controller in Stop status 

-3 DataType is greater than DataLength 

-4 insufficient memory 

 

Introduction 

Function Declaration 

Function Parameters 

Return Value 



 

Jetter AG 99 
 

JVM-407 CANopen® STX API 

 

The value of the CANMAX parameter depends on the device. The following 
table provides information on this point. 
 

Device CANMAX 

JVM-407 2 

BTM 07 2 

BTM 012 1 - 2 

BTM 011 0 

JCM-350 4 

JCM-620 2 
 

 

 

The following data types can be received. 
 

Byte types CANopen® format Jetter format 

1 CANOPEN_INTEGER8 
CANOPEN_UNSIGNED8 

Byte 

2 CANOPEN_INTEGER16 
CANOPEN_UNSIGNED16 

Word 

3 CANOPEN_INTEGER24 
CANOPEN_UNSIGNED24 

- 

4 CANOPEN_INTEGER32 
CANOPEN_UNSIGNED32 
CANOPEN_REAL 

Int 

5 CANOPEN_INTEGER40 
CANOPEN_UNSIGNED40 

- 

6 CANOPEN_INTEGER48 
CANOPEN_UNSIGNED48 
CANOPEN_TIME_OF_DAY 
CANOPEN_TIME_DIFFERENCE 

- 

7 CANOPEN_INTEGER56 
CANOPEN_UNSIGNED46 

- 

8 CANOPEN_INTEGER64 
CANOPEN_UNSIGNED64 
CANOPEN_REAL64 

- 

n CANOPEN_VISIBLE_STRING 
CANOPEN_OCTET_STRING 
CANOPEN_UNICODE_STRING 
CANOPEN_DOMAIN 

String 

 

 

 

After calling up the function, the Busy parameter is set to 
SDOACCESS_INUSE.  With an error in transmission, Busy is set to 
SDOACCESS_ERROR. With a successful transmission, the number of bytes 
transmitted is returned. 

Parameter CANNo 

Parameter DataType 

Busy 



 

100 Jetter AG 
 

6  CANopen® STX API 

 

With an error in transmission, Busy returns an error code. The following error 
codes are available: 
 
SDOACCESS_STILLUSED 
Another task is communicating with the same node ID. 
 
SDOACCESS_TIMEOUT 
The task has been timed out because the device with the given node ID is not 
responding. 
If the specified device does not respond within 1 second, the timeout code is 
set 
 
SDOACCESS_ILLCMD 
The response to the request is invalid. 
 
SDOACCESS_ABORT 
The device with the node ID was aborted. 
 
SDOACCESS_SYSERROR 
General internal error 
 

The following macros have been defined in connection with this function: 
 
SDOACCESS_FINISHED (busy) 
This macro checks whether communication has finished. 
 
SDOACCESS_ERROR (busy) 
This macro checks whether an error has occurred. 
 

Result := CanOpenUploadSDO ( 

    0, 

    66, 

    0x100A, 

    0, 

    CANOPEN_STRING, 

    sizeof(var_Versionstring), 

    var_Versionstring, 

    busy); 

 

"Busy" Error Codes 

Macro Definitions 

Using this Function 



 

Jetter AG 101 
 

JVM-407 CANopen® STX API 

 

In the following example, the manufacturer's software version is read from the 
CANopen® Object Directory of the device with the addressed node ID. 
 
#Include "CanOpen.stxp" 

 

Const 

    // CAN no. 
    CAN_CONTROLLER_0 = 0; 

    // Node ID Node_1 
    NodeID_Node_0 = 10; 

    // Node ID node 2 
    NodeID_Node_1 = 66; 

End_Const; 

 

Var 

    busy: Int; 

    Versionstring: String; 

    Objectindex: Word; 

    Subindex: Byte; 

End_Var; 

 

 

Task main autorun 

 

Var 

    SW_Version: String; 

End_Var; 

 

SW_Version := 'v4.3.0.2004'; 

 

// Initialization CAN 0 
CanOpenInit(CAN_CONTROLLER_0, NodeID_Node_0, SW_Version); 

 

// All devices on the CAN bus have the status of PREOPERATIONAL 
 

// Request manufacturer's software version per SDO 
Objectindex := 0x100A; 

Subindex := 0; 

CanOpenUploadSDO(CAN_CONTROLLER_0, NodeID_Node_1, Objectindex, 
Subindex, CANOPEN_STRING, sizeof(Versionstring), Versionstring, 
busy); 

 

When SDOACCESS_FINISHED(busy) Continue; 

 

If (SDOACCESS_ERROR(busy)) Then 

// Troubleshooting 
 

End_If; 

 

//      ... 
//      ... 

JetSym STX Program 



 

102 Jetter AG 
 

6  CANopen® STX API 

//      ... 
 

End_Task; 

 
 



 

Jetter AG 103 
 

JVM-407 CANopen® STX API 

STX Function CanOpenDownloadSDO 

Calling up the CanOpenDownloadSDO () function is aimed at accessing a 
particular object in the Object Directory of the message recipient and the value 
of the object is specified. Data is exchanged in accordance with the SDO 
download protocol. Supported transfer types are "segmented" or "block" (more 
than 4 data bytes) and "expedited" (up to 4 data bytes). 
 

Function CanOpenDownloadSDO ( 

    CANNo:Int, 

    NodeID:Int, 

    wIndex:Word, 

    SubIndex:Byte, 

    DataType:Int, 

    DataLength:Int, 

    const ref DataAddr, 

    ref Busy: Int, 

) :Int; 

 

The CanOpenDownloadSDO () function has the following parameters. 
 

Parameter Description Value 

CANNo CAN channel number 0 ... CANMAX 

NodeID Node ID of the message 
recipient 

1 ... 127 

wIndex Index number of the object 0 ... 0xFFFF 

SubIndex Sub-index number of the object 0 ... 255 

DataType Type of object to be sent 2 ... 27 

DataLength Volume of data for the global 
variable DataAddr 

 

DataAddr Global variable into which the 
sent value is to be entered 

 

Busy Status of the SDO transmission  

 

The function transfers the following return values to the higher-level program. 
 

Return Value 

0 ok 

-1 Error when checking parameters 

-2 HMI in Stop status (own heartbeat status) 

-3 DataType is greater than DataLength 

-4 insufficient memory 

 

Introduction 

Function Declaration 

Function Parameters 

Return Value 



 

104 Jetter AG 
 

6  CANopen® STX API 

 

The value of the CANMAX parameter depends on the device. The following 
table provides information on this point. 
 

Device CANMAX 

JVM-407 2 

BTM 07 2 

BTM 012 1 - 2 

BTM 011 0 

JCM-350 4 

JCM-620 2 
 

 

 

The following data types can be received. 
 

Byte types CANopen® format Jetter format 

1 CANOPEN_INTEGER8 
CANOPEN_UNSIGNED8 

Byte 

2 CANOPEN_INTEGER16 
CANOPEN_UNSIGNED16 

Word 

3 CANOPEN_INTEGER24 
CANOPEN_UNSIGNED24 

- 

4 CANOPEN_INTEGER32 
CANOPEN_UNSIGNED32 
CANOPEN_REAL 

Int 

5 CANOPEN_INTEGER40 
CANOPEN_UNSIGNED40 

- 

6 CANOPEN_INTEGER48 
CANOPEN_UNSIGNED48 
CANOPEN_TIME_OF_DAY 
CANOPEN_TIME_DIFFERENCE 

- 

7 CANOPEN_INTEGER56 
CANOPEN_UNSIGNED46 

- 

8 CANOPEN_INTEGER64 
CANOPEN_UNSIGNED64 
CANOPEN_REAL64 

- 

n CANOPEN_VISIBLE_STRING 
CANOPEN_OCTET_STRING 
CANOPEN_UNICODE_STRING 
CANOPEN_DOMAIN 

String 

 

 

 

After calling up the function, the Busy parameter is set to 
SDOACCESS_INUSE.  With an error in transmission, Busy is set to 
SDOACCESS_ERROR. With a successful transmission, the number of bytes 
transmitted is returned. 

Parameter CANNo 

Parameter DataType 

Busy 



 

Jetter AG 105 
 

JVM-407 CANopen® STX API 

 

With an error in transmission, Busy returns an error code. The following error 
codes are available: 
 
SDOACCESS_STILLUSED 
Another task is communicating with the same node ID. 
 
SDOACCESS_TIMEOUT 
The task has been timed out because the device with the node ID is not 
responding. 
If the specified node ID does not respond within 1 second, the timeout code is 
set 
 
SDOACCESS_ILLCMD 
The response to the request is invalid. 
 
SDOACCESS_ABORT 
The device with the node ID was aborted. 
 
SDOACCESS_BLKSIZEINV 
Communication error with Block Download 
 
SDOACCESS_SYSERROR 
General internal error 
 

The following macros have been defined in connection with this function: 
 
SDOACCESS_FINISHED (busy) 
This macro checks whether communication has finished. 
 
SDOACCESS_ERROR (busy) 
This macro checks whether an error has occurred. 
 

Result := CanOpenDownloadSDO ( 

    0, 

    68, 

    0x1017, 

    0, 

    CANOPEN_WORD, 

    sizeof(var_Heartbeat_time), 

    var_Heartbeat_time, 

    busy); 

 

"Busy" Error Codes 

Macro Definitions 

Using this Function 



 

106 Jetter AG 
 

6  CANopen® STX API 

 

In the following example, the heartbeat time is entered in the CANopen® 
Object Directory of the device with the addressed node ID. 
 
#Include "CanOpen.stxp" 

 

Const 

    // CAN no. 
    CAN_CONTROLLER_0 = 0; 

    // Node ID Node_1 
    NodeID_Node_0 = 10; 

    // Node ID Node 2 
    NodeID_Node_1 = 68; 

End_Const; 

 

Var 

    busy: Int; 

    Heartbeat_time: Int; 

    Objectindex: Word; 

    Subindex: Byte; 

End_Var; 

 

 

Task main autorun 

 

Var 

    SW_Version: String; 

End_Var; 

 

SW_Version := 'v4.3.0.2004'; 

 

// Initialization CAN 0 
CanOpenInit(CAN_CONTROLLER_0, NodeID_Node_0, SW_Version); 

 

// Set device with the node ID NodeID_Node_1 on the CAN bus to 
PREOPERATIONAL status 
CanOpenSetCommand(0, CAN_CMD_NMT_Value(NodeID_Node_1, 
CAN_CMD_NMT), CAN_NMT_PREOPERATIONAL); 

 

// Change heartbeat time of the addressed device per SDO 
Objectindex := 0x1017; 

Subindex := 0; 

CanOpenDownloadSDO(CAN_CONTROLLER_0, NodeID_Node_1, Objectindex, 
Subindex, CANOPEN_WORD, sizeof(Heartbeat_time), Heartbeat_time, 
busy); 

 

When SDOACCESS_FINISHED(busy) Continue; 

 

If (SDOACCESS_ERROR(busy)) Then 

// Troubleshooting 
 

End_If; 

JetSym STX Program 



 

Jetter AG 107 
 

JVM-407 CANopen® STX API 

 

// Reset all devices on the CAN bus to OPERATIONAL status 
CanOpenSetCommand(CAN_CONTROLLER_0, 
CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES, CAN_CMD_NMT), 
CAN_NMT_OPERATIONAL); 

 

//      ... 
//      ... 
//      ... 
 

End_Task; 

 
 



 

108 Jetter AG 
 

6  CANopen® STX API 

STX Function CanOpenAddPDORx 

By calling up the CanOpenAddPDORx () function, process data, sent by other 
CANopen® devices, can be entered on receipt. 
Process data are only received if sent by a CANopen® device. 
 

 

 The PDO telegram is, however, only then transmitted if the CANopen® 
devices on the bus have a status of "Operational". 

 The smallest time unit for the Event Time is 1 ms. 
 The smallest time unit for the Inhibit Time is 1 ms. 

 

 

Function CanOpenAddPDORx ( 

    CANNo:Int, 

    CANID:Int, 

    BytePos:Int, 

    DataType:Int, 

    DataLength:Int, 

    const ref VarAddr, 

    EventTime: Int, 

    InhibitTime: Int, 

    Paramset: Int, 

) :Int; 

 

The CanOpenAddPDORx () function has the following parameters. 
 

Parameter Description Value 

CANNo CAN channel number 0 ... CANMAX 

CANID CAN identifier 11-bit 
CAN identifier 29-bit 

0 ... 0x7FF 
0 ... 0x1FFFFFFF 

BytePos Starting position of data to be 
received 

0 ... 7 

DataType Data type of data to be received 2 ... 13, 15 ... 27 

DataLength Volume of data for the global 
variable VarAddr 

 

VarAddr Global variable into which the 
received value is entered 

 

EventTime Time lag between two telegrams 
(> Inhibit Time) 

 

InhibitTime Minimum time lag between two 
telegrams received (< 
EventTime) 

 

Paramset Parameter bit-coded  

 

Introduction 

Notes 
 

Function Declaration 

Function Parameters 



 

Jetter AG 109 
 

JVM-407 CANopen® STX API 

 

The function transfers the following return values to the higher-level program. 
 

Return Value 

0 ok 

-1 Error when checking parameters 

-3 DataType is greater than DataLength 

-4 insufficient memory 

 

The value of the CANMAX parameter depends on the device. The following 
table provides information on this point. 
 

Device CANMAX 

JVM-407 2 

BTM 07 2 

BTM 012 1 - 2 

BTM 011 0 

JCM-350 4 

JCM-620 2 
 

 

 

The CANID parameter is used to transfer the CAN identifier. The CAN 
identifier is generated with a macro. The CAN identifier depends on the node 
ID of the other communicating user and on whether it is a PDO1, PDO2, 
PDO3 or PDO4 message. 
 
Macro definitions: 
#Define CANOPEN_PDO1_RX (NodeID)    ((NodeID) + 0x180) 
#Define CANOPEN_PDO2_RX (NodeID)    ((NodeID) + 0x280) 
#Define CANOPEN_PDO3_RX (NodeID)    ((NodeID) + 0x380) 
#Define CANOPEN_PDO4_RX (NodeID)    ((NodeID) + 0x480) 
 
#Define CANOPEN_PDO1_TX (NodeID)    ((NodeID) + 0x200) 
#Define CANOPEN_PDO2_TX (NodeID)    ((NodeID) + 0x300) 
#Define CANOPEN_PDO3_TX (NodeID)    ((NodeID) + 0x400) 
#Define CANOPEN_PDO4_TX (NodeID)    ((NodeID) + 0x500) 
 
Example for calling up the macro: 
CANOPEN_PDO2_RX (64) 
 The resulting CAN identifier is: 2C0h = 40h + 280h 

 

For CANopen® the following CAN identifier distribution is predefined. In this 
case, the node number is embedded in the identifier. 
 

Return Value 

Parameter CANNo 

Parameter CANID 

Default CAN Identifier 
Distribution 



 

110 Jetter AG 
 

6  CANopen® STX API 

11-bit identifier 
(binary) 

Identifier 
(decimal) 

Identifier 
(hexadecimal 

Function 

000000000000 0 0 Network Management 

000100000000 128 80h Synchronization 

0001xxxxxxxx 129 - 255 81h - FFh Emergency 

0011xxxxxxxx 385 - 511 181h - 1FFh PDO1 (tx) 

0100xxxxxxxx 513 - 639 201h - 27Fh PDO1 (rx) 

0101xxxxxxxx 641 - 767 281h - 2FFh PDO2 (tx) 

0110xxxxxxxx 769 - 895 301h - 37Fh PDO2 (rx) 

0111xxxxxxxx 897 - 1023 381h - 3FFh PDO3 (tx) 

1000xxxxxxxx 1025 - 1151 401h -47Fh PDO3 (rx) 

1001xxxxxxxx 1153 - 1279 481h - 4FFh PDO4 (tx) 

1010xxxxxxxx 1281 - 1407 501h - 57Fh PDO4 (rx) 

1011xxxxxxxx 1409 - 1535 581h - 5FFh Send SDO 

1100xxxxxxxx 1537 - 1663 601h - 67Fh Receive SDO 

1110xxxxxxxx 1793 - 1919 701h - 77Fh NMT Error Control 

xxxxxxxx = Node number 1 - 127 
 

 
 

The following data types can be received. 
 

Byte types CANopen® format Jetter format 

1 CANOPEN_INTEGER8 
CANOPEN_UNSIGNED8 

Byte 

2 CANOPEN_INTEGER16 
CANOPEN_UNSIGNED16 

Word 

3 CANOPEN_INTEGER24 
CANOPEN_UNSIGNED24 

- 

4 CANOPEN_INTEGER32 
CANOPEN_UNSIGNED32 
CANOPEN_REAL 

Int 

5 CANOPEN_INTEGER40 
CANOPEN_UNSIGNED40 

- 

6 CANOPEN_INTEGER48 
CANOPEN_UNSIGNED48 
CANOPEN_TIME_OF_DAY 
CANOPEN_TIME_DIFFERENCE 

- 

7 CANOPEN_INTEGER56 
CANOPEN_UNSIGNED46 

- 

Parameter DataType 



 

Jetter AG 111 
 

JVM-407 CANopen® STX API 

Byte types CANopen® format Jetter format 

1 CANOPEN_INTEGER8 
CANOPEN_UNSIGNED8 

Byte 

8 CANOPEN_INTEGER64 
CANOPEN_UNSIGNED64 
CANOPEN_REAL64 

- 

n CANOPEN_VISIBLE_STRING 
CANOPEN_OCTET_STRING 
CANOPEN_UNICODE_STRING 
CANOPEN_DOMAIN 

String 

 

 

 

The following parameters can be transferred to the function. Several 
parameters can be linked together using the Or function. 
 
CANOPEN_ASYNCPDORTRONLY 
Receive asynchronous PDOs by sending an RTR frame (after expired 
EventTime) to the sender. 
 
CANOPEN_ASYNCPDO 
Receive asynchronous PDOs. 
 
CANOPEN_PDOINVALID 
PDO not received. Disk space is reserved. 
 
CANOPEN_NORTR 
PDO cannot be requested by RTR (Remote Request). 
 
CANOPEN_29BIT 
Use 29-bit identifier 
Default: 11-bit identifier 
 

Result := CanOpenAddPDORx ( 

    0, 

    662, 

    0, 

    CANOPEN_DWORD, 

    sizeof(var_Data_1_of_Node_1), 

    var_Data_1_of_Node_1, 

    1000, 

    10, 

    CANOPEN_ASYNCPDO | CANOPEN_NORTR); 

 

Parameter Paramset 

Using this Function 



 

112 Jetter AG 
 

6  CANopen® STX API 

 

JVM-407 with node ID 10 wants to receive a PDO from two CANopen® 
devices with node ID 64 and 102. The function CanOpenAddPDORx () is 
called up for this purpose. After running the program, the JVM-407 receives 
the cyclic PDO telegrams. 
 

120 Ohm 120 Ohm

JVM-407

NodeID_Node_0 NodeID_Node_1NodeID_Node_2

JXM-IO-E02

CAN-Bus

CAN 0

JXM-IO-E09

 
 
#Include "CanOpen.stxp" 

 

Const 

    // CAN no. 
    CAN_CONTROLLER_0 = 0; 

    // Node ID Node_1 
    NodeID_Node_0 = 10; 

    // Node ID Node 2 
    NodeID_Node_1 = 64; 

    // Node ID Node 3 
    NodeID_Node_2 = 102; 

    // Event_Time in ms 
    Event_Time = 1000; 

    // Inhibit time in ms 
    Inhibit_Time = 10; 

End_Const; 

 

Var 

    Data_1_of_Node_1: Int; 

    Data_2_of_Node_1: Int; 

    Data_1_of_Node_2: Int; 

End_Var; 

 

 

Task main autorun 

 

Var 

JetSym STX Program 



 

Jetter AG 113 
 

JVM-407 CANopen® STX API 

    SW_Version: String; 

End_Var; 

 

SW_Version := 'v4.3.0.2004'; 

 

// Initialization CAN 0 
CanOpenInit(CAN_CONTROLLER_0, NodeID_Node_0, SW_Version); 

 

// Enter process data on receipt 
CanOpenAddPDORx(CAN_CONTROLLER_0, 
CANOPEN_PDO2_RX(NodeID_Node_1), 0, CANOPEN_DWORD, 
sizeof(Data_1_of_Node_1), Data_1_of_Node_1, Event_Time, 
Inhibit_Time, CANOPEN_ASYNCPDORTRONLY | CANOPEN_NORTR); 

CanOpenAddPDORx(CAN_CONTROLLER_0, 
CANOPEN_PDO2_RX(NodeID_Node_1), 4, CANOPEN_DWORD, 
sizeof(Data_2_of_Node_1), Data_2_of_Node_1, Event_Time, 
Inhibit_Time, CANOPEN_ASYNCPDORTRONLY | CANOPEN_NORTR); 

CanOpenAddPDORx(CAN_CONTROLLER_0, 
CANOPEN_PDO3_RX(NodeID_Node_2), 0, CANOPEN_BYTE, 
sizeof(Data_1_of_Node_2), Data_1_of_Node_2, Event_Time, 
Inhibit_Time, CANOPEN_ASYNCPDO | CANOPEN_NORTR); 

 

// All devices on the CAN bus have the status of PREOPERATIONAL 
// Setting all devices on the CAN bus to OPERATIONAL status 
CanOpenSetCommand(CAN_CONTROLLER_0, 
CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES, CAN_CMD_NMT), 
CAN_NMT_START); 

 

//As from now, PDO telegrams will be transmitted. 
//      ... 
//      ... 
//      ... 
 

End_Task; 

 
 



 

114 Jetter AG 
 

6  CANopen® STX API 

STX Function CanOpenAddPDOTx 

By calling up the CanOpenAddPDOTx () function, process data can be 
deposited on the bus. 
However, that should not mean that other CANopen® devices on the bus can 
also read this process data. 
 

 

 The PDO telegram is, however, only then transmitted if the CANopen® 
devices on the bus have a status of "Operational". 

 As soon as there are any changes to the process data, another PDO 
telegram is transmitted immediately. 

 The smallest time unit for the Event Time is 1 ms. 
 The smallest time unit for the Inhibit Time is 1 ms. 
 Any unused bytes of a telegram are sent as null. 

 

 

Function CanOpenAddPDOTx ( 

    CANNo:Int, 

    CANID:Int, 

    BytePos:Int, 

    DataType:Int, 

    DataLength:Int, 

    const ref VarAddr, 

    EventTime: Int, 

    InhibitTime: Int, 

    Paramset: Int, 

) :Int; 

 

The CanOpenAddPDOTx () function has the following parameters. 
 

Parameter Description Value 

CANNo CAN channel number 0 ... CANMAX 

CANID CAN identifier 11-bit 
CAN identifier 29-bit 

0 ... 0x7FF 
0 ... 0x1FFFFFFF 

BytePos Starting position of data to be 
sent 

0 ... 7 

DataType Data type of data to be sent 2 ... 13, 15 ... 27 

DataLength Volume of data for the global 
variable VarAddr 

 

VarAddr Global variable into which the 
value to be sent is entered 

 

EventTime Time lag between two telegrams 
(> Inhibit Time) 

 

InhibitTime Minimum time lag between two 
telegrams sent (< EventTime) 

 

Paramset Parameter bit-coded  

 

Introduction 

Notes 
 

Function Declaration 

Function Parameters 



 

Jetter AG 115 
 

JVM-407 CANopen® STX API 

The function transfers the following return values to the higher-level program. 
 

Return Value 

0 ok 

-1 Error when checking parameters 

-3 DataType is greater than DataLength 

-4 insufficient memory 

 

The value of the CANMAX parameter depends on the device. The following 
table provides information on this point. 
 

Device CANMAX 

JVM-407 2 

BTM 07 2 

BTM 012 1 - 2 

BTM 011 0 

JCM-350 4 

JCM-620 2 
 

 

 

The CANID parameter is used to transfer the CAN identifier. The CAN 
identifier is generated with a macro. The CAN identifier depends on the node 
ID of the other communicating user and on whether it is a PDO1, PDO2, 
PDO3 or PDO4 message. 
 
Macro definitions: 
#Define CANOPEN_PDO1_RX (NodeID)    ((NodeID) + 0x180) 
#Define CANOPEN_PDO2_RX (NodeID)    ((NodeID) + 0x280) 
#Define CANOPEN_PDO3_RX (NodeID)    ((NodeID) + 0x380) 
#Define CANOPEN_PDO4_RX (NodeID)    ((NodeID) + 0x480) 
 
#Define CANOPEN_PDO1_TX (NodeID)    ((NodeID) + 0x200) 
#Define CANOPEN_PDO2_TX (NodeID)    ((NodeID) + 0x300) 
#Define CANOPEN_PDO3_TX (NodeID)    ((NodeID) + 0x400) 
#Define CANOPEN_PDO4_TX (NodeID)    ((NodeID) + 0x500) 
 
Example for calling up the macro: 
CANOPEN_PDO2_RX (64) 
 The resulting CAN identifier is: 2C0h = 40h + 280h 

 

For CANopen® the following CAN identifier distribution is predefined. In this 
case, the node number is embedded in the identifier. 
 

Return Value 

Parameter CANNo 

Parameter CANID 

Default CAN Identifier 
Distribution 



 

116 Jetter AG 
 

6  CANopen® STX API 

11-bit identifier 
(binary) 

Identifier 
(decimal) 

Identifier 
(hexadecimal 

Function 

000000000000 0 0 Network Management 

000100000000 128 80h Synchronization 

0001xxxxxxxx 129 - 255 81h - FFh Emergency 

0011xxxxxxxx 385 - 511 181h - 1FFh PDO1 (tx) 

0100xxxxxxxx 513 - 639 201h - 27Fh PDO1 (rx) 

0101xxxxxxxx 641 - 767 281h - 2FFh PDO2 (tx) 

0110xxxxxxxx 769 - 895 301h - 37Fh PDO2 (rx) 

0111xxxxxxxx 897 - 1023 381h - 3FFh PDO3 (tx) 

1000xxxxxxxx 1025 - 1151 401h -47Fh PDO3 (rx) 

1001xxxxxxxx 1153 - 1279 481h - 4FFh PDO4 (tx) 

1010xxxxxxxx 1281 - 1407 501h - 57Fh PDO4 (rx) 

1011xxxxxxxx 1409 - 1535 581h - 5FFh Send SDO 

1100xxxxxxxx 1537 - 1663 601h - 67Fh Receive SDO 

1110xxxxxxxx 1793 - 1919 701h - 77Fh NMT Error Control 

xxxxxxxx = Node number 1 - 127 
 

 
 

The following data types can be received. 
 

Byte types CANopen® format Jetter format 

1 CANOPEN_INTEGER8 
CANOPEN_UNSIGNED8 

Byte 

2 CANOPEN_INTEGER16 
CANOPEN_UNSIGNED16 

Word 

3 CANOPEN_INTEGER24 
CANOPEN_UNSIGNED24 

- 

4 CANOPEN_INTEGER32 
CANOPEN_UNSIGNED32 
CANOPEN_REAL 

Int 

5 CANOPEN_INTEGER40 
CANOPEN_UNSIGNED40 

- 

6 CANOPEN_INTEGER48 
CANOPEN_UNSIGNED48 
CANOPEN_TIME_OF_DAY 
CANOPEN_TIME_DIFFERENCE 

- 

7 CANOPEN_INTEGER56 
CANOPEN_UNSIGNED46 

- 

Parameter DataType 



 

Jetter AG 117 
 

JVM-407 CANopen® STX API 

Byte types CANopen® format Jetter format 

1 CANOPEN_INTEGER8 
CANOPEN_UNSIGNED8 

Byte 

8 CANOPEN_INTEGER64 
CANOPEN_UNSIGNED64 
CANOPEN_REAL64 

- 

n CANOPEN_VISIBLE_STRING 
CANOPEN_OCTET_STRING 
CANOPEN_UNICODE_STRING 
CANOPEN_DOMAIN 

String 

 

 

 

The following parameters can be transferred to the function. Several 
parameters can be linked together using the Or function. 
 
CANOPEN_ASYNCPDORTRONLY 
Send asynchronous PDOs by receiving an RTR frame. 
 
CANOPEN_ASYNCPDO 
Send asynchronous PDO. 
 
CANOPEN_PDOINVALID 
PDO not sent. 
 
CANOPEN_NORTR 
PDO cannot be requested by RTR (Remote Request). 
 
CANOPEN_29BIT 
Use 29-bit identifier 
Default: 11-bit identifier 
 

Result := CanOpenAddPDOTx ( 

    0, 

    842, 

    0, 

    CANOPEN_DWORD, 

    sizeof(var_Data_1_of_Node_3), 

    var_Data_1_of_Node_3, 

    1000, 

    100, 

    CANOPEN_ASYNCPDO | CANOPEN_NORTR); 

 

JVM-407 sends process data to two CANopen® devices with the node ID 74 
and 112. After running the program and for changes, the JVM-407 sends 
cyclic PDO telegrams every 3,000 ms (Event Time). As a maximum, the PDO 
telegram is sent every 10 ms (Inhibit Time). 

Parameter Paramset 

Using this Function 

JetSym STX Program 



 

118 Jetter AG 
 

6  CANopen® STX API 

 

120 Ohm 120 Ohm

JVM-407

NodeID_Node_0 NodeID_Node_1NodeID_Node_2

JXM-IO-E02

CAN-Bus

CAN 0

JXM-IO-E09

 
 
#Include "CanOpen.stxp" 

 

Const 

    // CAN no. 
    CAN_CONTROLLER_0 = 0; 

    // Node ID Node_1 
    NodeID_Node_0 = 10; 

    // Node ID Node 4 
    NodeID_Node_1 = 74; 

    // Node ID Node 5 
    NodeID_Node_2 = 112; 

    // Event_Time in ms 
    Event_Time = 3000; 

    // Inhibit time in ms 
    Inhibit_Time = 100; 

End_Const; 

 

Var 

    Data_1_of_Node_1: Int; 

    Data_2_of_Node_1: Int; 

    Data_1_of_Node_2: Byte; 

End_Var; 

 

 

Task main autorun 

 

Var 

    SW_Version: String; 

End_Var; 

 

SW_Version := 'v4.3.0.2004'; 



 

Jetter AG 119 
 

JVM-407 CANopen® STX API 

 

// Initialization CAN 0 
CanOpenInit(CAN_CONTROLLER_0, NodeID_Node_0, SW_Version); 

 

// Send data per PDO 
CanOpenAddPDOTx(CAN_CONTROLLER_0, 
CANOPEN_PDO2_TX(NodeID_Node_1), 0, CANOPEN_DWORD, 
sizeof(Data_1_of_Node_1), Data_1_of_Node_1 Event_Time, 
Inhibit_Time, CANOPEN_ASYNCPDORTRONLY | CANOPEN_NORTR); 

CanOpenAddPDOTx(CAN_CONTROLLER_0, 
CANOPEN_PDO2_TX(NodeID_Node_1), 4, CANOPEN_DWORD, 
sizeof(Data_2_of_Node_1), Data_2_of_Node_1, Event_Time, 
Inhibit_Time, CANOPEN_ASYNCPDORTRONLY | CANOPEN_NORTR); 

CanOpenAddPDOTx(CAN_CONTROLLER_0, 
CANOPEN_PDO3_TX(NodeID_Node_2), 0, CANOPEN_BYTE, 
sizeof(Data_1_of_Node_2), Data_1_of_Node_2, Event_Time, 
Inhibit_Time, CANOPEN_ASYNCPDO | CANOPEN_NORTR); 

 

// All devices on the CAN bus have the status of PREOPERATIONAL 
// Set all devices on the CAN bus to OPERATIONAL status 
CanOpenSetCommand(CAN_CONTROLLER_0, 
CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES, CAN_CMD_NMT), 
CAN_NMT_START); 

 

//As from now, PDO telegrams will be transmitted. 
//      ... 
//      ... 
//      ... 
 

End_Task; 

 
 



 

120 Jetter AG 
 

6  CANopen® STX API 

CANopen® Object Directory for JVM-407 

The following objects are supported by the operating system for JVM-407: 
 

Index 
(hex) 

Object 
(code) 

Object name Type Attribute 

1000 VAR Device Type Unsigned32 ro 

1001 VAR Error Register Unsigned8 ro 

1002 VAR Manufacturer Status Unsigned32 ro 

1003 ARRAY Pre-defined Error Field Unsigned32 ro 

1008 VAR Manufacturer Device Name String const 

1009 VAR Manufacturer Hardware Version String const 

100A VAR Manufacturer Software Version String const 

100B VAR Node ID Unsigned32 ro 

1017 VAR Producer Heartbeat Time Unsigned16 rw 

1018 RECORD Identity Identity ro 

1200 RECORD Server 1 - SDO Parameter SDO 
Parameter 

ro 

1201 RECORD Server 2 - SDO Parameter SDO 
Parameter 

rw 

1203 RECORD Server 3 - SDO Parameter SDO 
Parameter 

rw 

1203 RECORD Server 4 - SDO Parameter SDO 
Parameter 

rw 

 

The structure of the "Device Type Object" is shown in the following table. 
 

Index Sub-Index Default Description 

0x1000 0 0x0000012D Device Type (Read-Only) 

 

The structure of the "Error Register Object" is shown in the following table. 
 

Index Sub-Index Default Description 

0x1001 0 0 Error Register (Read-Only) 
 

This object implements the CANopen® Error Register functionality. 
 
Bit 0 – Generic Errors 
 
None of the other bits are currently in use. 
 

Supported Objects 

Device Type Object 
(Index 0x1000) 

Error Register Object 
(Index 0x1001) 



 

Jetter AG 121 
 

JVM-407 CANopen® STX API 

 

The structure of the "Pre-defined Error Field Object" is shown in the following 
table. 
 

Index Sub-Index Default Description 

0x1003 0 0 Number of errors entered in the Array's 
Standard Error Field 

 1 0 Most recent error 
0 indicates no error 

 2 ... 254 - Earlier Errors 
 

This object shows a history list of errors that have been detected by the 
JVM-407. The maximum length of the list is 254 errors. The list content is 
deleted on restart. 
 
Composition of the Standard Error Field 
2-byte LSB: Error Code 
2-byte MSB: Additional information 
 

The structure of the "Manufacturer Device Name Object" is shown in the 
following table. 
 

Index Sub-Index Default Description 

0x1008 0 JVM-407 Hardware name 

 

The structure of the "Manufacturer Hardware Version Object" is shown in the 
following table. 
 

Index Sub-Index Default Description 

0x1009 0  OS version of the device 

 

The structure of the "Manufacturer Software Version Object" is shown in the 
following table. 
 

Index Sub-Index Default Description 

0x100A 0  Software version of the application 
program that runs on the JVM-407 

 

The entry in this index is made via the parameter "SWVersion" of the STX 
function CanOpenInit (). 
 

The structure of the "Node ID Object" is shown in the following table. 
 

Index Sub-Index Default Description 

0x100B 0  Own Node ID 

 

Pre-defined Error Field 
Object (Index 0x1003) 

Manufacturer Device 
Name Object (Index 
0x1008) 

Manufacturer Hardware 
Version Object (Index 
0x1009) 

Manufacturer Software 
Version Object (Index 
0x100A) 

Node ID Object (Index 
0x100B) 



 

122 Jetter AG 
 

6  CANopen® STX API 

The structure of the "Producer Heartbeat Time Object" is shown in the 
following table. 
 

Index Sub-Index Default Description 

0x1017 0 1,000 [ms] Heartbeat time 

 
 

Producer Heartbeat Time 
Object (Index 0x1017) 



 

Jetter AG 123 
 

JVM-407 SAE J1939 STX API 

7 SAE J1939 STX API 

This chapter describes the STX functions of the SAE J1939 STX API. 
 

SAE J1939 is an open standard for networking and communication in the 
commercial vehicle sector. The focal point of the application is the networking 
of the power train and chassis. The J1939 protocol originates from the 
international Society of Automotive Engineers (SAE) and works on the 
physical layer with CAN high-speed according to ISO 11898. 
 

These STX functions are used in communication between the controller 
JVM-407 and other ECUs in the vehicle. As a rule, engine data e.g. rpm, 
speed or coolant temperature are read and displayed. 
 

The key SAE J1939 specifications are: 
 

 J1939-11 - Information on the physical layer 
 J1939-21 - Information on the data link layer 
 J1939-71 - Information on the application layer vehicles 
 J1939-73 - Information on the application layer range analysis 
 J1939-81 - Network management 
 

 

Topic Page 
Content of a J1939 Message ...................................................................... 124 
STX Function SAEJ1939Init ....................................................................... 126 
STX Function SAEJ1939SetSA .................................................................. 128 
STX Function SAEJ1939GetSA ................................................................. 129 
STX Function SAEJ1939AddRx ................................................................. 130 
STX Function SAEJ1939AddTx ................................................................. 134 
STX Function SAEJ1939RequestPGN ...................................................... 138 
STX Function SAEJ1939GetDM1 .............................................................. 141 
STX Function SAEJ1939GetDM2 .............................................................. 144 
STX Function SAEJ1939SetSPNConversion ............................................. 147 
STX Function SAEJ1939GetSPNConversion ............................................ 149 

 
 
 

Introduction 

The SAE J1939 Standard 

Application 

Documentation 

Contents 



 

124 Jetter AG 
 

7  SAE J1939 STX API 

Content of a J1939 Message 

The following diagram shows the content of a J1939 message: 

 
 

Abbreviation Description 

DA Destination Address 

GE Group Extensions 

PDU Protocol Data Unit 

PGN Parameter Group Number 

SA Source Address 
 

 

 

The PGN is a number defined in the SAE J1939 standard that groups together 
several SPNs into a meaningful group. The PGN is part of the CAN identifier. 
The 8-byte data (PDU) contain the values of individual SPNs. 
The example below shows a PGN 65262 (0xFEEE): 
 

PGN 65262                Engine Temperature 1                 - ET1 

Part of the PGN Value Remarks 

Transmission Repetition Rate 1 s  

Data Length 8  

Extended Data Page 0  

Data Page 0  

PDU Format 254  

PDU Specific 238 PGN Supporting Information 

Default Priority 6  

Parameter Group Number 65262 in hex: 0xFEEE 

 

Content of a J1939 
Message 

Meaning of the 
Parameter Group 
Number (PGN) 



 

Jetter AG 125 
 

JVM-407 SAE J1939 STX API 

 

 

Start position Length Parameter name SPN 

1 1 byte Engine Coolant Temperature 110 

2 1 byte Engine Fuel Temperature 1 174 

3 - 4 2 bytes Engine Oil Temperature 1 175 

5 - 6 2 bytes Engine Turbocharger Oil Temperature 176 

7 1 byte Engine Intercooler Temperature 52 

8 1 byte Engine Intercooler Thermostat Opening 1134 
 

 

 
 



 

126 Jetter AG 
 

7  SAE J1939 STX API 

STX Function SAEJ1939Init 

Calling up the SAEJ1939Init () function initializes one of the CAN busses (not 
CAN 0 as this is reserved for CANopen®) available for the J1939 protocol. 
From then on, the JVM-407 has the SA (Source Address) assigned by the 
function parameter mySA. It thus has its own device address on the bus. 
 

Function SAEJ1939Init ( 

    CANNo:Int, 

    mySA:Byte, 

) :Int; 

 

The function SAEJ1939Init () has the following parameters. 
 

Parameter Description Value 

CANNo CAN channel number 1 ... CANMAX 

mySA Own source address 0 ... 253 

 

This function transfers the following return values to the higher-level program. 
 

Return Value 

0 OK 

-1 Error when checking parameters 

-3 Insufficient memory for SAE J1939 

 

The value of the CANMAX parameter depends on the device. The following 
table provides information on this point. 
 

Device CANMAX 

JVM-407 2 

BTM 07 2 

BTM 012 1 - 2 

BTM 011 n/a 

JCM-350 4 

JCM-620 2 
 

 

 

Initializing the CAN-Bus 1. The JVM-407 has Node-SA 20 (0x14). 
The JVM-407 can now send messages with the set SA (and only these 
messages). 
 
Result := SAEJ1939Init(1, 20); 

 

Introduction 

Function Declaration 

Function Parameters 

Return Value 

Parameter CANNo 

Using this Function 



 

Jetter AG 127 
 

JVM-407 SAE J1939 STX API 

 

Address Claiming has not been implemented. 
 

 
 

Address Claiming 



 

128 Jetter AG 
 

7  SAE J1939 STX API 

STX Function SAEJ1939SetSA 

Calling up the function SAEJ1939SetSA changes the own SA (Source 
Address) during runtime. 
 

Function SAEJ1939SetSA ( 

    CANNo:Int, 

    mySA:Byte, 

) :Int; 

 

The function SAEJ1939SetSA () has the following parameters. 
 

Parameter Description Value 

CANNo CAN channel number 1 ... CANMAX 

mySA New SA 0 ... 253 

 

The function transfers the following return values to the higher-level program. 
 

Return Value 

0 ok 

-1 Error when checking parameters 
 

 

 

The value of the CANMAX parameter depends on the device. The following 
table provides information on this point. 
 

Device CANMAX 

JVM-407 2 

BTM 07 2 

BTM 012 1 - 2 

BTM 011 n/a 

JCM-350 4 

JCM-620 2 
 

 

 

The SA is changed during runtime. 
 

Result := SAEJ1939SetSA(1, 20); 

 

Messages are immediately sent/received with the new SA. 
 

 
 

Introduction 

Function Declaration 

Function Parameters 

Return Value 

Parameter CANNo 

Using this Function 

Important Note 



 

Jetter AG 129 
 

JVM-407 SAE J1939 STX API 

STX Function SAEJ1939GetSA 

By calling up the function SAEJ1939GetSA, you can determine the own SA 
(Source Address). 
 

Function SAEJ1939GetSA ( 

    CANNo:Int, 

    ref mySA:Byte, 

) :Int; 

 

The function SAEJ1939GetSA () has the following parameters. 
 

Parameter Description Value 

CANNo CAN channel number 1 ... CANMAX 

mySA SA currently set 0 ... 253 

 

The function transfers the following return values to the higher-level program. 
 

Return Value 

0 ok 

-1 Error when checking parameters 
 

 

 

The value of the CANMAX parameter depends on the device. The following 
table provides information on this point. 
 

Device CANMAX 

JVM-407 2 

BTM 07 2 

BTM 012 1 - 2 

BTM 011 n/a 

JCM-350 4 

JCM-620 2 
 

 

 

This function returns the currently set SA. 
 
Result := SAEJ1939SetSA(1, actual_SA); 

 
 

Introduction 

Function Declaration 

Function Parameters 

Return Value 

Parameter CANNo 

Using this Function 



 

130 Jetter AG 
 

7  SAE J1939 STX API 

STX Function SAEJ1939AddRx 

Calling up the function SAEJ1939AddRx () prompts the JVM-407 to receive a 
specific message. This message is sent from another bus node. The address 
of this bus node is transferred to this function as a bySA parameter. If the 
message is not sent, the value received last remains valid. Cyclical reading 
continues until the function SAEJ1939Init () is called up again. 
 

Function SAEJ1939AddRx ( 

    CANNo:Int, 

    IPGN:Long, 

    bySA:Byte, 

    BytePos:Int, 

    BitPos:Int, 

    DataType:Int, 

    DataLength:Int, 

    const ref VarAddr, 

    ref stJ1939:TJ1939Rx 

    EventTime: Int, 

    InhibitTime: Int, 

) :Int; 

 

The function SAEJ1939AddRx () has the following parameters. 
 

Parameter Description Value 

CANNo CAN channel number 1 ... CANMAX 

IPGN PGN 
Parameter Group Number 

0 ... 0x3FFFF 

bySA Source Address of message 
sender 

0 ... 253 

BytePos Starting position of bytes of data 
to be received 

1 ... n 

BitPos Starting position of bits of data to 
be received 

1 ... 8 

DataType Data type of data to be received 1 ... 3, 10 ... 16 

DataLength Volume of data for the global 
variable VarAddr 

 

VarAddr Global variable into which the 
received value is entered 

 

TJ1939Rx Control structure  

EventTime Time lag between two telegrams 
(> Inhibit Time) 

Default Value: 1,000 ms 

InhibitTime Minimum time lag between two 
telegrams received (< 
EventTime) 

Default Value: 100 ms 

 

Introduction 

Function Declaration 

Function Parameters 



 

Jetter AG 131 
 

JVM-407 SAE J1939 STX API 

 

The function transfers the following return values to the higher-level program. 
 

Return Value 

0 ok 

-1 Error when checking parameters 
 

 

 

The value of the CANMAX parameter depends on the device. The following 
table provides information on this point. 
 

Device CANMAX 

JVM-407 2 

BTM 07 2 

BTM 012 1 - 2 

BTM 011 n/a 

JCM-350 4 

JCM-620 2 
 

 

 

Data types can include the following. 
 

Byte types Bit types SAEJ1939 

1 - SAEJ1939_UNSIGNED8 
SAEJ1939_BYTE 

2 - SAEJ1939_UNSIGNED16 
SAEJ1939_WORD 

4 - SAEJ1939_UNSIGNED32 
SAEJ1939_DWORD 

n - SAEJ1939_STRING 

- 1 SAEJ1939_1BIT 

- 2 SAEJ1939_2BIT 

- 3 SAEJ1939_3BIT 

- 4 SAEJ1939_4BIT 

- 5 SAEJ1939_5BIT 

- 6 SAEJ1939_6BIT 

- 7 SAEJ1939_7BIT 
 

 

 

TJ1939Rx: Struct 

// Status of received message 
            byStatus      : Byte; 

// Priority of received message 
            byPriority    : Byte; 

           End_Struct; 

 

Return Value 

Parameter CANNo 

Parameter DataType 

Control Structure 
TJ1939Rx 



 

132 Jetter AG 
 

7  SAE J1939 STX API 

Result := SAEJ1939AddRx ( 

    1, 

    0xFEEE, 

    0x00, 

    2 

    0 

    SAEJ1939_BYTE, 

    sizeof(var_Fueltemp), 

    var_Fueltemp, 

    struct_TJ1939Rx_EngineTemperatureTbl, 

    1500, 

    120); 

 

The device JVM-407 with the own SA of 20 wants to receive and display the 
current fuel temperature. The parameters InhibitTime and EventTime are not 
explicitly specified when calling up the function. In this case, the default values 
are used. The controller that measures the fuel temperature has the SA of 0. 
In practice, the address of the controller can be found in the engine 
manufacturer's documentation. 
The fuel temperature has the SPN 174 and is a component (byte 2) of the 
PGN 65262 Engine Temperature 1. 
 
#Include "SAEJ1939.stxp" 

 

Var 

    bySAEJ1939Channel  : Byte; 

    own_Source_Address : Byte; 

 

// PGN 65262 Engine Temperature 1 
    Fueltemp  : Byte; 

    EngineTemperatureTbl : TJ1939Rx; 

End_Var; 

 

Task main autorun 

 

// Initializing CAN 1 
bySAEJ1939Channel := 1; 

own_Source_Address := 20; 

SAEJ1939Init (bySAEJ1939Channel, own_Source_Address); 

 

// Receive fuel temperature 
SAEJ1939AddRx (bySAEJ1939Channel, 65262, 0x00, 2, 1, SAEJ1939_BYTE, 
sizeof(Fueltemp), Fueltemp, EngineTemperatureTbl); 

 

End_Task; 

 

Using this Function 

JetSym STX Program 



 

Jetter AG 133 
 

JVM-407 SAE J1939 STX API 

 

For information on the data (priority, PGN, SA and data byte structure) refer to 
the manual provided by the engine manufacturer. 
 

 
 

Engine Manufacturer's 
Manual 



 

134 Jetter AG 
 

7  SAE J1939 STX API 

STX Function SAEJ1939AddTx 

Calling up the function SAEJ1939AddTx () prompts the device JVM-407 to 
cyclically send a specific message via the bus. 
Cyclical sending continues until the function SAEJ1939Init () is called up 
again. 
Date are sent once the Event Time has elapsed or the given variables have 
changed and Inhibit Time has elapsed. 
 

Function SAEJ1939AddTx ( 

    CANNo:Int, 

    IPGN:Long, 

    BytePos:Int, 

    BitPos:Int, 

    dataType:Int, 

    DataLength:Int, 

    const ref VarAddr, 

    ref stJ1939:TJ1939Tx 

    EventTime: Int, 

    InhibitTime: Int, 

) :Int; 

 

The function SAEJ1939AddTx () has the following parameters. 
 

Parameter Description Value 

CANNo CAN channel number 1 ... CANMAX 

IPGN PGN 
Parameter Group Number 

0 ... 0x3FFFF 

BytePos Starting position of the byte of 
data to be sent 

1 ... n 

BitPos Starting position of the bit of data 
to be sent 

1 ... 8 

DataType Data type of data to be sent 1 ... 3, 10 ... 16 

DataLength Volume of data for the global 
variable VarAddr 

 

VarAddr Global variable into which the 
value to be sent is entered 

 

TJ1939Tx Control structure  

EventTime Time lag between two telegrams 
(> Inhibit Time) 

Default Value: 1,000 ms 

InhibitTime Minimum time lag between two 
telegrams received (< 
EventTime) 

Default Value: 100 ms 

 

Introduction 

Function Declaration 

Function Parameters 



 

Jetter AG 135 
 

JVM-407 SAE J1939 STX API 

 

The function transfers the following return values to the higher-level program. 
 

Return Value 

0 ok 

-1 Error when checking parameters 
 

 

 

The value of the CANMAX parameter depends on the device. The following 
table provides information on this point. 
 

Device CANMAX 

JVM-407 2 

BTM 07 2 

BTM 012 1 - 2 

BTM 011 n/a 

JCM-350 4 

JCM-620 2 
 

 

 

Data types can include the following. 
 

Byte types Bit types SAEJ1939 

1 - SAEJ1939_UNSIGNED8 
SAEJ1939_BYTE 

2 - SAEJ1939_UNSIGNED16 
SAEJ1939_WORD 

4 - SAEJ1939_UNSIGNED32 
SAEJ1939_DWORD 

n - SAEJ1939_STRING 

- 1 SAEJ1939_1BIT 

- 2 SAEJ1939_2BIT 

- 3 SAEJ1939_3BIT 

- 4 SAEJ1939_4BIT 

- 5 SAEJ1939_5BIT 

- 6 SAEJ1939_6BIT 

- 7 SAEJ1939_7BIT 
 

 

 

Return Value 

Parameter CANNo 

Parameter DataType 



 

136 Jetter AG 
 

7  SAE J1939 STX API 

 

TJ1939Tx : Struct 

// Status of sent message 
            byStatus      : Byte; 

// Priority of sent message 
            byPriority    : Byte; 

          End_Struct; 

 

Result := SAEJ1939AddTx ( 

    1, 

    0xFEEE, 

    0x00, 

    2 

    0 

    SAEJ1939_BYTE, 

    sizeof(var_Fueltemp), 

    var_Fueltemp, 

    struct_TJ1939Tx_EngineTemperatureTbl, 

    1500, 

    120); 

 

Redefining the priority: Priority value 0 has the highest priority, priority value 7 
has the lowest priority. A message with priority 6 can be superseded by a 
message with priority 4 (if the messages are sent at the same time). The 
parameters InhibitTime and EventTime are not explicitly specified when calling 
up the function. In this case, the default values are used. 
 
#Include "SAEJ1939.stxp" 

 

Var 

    bySAEJ1939Channel  : Byte; 

    own_Source_Address : Byte; 

 

// PGN 65262 Engine Temperature 1 
    Fueltemp  : Byte; 

    EngineTemperatureTbl : TJ1939Tx; 

End_Var; 

 

Task main autorun 

 

// Initializing CAN 1 
bySAEJ1939Channel := 1; 

own_Source_Address := 20; 

SAEJ1939Init (bySAEJ1939Channel, own_Source_Address); 

 

// PGN 65262 Engine Temperature  
// Set a new priority 
EngineTemperatureTbl.byPriority := 6; 

SAEJ1939AddTx (bySAEJ1939Channel, 65262, 0x00, 2, 1, SAEJ1939_BYTE, 
sizeof(Fueltemp), Fueltemp, EngineTemperatureTbl); 

 

End_Task; 

Control Structure 
TJ1939Tx 

Using this Function 

JetSym STX Program 



 

Jetter AG 137 
 

JVM-407 SAE J1939 STX API 

 

For information on the data (priority, PGN, SA and data byte structure) refer to 
the manual provided by the engine manufacturer. 
 

 
 

Engine Manufacturer's 
Manual 



 

138 Jetter AG 
 

7  SAE J1939 STX API 

STX Function SAEJ1939RequestPGN 

Calling up the function SAEJ1939RequestPGN () sends a request to the DA 
(Destination Address) following a PGN. 
This function is not terminated until a valid value has been received or the 
timeout of 1,250 ms has elapsed. 
To obtain the value of the requested message its receipt must be scheduled 
using the function SAEJ1939AddRx (). 
This function must be constantly recalled in cycles. 
 

Function SAEJ1939RequestPGN ( 

    CANNo:Int, 

    byDA:Byte, 

    ulPGN:Long, 

    byPriority:Byte, 

) :Int; 

 

The function SAEJ1939RequestPGN () has the following parameters. 
 

Parameter Description Value 

CANNo CAN channel number 1 ... CANMAX 

byDA Destination Address 
Address from which the message 
is requested 

0 ... 253 
The own SA cannot be 
used 

uIPGN PGN 
Parameter Group Number 

0 ... 0x3FFFF 

byPriority Priority 0 ... 7 
Default Value: 6 

 

This function transfers the following return values to the higher-level program. 
 

Return Value 

0 Message has been received 

-1 Timeout, as no reply has been received 

 

The value of the CANMAX parameter depends on the device. The following 
table provides information on this point. 
 

Device CANMAX 

JVM-407 2 

BTM 07 2 

BTM 012 1 - 2 

BTM 011 n/a 

JCM-350 4 

JCM-620 2 
 

Introduction 

Function Declaration 

Function Parameters 

Return Value 

Parameter CANNo 



 

Jetter AG 139 
 

JVM-407 SAE J1939 STX API 

 

 

Data types can include the following. 
 

Byte types Bit types SAEJ1939 

1 - SAEJ1939_UNSIGNED8 
SAEJ1939_BYTE 

2 - SAEJ1939_UNSIGNED16 
SAEJ1939_WORD 

4 - SAEJ1939_UNSIGNED32 
SAEJ1939_DWORD 

n - SAEJ1939_STRING 

- 1 SAEJ1939_1BIT 

- 2 SAEJ1939_2BIT 

- 3 SAEJ1939_3BIT 

- 4 SAEJ1939_4BIT 

- 5 SAEJ1939_5BIT 

- 6 SAEJ1939_6BIT 

- 7 SAEJ1939_7BIT 
 

 

 

Result := SAEJ1939RequestPGN ( 

    1, 

    0x00, 

    0xFEE5, 

    5); 

 

JVM-407 with own SA of 20 wants to request the PGN 65253 "Engine Hours" 
from an engine control unit with the SA 0. The SPN 247 "Engine Total Hours of 
Operation" should be read from this PGN. It is therefore necessary to register 
receipt of the SPN 247 by calling up the function SAEJ1939AddRx ().  
The parameter "byPriority" is not explicitly specified when calling up the 
function. In this case, the default value is used. 
 
#Include "SAEJ1939.stxp" 

 

Var 

    bySAEJ1939Channel  : Byte; 

    own_Source_Address : Byte; 

 

// PGN 65253 Engine Hours, Revolutions 
    EngineTotalHours  : Int; 

    EngineHoursTbl : TJ1939Rx; 

End_Var; 

 

Task main autorun 

 

// Initializing CAN 1 

Parameter DataType 

Using this Function 

JetSym STX Program 



 

140 Jetter AG 
 

7  SAE J1939 STX API 

bySAEJ1939Channel := 1; 

own_Source_Address := 20; 

SAEJ1939Init (bySAEJ1939Channel, own_Source_Address); 

 

// Engine Hours, Revolutions  -- on Request 
SAEJ1939AddRx (bySAEJ1939Channel, 65253, 0x00, 1, 0, 
SAEJ1939_DWORD, sizeof(EngineTotalHours), EngineTotalHours, 
EngineHoursTbl, 5000, 150); 

 

// Required for a cyclical task 
TaskAllEnableCycle (); 

EnableEvents; 

 

End_Task; 

 

 

Task t_RequestPGN_5000 cycle 5000 

 

Var 

    Return_value : Int; 

End_Var; 

 

// Request total machine operating hours 
Return_value := SAEJ1939RequestPGN (bySAEJ1939Channel, 0x00, 
65253); 

 

If Return_value Then 

      Trace ('PGN Request failed'); 

End_If; 

 

End_Task; 

 
 



 

Jetter AG 141 
 

JVM-407 SAE J1939 STX API 

STX Function SAEJ1939GetDM1 

Calling up the function SAEJ1939GetDM1 () requests the current diagnostics 
error codes (also see SAE J1939-73 No. 5.7.1). The corresponding PGN 
number is 65226. This function must be constantly recalled in cycles. 
 

Function SAEJ1939GetDM1 ( 

    CANNo:Int, 

    bySA:Byte, 

    ref stJ1939DM1stat:TJ1939DM1STAT 

    ref stJ1939DM1msg:TJ1939DM1MSG 

) :Int; 

 

The function SAEJ1939GetDM1 () has the following parameters. 
 

Parameter Description Value 

CANNo CAN channel number 1 ... CANMAX 

bySA Source Address of message 
sender 

0 ... 253 
The own SA cannot be 
used 

stJ1939DM1stat lStatus 
lMsgCnt 
 
 
lBuffer 

Lamp Status 
Number of received 
messages 
Size of variable 
stJ1939DM1msg 

stJ1939DM1msg lSPN 
byOC 
byFMI 

Error Code 
Error counter 
Error Type 

 

The function transfers the following return values to the higher-level program. 
 

Return Value 

0 ok 

-1 Error when checking parameters 
 

 

 

The value of the CANMAX parameter depends on the device. The following 
table provides information on this point. 
 

Device CANMAX 

JVM-407 2 

BTM 07 2 

BTM 012 1 - 2 

BTM 011 n/a 

JCM-350 4 

Introduction 

Function Declaration 

Function Parameters 

Return Value 

Parameter CANNo 



 

142 Jetter AG 
 

7  SAE J1939 STX API 

Device CANMAX 

JCM-620 2 
 

 

 

Default: 0xFF00 
 

Type Byte Bit group Description 

Status 1 8 - 7 Malfunction Indicator Lamp Status 

  6 - 5 Red Stop Lamp Status 

  4 - 3 Amber Warning Lamp Status 

  2 - 1 Protect Lamp Status 

Flash 2 8 - 7 Flash Malfunction Indicator Lamp 

  6 - 5 Flash Red Stop Lamp 

  4 - 3 Flash Amber Warning Lamp 

  2 - 1 Flash Protect Lamp 
 

 
 

Type Byte Bit group 
Value 

Description 

Status 1 00 Lamps off 

  01 Lamps on 

Flash 2 00 Slow Flash (1 Hz, 50 % duty cycle) 

  01 Fast Flash (2 Hz or faster, 50 % duty cycle) 

  10 Reserved 

  11 Unavailable / Do Not Flash 

 

Default Value: 
ISPN = 0 
byOC = 0 
byFMI = 0 
For older controllers (grandfathered setting): 
ISPN = 524287 (0x7FFFF) 
byOC = 31 (0x1F) 
byFMI = 127 (0x7F) 
 

Result := SAEJ1939GetDM1 ( 

    1, 

    0x00, 

    stdm1stat_pow, 

    stdm1msg_pow,); 

 

stJ1939DM1stat.lStatus 

stJ1939DM1msg 

Using this Function 



 

Jetter AG 143 
 

JVM-407 SAE J1939 STX API 

 

By calling up the function SAEJ1939GetDM1 (), the JVM-407 requests the 
current diagnostics error code (PGN 65226).  
 
#Include "SAEJ1939.stxp" 

 

Var 

    bySAEJ1939Channel  : Byte; 

    own_Source_Address : Byte; 

    stdm1stat_pow : TJ1939DM1STAT; 

    stdm1msg_pow : Array[10] of STJ1939DM1MSG; 

    MyTimer : TTimer; 

End_Var; 

 

Task main autorun 

 

// Initializing CAN 1 
bySAEJ1939Channel := 1; 

own_Source_Address := 20; 

SAEJ1939Init (bySAEJ1939Channel, own_Source_Address); 

 

TimerStart (MyTimer, T#2s); 

 

Loop 

 

When (TimerEnd (MyTimer)) Continue; 

 

// Request the diagnostics error codes DM1 POW 
stdm1stat_pow.lBuffer := sizeof (stdm1msg_pow); 

SAEJ1939GetDM1 (bySAEJ1939Channel, 0x00, stdm1stat_pow, 
stdm1msg_pow); 

 

TimerStart (MyTimer, T#2s); 

 

End_Loop; 

 

End_Task; 

 
 

JetSym STX Program 



 

144 Jetter AG 
 

7  SAE J1939 STX API 

STX Function SAEJ1939GetDM2 

Calling up the function SAEJ1939GetDM2 () requests the diagnostics error 
codes that preceded the current one (also see SAE J1939-73 No. 5.7.2). The 
corresponding PGN number is 65227. 
 

Function SAEJ1939GetDM2 ( 

    CANNo:Int, 

    bySA:Byte, 

    ref stJ1939DM2stat:TJ1939DM2STAT 

    ref stJ1939DM2msg:TJ1939DM2MSG 

) :Int; 

 

The function SAEJ1939GetDM2 () has the following parameters. 
 

Parameter Description Value 

CANNo CAN channel number 1 ... CANMAX 

bySA Source Address of message 
sender 

0 ... 253 
The own SA cannot be 
used 

stJ1939DM2stat lStatus 
lMsgCnt 
 
 
lBuffer 

Lamp Status 
Number of received 
messages 
Size of variable 
stJ1939DM2msg 

stJ1939DM2msg lSPN 
byOC 
byFMI 

Error Code 
Error counter 
Error Type 

 

The function transfers the following return values to the higher-level program. 
 

Return Value 

0 ok 

-1 Error when checking parameters 
 

 

 

The value of the CANMAX parameter depends on the device. The following 
table provides information on this point. 
 

Device CANMAX 

JVM-407 2 

BTM 07 2 

BTM 012 1 - 2 

BTM 011 n/a 

JCM-350 4 

Introduction 

Function Declaration 

Function Parameters 

Return Value 

Parameter CANNo 



 

Jetter AG 145 
 

JVM-407 SAE J1939 STX API 

Device CANMAX 

JCM-620 2 
 

 

 

Default: 0xFF00 
 

Type Byte Bit group Description 

Status 1 8 - 7 Malfunction Indicator Lamp Status 

  6 - 5 Red Stop Lamp Status 

  4 - 3 Amber Warning Lamp Status 

  2 - 1 Protect Lamp Status 

Flash 2 8 - 7 Flash Malfunction Indicator Lamp 

  6 - 5 Flash Red Stop Lamp 

  4 - 3 Flash Amber Warning Lamp 

  2 - 1 Flash Protect Lamp 
 

 
 

Type Byte Bit group 
Value 

Description 

Status 1 00 Lamps off 

  01 Lamps on 

Flash 2 00 Slow Flash (1 Hz, 50 % duty cycle) 

  01 Fast Flash (2 Hz or faster, 50 % duty cycle) 

  10 Reserved 

  11 Unavailable / Do Not Flash 

 

Default Value: 
ISPN = 0 
byOC = 0 
byFMI = 0 
For older controllers (grandfathered setting): 
ISPN = 524287 (0x7FFFF) 
byOC = 31 (0x1F) 
byFMI = 127 (0x7F) 
 

Result := SAEJ1939GetDM2 ( 

    1, 

    0x00, 

    stdm2stat_pow, 

    stdm2msg_pow,); 

 

By calling up the function SAEJ1939GetDM2 (), the JVM-407 requests the 
current diagnostics error code (PGN 65227).  

stJ1939DM2stat.lStatus 

stJ1939DM2msg 

Using this Function 

JetSym STX Program 



 

146 Jetter AG 
 

7  SAE J1939 STX API 

 
#Include "SAEJ1939.stxp" 

 

Var 

    bySAEJ1939Channel  : Byte; 

    own_Source_Address : Byte; 

    stdm2stat_pow : TJ1939DM2STAT; 

    stdm2msg_pow : Array[10] of STJ1939DM2MSG; 

End_Var; 

 

// Initializing CAN 1 
bySAEJ1939Channel := 1; 

own_Source_Address := 20; 

SAEJ1939Init (bySAEJ1939Channel, own_Source_Address); 

 

// Required for a cyclical task 
TaskAllEnableCycle (); 

EnableEvents; 

 

End_Task; 

 

 

Task t_RequestPGN_5000 cycle 5000 

 

Var 

    Return_value  : Int; 

End_Var; 

 

// Request the diagnostics error codes DM2 POW 
stdm2stat_pow.lBuffer := sizeof (stdm2msg_pow); 

Return_value := SAEJ1939GetDM2 (bySAEJ1939Channel, 0x00, 
stdm2stat_pow, stdm2msg_pow); 

 

If Return_value Then 

    Trace ('DM2 Request failed'); 

End_If; 

 

End_Task; 

 
 



 

Jetter AG 147 
 

JVM-407 SAE J1939 STX API 

STX Function SAEJ1939SetSPNConversion 

Calling up the function SAEJ1939SetSPNConversion () determines the 
configuration of bytes in the message, which is requested using function 
SAEJ1939GetDM1 () or SAEJ1939GetDM2 (). In other words, it specifies the 
conversion method. 
 

Function SAEJ1939SetSPNConversion ( 

    CANNo:Int, 

    bySA:Byte, 

    iConversionMethod:Int, 

) :Int; 

 

The function SAEJ1939SetSPNConversion () has the following parameters. 
 

Parameter Description Value 

CANNo CAN channel number 1 ... CANMAX 

bySA Source Address of message 
sender 

0 ... 253 

iConversionMethod Conversion method 1 ... 4 
4: Automatic detection 
2: Default 

 

The function transfers the following return values to the higher-level program. 
 

Return Value 

0 ok 

-1 Error when checking parameters 
 

 

 

The value of the CANMAX parameter depends on the device. The following 
table provides information on this point. 
 

Device CANMAX 

JVM-407 2 

BTM 07 2 

BTM 012 1 - 2 

BTM 011 n/a 

JCM-350 4 

JCM-620 2 
 

 

 

Introduction 

Function Declaration 

Function Parameters 

Return Value 

Parameter CANNo 



 

148 Jetter AG 
 

7  SAE J1939 STX API 

 

Result := SAEJ1939SetSPNConversion ( 

    1, 

    0xAE, 

    4); 

 
 

Using this Function 



 

Jetter AG 149 
 

JVM-407 SAE J1939 STX API 

STX Function SAEJ1939GetSPNConversion 

Calling up the function SAEJ1939GetSPNConversion () ascertains the current 
conversion method set. 
 

Function SAEJ1939SetSPNConversion ( 

    CANNo:Int, 

    bySA:Byte, 

    iConversionMethod:Int, 

) :Int; 

 

The function SAEJ1939GetSPNConversion () has the following parameters. 
 

Parameter Description Value 

CANNo CAN channel number 1 ... CANMAX 

bySA Source Address of message 
sender 

0 ... 253 

iConversionMethod Conversion method 1 ... 4 
4: Automatic detection 
2: Default 

 

The function transfers the following return values to the higher-level program. 
 

Return Value 

0 ok 

-1 Error when checking parameters 
 

 

 

The value of the CANMAX parameter depends on the device. The following 
table provides information on this point. 
 

Device CANMAX 

JVM-407 2 

BTM 07 2 

BTM 012 1 - 2 

BTM 011 n/a 

JCM-350 4 

JCM-620 2 
 

 

 

Result := SAEJ1939GetSPNConversion ( 

    1, 

    0xAE, 

    actual_conversion_method); 

 
 

Introduction 

Function Declaration 

Function Parameters 

Return Value 

Parameter CANNo 

Using this Function 





 

Jetter AG 151 
 

JVM-407 File System 

8 File System 

This chapter covers the file system of the HMI JVM-407. The file system 
enables access to files located on the internal flash disk, SD card or USB 
stick.  
 

The file system distinguishes between system area with directories/files used 
by the operating system (OS), and application area which is available to the 
user. 
 

It is not possible to delete system directories. They will even survive 
formatting. 
 

Directory Description 

/System  System configuration 
 System information 

/SD  Root directory of the SD card 

/USB  Root directory of the USB stick 

 

 

Topic Page 
Properties ................................................................................................... 152 
User Administration .................................................................................... 156 
Reviewing the Flash Disk Capacity Used ................................................... 165 
Operating System Update and Application Program .................................. 169 
Formatting and Checking ........................................................................... 170 

 
 
 

Introduction 

Categories 

System Directories 

Contents 



 

152 Jetter AG 
 

8  File System 

8.1 Properties 

This chapter covers the properties of the file system. The file system 
distinguishes between internal flash disk, SD card, and USB stick. 
 

The following properties apply to the internal flash disk, SD card, and USB 
stick: 
 

 Maximum number of simultaneously opened files: 8 
 Directory names are separated by a slash "/", not by a backslash "\". 
 When a file is saved, date and time of the realtime clock of the HMI is 

assigned to it. 
 Date, time, and/or file size are not available for all system files. 
 

 

Topic Page 
Flash Disk - Properties ................................................................................ 153 
SD Card - Properties ................................................................................... 154 
USB Stick - Properties ................................................................................ 155 

 
 
 

Introduction 

General Properties 

Contents 



 

Jetter AG 153 
 

JVM-407 File System 

Flash Disk - Properties 

The following disk space is available to the user: 
 

Parameter Value 

Flash disk size 13184 KByte 

 

The internal flash disk has the following properties: 
 

 Up to 7 directory levels and 1 file level is allowed. 
 Directory and file names with a length of up to 63 characters 
 Differentiation between upper and lower case. 
 All characters except "/" and ".." are permitted for directory and file names 
 User/access administration for a maximum number of 31 locks and 33 

users. 
 
 

Available Capacity 

Properties 



 

154 Jetter AG 
 

8  File System 

SD Card - Properties 

The available capacity depends on the SD card used: 
 

Parameter Value 

Tested size 8 MBytes ... 4 GBytes 

 

The SD card has the following properties: 
 

 FAT-16 and FAT-32 compatible. 
 The maximum path length is 260 characters. 
 No case sensitivity. 
 The following characters are not allowed in directory and file names: "/", "\", 

":", "*", "?", """, "<", ">" and "|" 
 No user/access administration. 

 
 

Available Capacity 

Properties 



 

Jetter AG 155 
 

JVM-407 File System 

USB Stick - Properties 

The available capacity depends on the USB stick used: 
 

Parameter Value 

Tested size 1 GByte ... 8 GBytes 

 

The USB stick has the following properties: 
 

 FAT-16 and FAT-32 compatible. 
 The maximum path length is 260 characters. 
 No case sensitivity. 
 The following characters are not allowed in directory and file names: "/", "\", 

":", "*", "?", """, "<", ">" and "|" 
 No user/access administration. 

 
 

Available Capacity 

Properties 



 

156 Jetter AG 
 

8  File System 

8.2 User Administration 

The file system for the internal flash disk offers the possibility to define 
authorization for access (locks) to directories, as well as to set up users with 
specific permissions (keys). 
Users are not allowed to access directories and files for which they do not 
have the required key. In case of a FTP/IP connection, these directories and 
files are not displayed. 
 

Administrator rights are required for user administration. 
 

The properties of user administration are as follows: 
 

Property Maximum value 

Number of users 33 

Number of predefined users 2 

Length of a user name 31 alphanumeric characters 

Password length 31 alphanumeric characters 

Number of keys for read access 31 

Number of keys for write access 31 

Number of predefined keys 2 

 

Settings for user administration can be made in 3 files located in the directory 
"/System". 
 

File Description 

flashdisklock.ini Assignment of locks to directories 

keys.ini Assignment of names to locks/keys 

users.ini Administration of users 
 

These files are always existing. They cannot be deleted, but only modified or 
overwritten. 
 

Please take the following restrictions into account: 
 

 User administration can only be applied to the internal flash disk. It cannot 
be applied to SD cards. 

 Once a file user administration has been transferred, its content can be 
read immediately. The settings only become active when the system is 
rebooted. 

 

Introduction 

Prerequisites 

Properties 

Files 

Restrictions 



 

Jetter AG 157 
 

JVM-407 File System 

 

 

Topic Page 
User Administration .................................................................................... 158 
As-Delivered Condition / Predefined Users and Keys ................................ 160 
Assigning a Lock......................................................................................... 161 
Assigning Names to Locks/Keys ................................................................ 163 

 
 
 

Contents 



 

158 Jetter AG 
 

8  File System 

User Administration 

The user administration for the file system of the JVM-407 is managed in the 
configuration file "/System/users.ini". 
 

If you want to use names for the keys, you must make them known to the 
JVM-407 beforehand. Therefore, set up the names first (Setting up names for 
keys/locks on page 163). 
 

Carry out the following steps for administering users: 
 

Step Action 

1 Establish an FTP connection to the JVM-407; when doing so, log in with 
administrator rights. 

2 Open the file "/System/users.ini". 

3 Make your changes to this file. 

4 Save the changed file to the JVM-407. 

5 Reboot the JVM-407. 
 

Result: The changed user administration settings are now enabled. 
 

This configuration file is a text file the entries of which are grouped into several 
sections. 
 

 For each user a separate section is used. 
 In these sections values can be set which are then used by the file system. 
 Blank lines can be inserted at will. 
 The following characters precede a comment line: "!", "#" or ";". 
 

The sections are named "[USER1]" through "[USER33]". Here, the user name 
and the related password, as well as read and write permissions are specified. 
 
Example: 

[USER4] 

NAME=TestUser3 

PW=testpass 

READKEYS=5,openLock2,10,11 

WRITEKEYS=openLock2,10,11 

SYSKEYS= 

 

Introduction 

Prerequisites 

User Administration 

Structure of the file 
"/System/users.ini" 

Sections 



 

Jetter AG 159 
 

JVM-407 File System 

 

 

NAME 

In the given example TestUser3 

Description User's login name 

Allowed values A maximum of 31 alphanumeric characters 

In case of invalid or missing 
entry 

no user account is created 

PW 

In the given example testpass 

Description User's login password 

Allowed values A maximum of 31 alphanumeric characters 

In case of missing entry the user is allowed to log in without password 

READKEYS 

In the given example 5,openLock2,10,11 

Description Key for read accesses 

Allowed values 1 ... 31 (or corresponding names) 

In case of missing entry the user will not receive read keys 

WRITEKEYS 

In the given example openLock2,10,11 

Description Key for write accesses 

Allowed values 1 ... 31 (or corresponding names) 

In case of missing entry the user will not receive write keys 

SYSKEYS 

Description no function assigned; reserved for future extensions 

 
 



 

160 Jetter AG 
 

8  File System 

As-Delivered Condition / Predefined Users and Keys 

Two predefined users with set rights are included in the file system. It is not 
possible to delete these two users. In the user administration only the 
password can be changed for these two users. 
 

In as-delivered condition the content of the configuration file included in the 
HMI is as follows. 
 
[USER1] 

NAME=admin 

PW=admin 

READKEYS=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,2
2,23,24,25,26,27,28,29,30,31 

WRITEKEYS=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,
22,23,24,25,26,27,28,29,30,31 

SYSKEYS= 

 

[USER33] 

NAME=system 

PW=system 

READKEYS=2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
23,24,25,26,27,28,29,30,31 

WRITEKEYS=2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22
,23,24,25,26,27,28,29,30,31 

SYSKEYS= 

 
 

All keys are available to this user and he/she is, therefore, able to read all 
directories and files and to write to them. 
 

All keys except for key "1" are available to this user, too. 
 

Two out of the 31 keys have a predefined function: 
 

Lock / Key Function 

1  IP configuration 
 User administration 

2  Operating system update of CPU 
 

 
 

Introduction 

As-Delivered Condition 

User "admin" 

User "system" 

Predefined Keys 



 

Jetter AG 161 
 

JVM-407 File System 

Assigning a Lock 

The configuration file "/System/flashdisklock.ini" is used to assign locks to 
directories located on the flash disk. Only users with the corresponding key 
are allowed to read or write (delete) files and subdirectories located in these 
directories. 
 

If you want to use names for the locks, you must make them known to the 
JVM-407 beforehand. Therefore, set up the names first (Setting up names for 
keys/locks on page 163). 
 

Carry out the following steps to assign a lock to a directory: 
 

Step Action 

1 Establish an FTP connection to the JVM-407; when doing so, log in with 
administrator rights. 

2 Open the file "/System/flashdisklock.ini". 

3 Make your changes to this file. 

4 Save the changed file to the JVM-407. 

5 Reboot the JVM-407. 
 

Result: A lock is assigned to this directory. 
 

This configuration file is a text file containing one section. 
 In this section values can be set which are then used by the file system. 
 Each directory is specified with its lock number in an individual line. 
 Blank lines can be inserted at will. 
 The following characters precede a comment line: "!", "#" or ";". 
 

The section is named "[LOCKS]". Here, locks are assigned to directories in 
accordance with the following rule: 
 
Directory=Lock 
 
Example: 

[LOCKS] 

test1=0 

test1/sub1=2 

test1/sub2=5 

test2=userlock2 

 

Introduction 

Prerequisites 

Assigning a Lock 

Structure of the File 
"/System/flashdisklock.ini" 

Section 



 

162 Jetter AG 
 

8  File System 

 

Use the following lock numbers: 
 

 Allowed lock numbers: 0 ... 31. 
 Lock number 0: No lock is assigned to this directory. This directory can be 

accessed without any restrictions. 
 Numbers or previously defined names can be used. 

 
 

Lock Numbers 



 

Jetter AG 163 
 

JVM-407 File System 

Assigning Names to Locks/Keys 

Locks/keys are consecutively numbered from 1 through 31. To provide ease of 
handling, a name can be assigned to each lock/key combination. These 
names are assigned in the configuration file "/System/keys.ini". 
 

Carry out the following steps to assign names to keys/locks: 
 

Step Action 

1 Establish an FTP connection to the JVM-407; when doing so, log in with 
administrator rights. 

2 Open the file "/System/keys.ini". 

3 Make your changes to this file. 

4 Save the changed file to the JVM-407. 

5 Reboot the JVM-407. 
 

Result: The names are now available and can be used when assigning locks 
and managing user accounts. 
 

This configuration file is a text file containing one section. 
 In this section values can be set which are then used by the file system. 
 Each key is specified with its name in an individual line. 
 Blank lines can be inserted at will. 
 The following characters precede a comment line: "!", "#" or ";". 
 

The section is named "[KEYS]". Here, names are assigned to keys/locks in 
accordance with the following rule: 
 
KEYxx=Name 
 
xx: Number of the key (01 ... 31) 
 
Example: 

[KEYS] 

KEY01=Admin 

KEY02=System 

KEY03= 

KEY04= 

KEY05=service 

... 

KEY31= 

 
 

Introduction 

Assigning Names 

Structure of the File 
"/System/keys.ini" 

Section 



 

164 Jetter AG 
 

8  File System 

 

For names the following definitions are true: 
 

 A maximum of 15 alphanumeric characters. 
 For a lock and its key the same name is used. 

 
 

Names for Locks/Keys 
 



 

Jetter AG 165 
 

JVM-407 File System 

8.3 Reviewing the Flash Disk Capacity Used 

This chapter covers how you can review the used capacity of the user area 
located on the flash disk. 
 

 

Topic Page 
Flash Disk Capacity Used .......................................................................... 166 

 
 
 

Introduction 

Contents 



 

166 Jetter AG 
 

8  File System 

Flash Disk Capacity Used 

The capacity used of the user area located on the internal flash disk can be 
seen from the file "/System/flashdiskinfo.txt".  
 

In this example, the fictive capacity used of a flash disk in a JetControl 340 
(4 MB) is shown: 
 
Name  : flash disk 

Date  : 25.11.2008 

Time  : 15:04 

Tracks: 64 

 

Track   0:  sectors: 128  (used:  81 / blocked:  47 / free:   0) 

Track   1:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track   2:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track   3:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track   4:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track   5:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track   6:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track   7:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track   8:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track   9:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  10:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  11:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  12:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  13:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  14:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  15:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  16:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  17:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  18:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  19:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  20:  sectors: 128  (used:  64 / blocked:  64 / free:   0) 

Track  21:  sectors: 128  (used:  85 / blocked:  43 / free:   0) 

Track  22:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  23:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  24:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  25:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  26:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  27:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  28:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  29:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  30:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  31:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  32:  sectors: 128  (used: 128 / blocked:   0 / free:   0) 

Track  33:  sectors: 128  (used: 105 / blocked:   0 / free:  23) 

Track  34:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Info File 

Example 



 

Jetter AG 167 
 

JVM-407 File System 

Track  35:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  36:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  37:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  38:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  39:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  40:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  41:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  42:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  43:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  44:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  45:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  46:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  47:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  48:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  49:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  50:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  51:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  52:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  53:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  54:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  55:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  56:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  57:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  58:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  59:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  60:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  61:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  62:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

Track  63:  sectors: 128  (used:   0 / blocked:   0 / free: 128) 

 

Total:  sectors: 8192  (used: 4175 / blocked: 154 / free: 3863) 

 

Used   :  2120900 byte 

Blocked:    78232 byte 

Free   :  1962404 byte 

Total  :  4161536 byte 

 
 

Tracks and sectors represent the administration units of the flash disk. The 
info file is structured accordingly and consists of the following elements: 
 

Element Description 

Name Dedicated name of the flash disk 

Date / Time Point in time when the flash disk has been formatted 
last 

Tracks Total number of tracks 

Track xx: sectors: 128 Assignment of sectors of a track 

Total: sectors: Overall statistical data of sectors 

Elements of Info File 



 

168 Jetter AG 
 

8  File System 

Element Description 

Used Total number of used bytes 

Blocked Total number of blocked bytes 

Free Total number of available bytes 

Total Total size of the flash disk 

 

The smallest administrative unit of the flash disk, i.e. the sector, may enter the 
following states: 
 

State Meaning 

used The sector is occupied by data. 

blocked The sector is no longer occupied, but can not yet be 
used due to administrative reasons. 

free The sector is not occupied and can be used. 

 
 

States of Sectors 



 

Jetter AG 169 
 

JVM-407 File System 

8.4 Operating System Update and Application Program 

An OS update for a controller an HMI or an I/O module, as well as access to 
the application program can be carried out via file system. For a detailed 
description on this topic refer to the following chapters: 

 Operating System Update on page 335 
 Application Program on page 343 
 

 

 

Introduction 

 



 

170 Jetter AG 
 

8  File System 

8.5 Formatting and Checking 

This chapter covers formatting and checking of the internal flash disk, SD 
card, and USB stick. 
The internal flash disk needs not be checked using a separate function, since 
it provides maximum safety of its administrative structures by design. 
 

When the JVM-407 is booting, the OS checks the contents of the control 
register belonging to the file system. Depending on the value contained in this 
register the following functions are carried out: 
 

 Formatting the flash disk 
 Formatting the SD card 
 Formatting the USB stick 
 Checking the SD card 
 Checking the USB stick 
 

The control register number of the file system is dependent on the controller: 
 

Controller Register Number 

JC-24x 2936 

JM-D203-JC24x 2936 

JC-340, JC-350, JC-360 202936 

JVM-407 202936 

 

 

Topic Page 
Formatting the Flash Disk ........................................................................... 171 
Formatting the SD Card .............................................................................. 172 
Formatting the USB Stick ............................................................................ 173 
Checking the SD Card ................................................................................ 174 
Checking the USB Stick .............................................................................. 175 

 
 
 

Introduction 

Operating Principle 

Register Number 

Contents 



 

Jetter AG 171 
 

JVM-407 File System 

Formatting the Flash Disk 

Sometimes it might be necessary to reformat the flash disk. This may be the 
case if an OS release has been transferred which has a different flash disk 
format. Or when information for flash disk administration has been destroyed. 
 

 All files and directories located in the user area will be deleted! 
 Formatting will not affect system files and directories. 
 

In order to cause the JVM-407 to format the internal flash disk proceed as 
follows: 
 

Step Action 

1 Switch the JVM-407 on. 

2 Enter value -999720373 (0xc4697a4b) into the control register of the file 
system. 

3 Switch the JVM-407 off. 

4 Switch the JVM-407 on. 
 

Result: During the boot process of the JVM-407 the flash disk is formatted 
and the control register is set to 0. 

 
 

Introduction 

Consequences 

Formatting the Flash 
Disk 



 

172 Jetter AG 
 

8  File System 

Formatting the SD Card 

Sometimes it might be necessary to reformat the SD card. This might be the 
case when information for flash disk administration has been destroyed. 
 

All files and directories on the SD card will be deleted! 
 

In order to cause the JVM-407 to format the SD card proceed as follows: 
 

Step Action 

1 Switch the JVM-407 on. 

2 Enter value -748362163 (0xd364e64d) into the JVM-407 register of the file 
system. 

3 Switch the JVM-407 off. 

4 Switch the JVM-407 on. 
 

Result: During the boot process of the JVM-407 the SD card is formatted and 
the control register is set to 0. 

 
 

Introduction 

Consequences 

Formatting the SD Card 



 

Jetter AG 173 
 

JVM-407 File System 

Formatting the USB Stick 

Sometimes it might be necessary to reformat the USB stick. This might be the 
case when information for USB stick administration has been destroyed. 
 

All files and directories on the USB stick will be deleted! 
 

To format the USB stick proceed as follows: 
 

Step Action 

1 Power up the HMI. 

2 Enter value (0x8f3d5185) into the control register of the file system. 

3 De-energize the HMI. 

4 Power up the HMI. 
 

Result: During the boot process of the HMI the USB card is formatted and the 
control register is set to 0. 

 
 

Introduction 

Consequences 

Formatting 



 

174 Jetter AG 
 

8  File System 

Checking the SD Card 

Sometimes it might be necessary to check the SD card for errors. This might 
be the case when the JVM-407 was switched off while accessing the SD card. 
 

 All files and directories on the SD card will be checked and errors, if any, 
will be fixed. 
Following such a check, the administrative structures on the SD card in 
consistent condition. 

 Depending on the SD card size and the number of files and directories the 
boot process duration of the JVM-407 may extend to several minutes. 

 

In order to cause the JVM-407 to check the SD card proceed as follows: 
 

Step Action 

1 Switch the JVM-407 on. 

2 Enter value 748371092 (0x2c9b3c94) into the JVM-407 register of the file 
system. 

3 Switch the JVM-407 off. 

4 Switch the JVM-407 on. 
 

Result: During the boot process of the JVM-407 the SD card is checked. The 
value in the control register remains unchanged so that the card is checked 
whenever the JVM-407 is rebooted. 
 

This function only "repairs" the administrative structures on the SD card in 
order that it can be used further. However, it may happen that data of a file 
which has been written incompletely can't be restored in all cases. 

 
 

Introduction 

Consequences 

Checking the SD Card 

Restrictions 



 

Jetter AG 175 
 

JVM-407 File System 

Checking the USB Stick 

Sometimes it might be necessary to check the USB stick for errors. This might 
be the case if the HMI was de-energized while it was accessing the USB stick. 
 

 All files and directories on the USB stick will be checked and errors, if any, 
will be fixed. 
Following such a check, the administrative structures on the USB stick are 
in consistent condition. 

 Depending on the USB stick capacity and the number of files and 
directories to be checked the boot process of the HMI may take several 
minutes. 

 

To check the USB stick for errors proceed as follows: 
 

Step Action 

1 Power up the HMI. 

2 Enter value (0x17dbd42a) into the control register of the file system. 

3 De-energize the HMI. 

4 Power up the HMI. 
 

Result: During the boot process of the JVM-407 the USB stick is checked. 
The value in the control register remains unchanged so that the stick is 
checked whenever the HMI is rebooted. 
 

This function only "repairs" the administrative structures on the USB stick so 
that it can be used further. However, it may happen that data of a file, which 
has been written incompletely, can't be restored in all cases. 

 
 

Introduction 

Consequences 

Check 

Restrictions 





 

Jetter AG 177 
 

JVM-407 FTP Server 

9 FTP Server 

The FTP server allows access to directories and files located either on an SD 
card, or on a flash disk integrated into the JVM-407 using an FTP client. 
This chapter covers the login process and describes the commands supported 
by the FTP server. 
 

Apart from the command line FTP client, which comes with many PC 
operating systems, graphic FTP tools can be used, as well. 
 

 

The FTP server on the JVM-407 is able to manage 4 FTP connections 
simultaneously. That is, up to 4 FTP client programs can be connected with 
the JVM-407 at the same time. 
Any additional client, which tries to connect with the FTP server, will get no 
response to its request for establishing a connection. 
 

To perform the functions described in this chapter, the following skills are 
required: 
 

 The user must be familiar with the file system of the controller. 
 The user must be familiar with IP networks. 
 

 

Topic Page 
Login ........................................................................................................... 178 
Supported Commands ................................................................................ 179 
Example: Windows FTP Client ................................................................... 180 

 
 
 

Introduction 

FTP Clients 

Number of Possible 
Connections 

Required Programmer's 
Skills 

Contents 



 

178 Jetter AG 
 

9  FTP Server 

Login 

To have access to the file system via FTP, the FTP client must log in and 
provide its user name and password when starting the communication. 
 

 

In its original configuration the controller is delivered with two user accounts: 
 

[USER1] 
NAME=admin 
PW=admin 
 
[USER33] 
NAME=system 
PW=system 
 

Via user administration of the file system, the password can be modified and 
new users can be added. 
 

 

 
 User administration on page 156 

 
 

Login 

As Delivered Condition 

Administration of Users 

Related Topics 



 

Jetter AG 179 
 

JVM-407 FTP Server 

Supported Commands 

The following table lists the commands known to the FTP server, as well as 
their purpose. 
 

Command Purpose 

USER Sends the user name; is used at the beginning of the login 
process 

PASS Sends the password; is sent after USER to complete the 
login process 

QUIT Terminates the connection 

PORT Specifies the IP address and port number to which the FTP 
server is to connect for the next file transfer. 

TYPE Sets the transfer type; the following types are possible: 

 Type A with interpretation N 
 Type I 
 Type L with 8 bits per character 

MODE Sets the transfer mode; here, only "S" (stream) is possible 

STRU Sets the file structure when transferring data; here, only "F" 
(file) is possible 

NLST Returns a list containing the file names of a directory 

LIST Returns a list containing the file names and file information of 
a directory 

PWD Returns the name of the current directory 

CWD Switches to another directory 

CDUP Moves up by one directory level 

MKD Creates a new directory 

RMD This instruction is for removing a directory 

STOR Stores a file 

RETR Reads a file 

DELE Deletes a file 

RNFR Indicates the file name to be changed; must be followed by 
the command "RNTO" 

RNTO Indicates the new name of the file which has been specified 
by the command "RNFR" before. 

PASV The FTP server changes into "passive mode" 
 

 
 
 

Supported Commands 



 

180 Jetter AG 
 

9  FTP Server 

Example: Windows FTP Client 

The following tasks are to be carried out using an FTP client, for example, the 
one which comes with Windows XP: 
 

 Invoking the FTP client by opening a connection 
 Loging in as user "admin" with password "admin" 
 Displaying the content of the current directory using "dir" 
 Transferring the file "jetter1.jpg" to the JetControl using the command "put" 
 Re-displaying the content of the current directory using "dir" 
 Terminating the session and the FTP client using "bye" 
 

 
 

 
 

Task 

Action 



 

Jetter AG 181 
 

JVM-407 HTTP Server 

10 HTTP Server 

The HTTP server can be accessed via standard browser. The browser is for 
reading and displaying files which have been downloaded to the controller via 
FTP. 
Here, it may be necessary to enter the user name and password to have 
access to certain pages (depending on the file system configuration). 
 
This chapter covers the "Server Side Includes" (SSI) function included in the 
HTTP server. 
 

The default file names are index.htm and index.html. 
 
 

The following file types are supported: 
 

 *.htm, *.html, *.shtml 
 *.txt, *.ini 
 *.gif, *.tif, *.tiff, *.bmp, *.wbmp 
 *.jpg, *.jpe, *.jpeg, *.png 
 *.xml 
 *.js, *.jar, *.java, *.class, *.cab 
 *.ocx 
 *.pdf, *.zip, *.doc, *.rtf 
 *.css 
 *.wml, *.wmlc, *.wmls, *.wmlsc 
 

To enable the HTTP server feature in the controller the following requirements 
have to be met: 
 

 When ordering the controller option -W has been selected. 
 
If both requirements have been met, the corresponding bit in status register 
"Web" is set. 
 

To perform the functions described in this chapter, the following skills are 
required: 
 

 The user must be familiar with the file system of the controller. 
 The user must be familiar with IP networks. 
 

 

Topic Page 
Server Side Includes .................................................................................. 182 

 
 
 

Introduction 

Default File Names 

Supported File Types 

Enabling the HTTP 
Server Feature 

Required Programmer's 
Skills 

Contents 



 

182 Jetter AG 
 

10  HTTP Server 

10.1 Server Side Includes 

Current realtime controller values can be displayed in an HTML page using 
the Server Side Includes (SSI) feature in the HTTP server. 
 

A name space tag has to be specified at the beginning of the HTML page that 
is to contain the realtime controller values. This name space tag is for defining 
the name space used in the HTML page. 
In the body section of the HTML page the Data Tags are specified. 
 

When the page is loaded into the browser, the HTTP server once replaces the 
data tags by current controller values. 
To refresh the controller values, the HTML page must be reloaded. 
 

 

 

Topic Page 
Name Space Tag ......................................................................................... 183 
Inserting Realtime Controller Values .......................................................... 184 
Example of an HTML page ......................................................................... 189 

 
 
 

Introduction 

Rules 

Updating Realtime 
Controller Values 

Contents 



 

Jetter AG 183 
 

JVM-407 HTTP Server 

Name Space Tag 

The Name Space Tag must be the first entry in the HTML file. Its structure is 
as follows: 
 
<NS:DTAG xmlns:NS=http://jetter.de/ssi/jetcontrol/ 

 
with NS representing the name space. A character string with a maximum 
length of 63 characters can be chosen for the name space. 
The Name Space introduced here will be re-used for the subsequent Data 
Tags. The remaining parts of the line are preassigned and have to be specified 
in exactly the same way. 
 
In the following examples, JW is used for Name Space. 

 
 

Name Space Tag - 
Structure 

http://jetter.de/ssi/jetcontrol/


 

184 Jetter AG 
 

10  HTTP Server 

Inserting Realtime Controller Values 

Actual realtime controller values can be integrated into the parameters of the 
sections via tag functions. This way, the contents respectively states of 
registers, text registers, inputs, outputs and flags can be displayed. 
 

All tags start and end with defined strings. Between these tag delimiters 
variables can be defined: 
 

Delimiter String 

Tag start <JW:DTAG 

Tag end /> 

 

The variable definition in a tag contains attributes which are used to set, for 
example, how the variable value is displayed: 
 

name 

Description Variable Name 

Comments Code letter followed by the variable number 

Example name="R1000023" 

 

type 

Description Variable type of notation 

Example type="REAL" 

 

format 

Description Representation format 

Comments Refer to format definition 

Example format="+0####.###" 

 

factor 

Description Factor by which the realtime controller value is 
multiplied 

Comments This operation is executed prior to adding the offset 

Example factor="1.5" 

 

offset 

Description Value which is added to the realtime controller value 

Comments This operation is executed after multiplication by the 
factor 

Example offset="1000" 

 

Introduction 

Tag Delimiters 

Variable Definition 



 

Jetter AG 185 
 

JVM-407 HTTP Server 

 

The representation of variables can be defined by means of their attribute. 
 

 The number of digits/characters used for representing a variable can be 
defined by the character "#". 

 Prefix "0" allows to output leading zeroes. This option applies to the 
following register types: INT, INTX and REAL. 

 Prefix "+" allows to output a sign. This option applies to the following 
register types: INT, and REAL. 

 Prefixing a blank allows to output a space character for positive values. 
This option applies to the following register types: INT, and REAL. 

 

The variable name begins with a capital "R" followed by the register number. 
The following types are possible: 
 

Type Notation 

INT Integer decimal 

INTX Integer hexadecimal 

INTB Integer binary 

BOOL Register content = 0 --> Display: 0 
Register content != 0 --> Display: 1 

REAL Floating point decimal 

STRING Text register 
 
Standard type: INT 
 
Example: 

<JW:DTAG name="R1000250" type="REAL" format="+0####.###" 
factor="3.25" offset="500" /> 

 
Result: 
The content of register 1000250 is multiplied by 3.25, then, 500 is added to 
the product, and the result is displayed with sign and at least five integer 
positions. Leading zeros are added if necessary. Furthermore, three decimal 
positions are inserted. 
 

The variable name begins with a capital "F" followed by the flag number. 
The following types are possible: 
 

Type Notation 

BOOL Flag = 0 --> Display: 0 
Flag = 1 --> Display: 1 

STRING Flag = 0 --> Display: FALSE 
Flag = 1 --> Display: TRUE 

 
Standard type: BOOL 
 

Format Definition 

Registers / Text 
Registers 

Flags 



 

186 Jetter AG 
 

10  HTTP Server 

Example: 

<JW:DTAG name="F100" type="STRING" format="#" /> 

 
Result: 
The state of flag 100 is inserted as string "T" or "F". 
 

The variable name begins with a capital "I" followed by the input number. 
The following types are possible: 
 

Type Notation 

BOOL Input = 0 --> Display: 0 
Input = 1 --> Display: 1 

STRING Input = 0 --> Display: OFF 
Input = 1 --> Display: ON 

 
Standard type: BOOL 
 
Example: 

<JW:DTAG name="I100000308" type="STRING" /> 

 
Result: 
The state of input 100000308 on the CPU is inserted as string "ON" or "OFF". 
 

The variable name begins with a capital "O" followed by the output number. 
The following types are possible: 
 

Type Notation 

BOOL Output = 0 --> Display: 0 
Output = 1 --> Display: 1 

STRING Output = 0 --> Display: OFF 
Output = 1 --> Display: ON 

 
Standard type: BOOL 
 
Example: 

<JW:DTAG name="O100000308" /> 

 
Result: 
The state of output 100000308 is inserted as "1" or "0". 
 

Access via pointer register is realized by inserting the capital letter "P" in front 
of the variable name. In each case the value of the variable is displayed the 
number of which corresponds to the content of the register specified in the 
variable name. 
 

Inputs 

Outputs 

Access via Pointer 
Register 



 

Jetter AG 187 
 

JVM-407 HTTP Server 

Examples: 

<JW:DTAG name="PR1000300" /> 

Result: The content of the register is displayed whose number is contained in 
register 1000300. 
 
<JW:DTAG name="PF1000300" /> 

Result: The state of the flag is displayed whose number is contained in 
register 1000300. 
 
<JW:DTAG name="PI1000300" /> 

Result: The state of the input is displayed whose number is contained in 
register 1000300. 
 
<JW:DTAG name="PO1000300" /> 

Result: The state of the output is displayed whose number is contained in 
register 1000300. 
 

To specify the number of the variable to be displayed it is also possible to add 
a constant value or another register content to the pointer register value. 
 
Examples: 

<JW:DTAG name="PR1000300 + 100" /> 

Result: The content of the register is displayed whose number results from the 
addition of the content of register 1000300 and the value 100. 
 
<JW:DTAG name="PR1000300 + R1000100" /> 

Result: The content of the register is displayed whose number results from the 
addition of the content of register 1000300 and the content of register 
1000100. 
 
<JW:DTAG name="PF1000300 + 100" /> 

Result: The state of the flag is displayed whose number results from the 
addition of the content of register 1000300 and the value 100. 
 
<JW:DTAG name="PF1000300 + R1000100" /> 

Result: The state of the flag is displayed whose number results from the 
addition of the content of register 1000300 and the content of register 
1000100. 
 
<JW:DTAG name="PI1000300 + 100" /> 

Result: The state of the input is displayed whose number results from the 
addition of the content of register 1000300 and the value 100. 
 
<JW:DTAG name="PI1000300 + R1000100" /> 

Result: The state of the input is displayed whose number results from the 
addition of the content of register 1000300 and the content of register 
1000100. 
 

Access via Pointer 
Register and Offset 



 

188 Jetter AG 
 

10  HTTP Server 

<JW:DTAG name="PO1000300 + 100" /> 

Result: The state of the output is displayed whose number results from the 
addition of the content of register 1000300 and the value 100. 
 
<JW:DTAG name="PO1000300 + R1000100" /> 

Result: The state of the output is displayed whose number results from the 
addition of the content of register 1000300 and the content of register 
1000100. 

 
 



 

Jetter AG 189 
 

JVM-407 HTTP Server 

Example of an HTML page 

Current realtime controller values are to be inserted into an HTML page. 
The HTML page is then to be displayed in a browser using the Server Side 
Includes feature of the HTTP server. 
 

<JC:DTAG xmlns:JC="http://jetter.de/ssi/jetcontrol" /> 

<html> 

 

<head> 

<meta http-equiv="Content-Type" content="text/html; 
charset=windows-1252"> 

<meta name="GENERATOR" content="Microsoft FrontPage 4.0"> 

<meta name="ProgID" content="FrontPage.Editor.Document"> 

<title>Index</title> 

</head> 

 

<body> 

Hello World,&nbsp; 

<p>Actual controller values can be inserted into an html page like 
this:&nbsp;</p> 

<p>Register 201000 = <JC:DTAG name="R201000" type = INT 
format="+####" />, 

or Hex: 0x<JC:DTAG name="PR201000+10" type="INTX" format="0###" />, 

or maybe that way <JC:DTAG name="R201000" type="BOOL" />, if only 
boolean queries are used. 

But binary is also possible: <JC:DTAG name="R201000" type="INTB" 
format=######## />b.&nbsp;</p> 

<p>Strings could also be defined "<JC:DTAG name="R201000" 
type="STRING" />".&nbsp;</p> 

<p>A real number looks as follows: <JC:DTAG name="R1001500" 
type="REAL" /> 

or this way <JC:DTAG name="R1001500" type="REAL" factor="1.3" 
format="###.##" />.&nbsp;</p> 

<p>The value of a flag is represented as follows: <JC:DTAG name="F10" 
/> 

or <JC:DTAG name="PF1000000" type="STRING" />.&nbsp;</p> 

<p>For inputs and outputs by analogy: <JC:DTAG name="PI1000130" 
type="BOOL" /> 

or <JC:DTAG name="100000205" type="STRING" />.&nbsp;</p> 

<p>R201000 = <JC:DTAG name="R201000" type="INT" 
format="+0##########" />&nbsp;</p> 

<p>Regards&nbsp;</p> 

<p>Your JetControl</p> 

</body> 

 

</html> 

 
 

Task 

Action 

http://jetter.de/ssi/jetcontrol




 

Jetter AG 191 
 

JVM-407 Programming 

11 Programming 

This chapter is for supporting you in programming the HMI JVM-407 in the 
following fields of activity: 
 

 Programming additional functions 
 

To be able to program the HMI JVM-407 the following prerequisites must be 
fulfilled: 
 

 The HMI is connected to a PC. 
 The programming tool JetSym is installed on the PC. 
 

 

Topic Page 
Abbreviations, Module Register Properties and Formats ........................... 192 
Memory Overview ....................................................................................... 193 
Inputs and Outputs ..................................................................................... 205 
Realtime Clock (RTC) .................................................................................. 211 
Runtime Registers ...................................................................................... 215 
Monitoring the Interface Activity.................................................................. 219 
E-Mail .......................................................................................................... 224 
Modbus/TCP ............................................................................................... 249 
User-programmable IP Interface ................................................................ 268 
User-Programmable CAN-PRIM Interface ................................................. 296 

 
 
 

Purpose of this Chapter 

Prerequisites 

Contents 



 

192 Jetter AG 
 

11  Programming 

Abbreviations, Module Register Properties and Formats 

The abbreviations used in this document are listed in the following table: 
 

Abbreviation Meaning 

R 100 Register 100 

MR 150 Module register 150 

 

Each module register is characterized by certain properties. For many module 
registers most properties are identical. For example, their value after reset is 
0. In the following description, module register properties are mentioned only if 
a property deviates from the following default properties. 
 

Module Register Properties Default property for most module registers 

Access Read / write 

Value following a reset 0 or undefined (e.g. release number) 

Takes effect Immediately 

Write access Always 

Data type Integer 

 

The number formats used in this document are listed in the following table: 
 

Notation Number Format 

100 Decimal 

0x100 Hexadecimal 

0b100 Binary 

 

The notation for sample programs used in this document is listed in the 
following table: 
 

Notation Meaning 
Var, When, Task Key words 
BitClear(); Instructions 
100 0x100 0b100 Constant numerical value 

// This is a comment Comments 

// ... Further program processing 

 
 

Abbreviations 

Module Register 
Properties 

Number Formats 

JetSym Sample 
Programs 



 

Jetter AG 193 
 

JVM-407 Programming 

11.1 Memory Overview 

The JVM-407 features several types of program and data memories. There is 
volatile memory that requires power to maintain the stored information, and 
non-volatile memory which does not require power to maintain the stored 
information. The memory is located directly in the CPU or in separate memory 
or I/O modules. 
This chapter gives an overview of the available memory. 
 

 

Topic Page 
Operating System Memory ......................................................................... 194 
File System Memory ................................................................................... 195 
Application Program Memory ..................................................................... 196 
Memory for Volatile Application Program Variables .................................... 197 
Memory for Non-Volatile Application Program Registers ........................... 198 
Memory for Non-Volatile Application Program Variables ............................ 199 
Special Registers ........................................................................................ 201 
Inputs and Outputs ..................................................................................... 202 
Flag ............................................................................................................. 203 

 
 
 

Introduction 

Contents 



 

194 Jetter AG 
 

11  Programming 

Operating System Memory 

The OS is stored to a non-volatile flash memory in the CPU. Therefore, the 
OS can be executed immediately after the JVM-407 is powered up. 
 

 Internal flash memory for storing the OS 
 Internal volatile RAM for storing OS data 
 

 The user is not allowed to directly access the OS memory.  
 Changes to the OS can be made by means of an OS update. 
 

 
 Updating the Operating System on page 336 

 
 

Introduction 

Features 

Memory Access 

Related Topics 



 

Jetter AG 195 
 

JVM-407 Programming 

File System Memory 

The file system memory is for storing data and program files. 
 

 Internal flash disk and SD memory card 
 Non-volatile 
 Slow access: milliseconds up to seconds 
 Limited number of write/delete cycles: approx. 1 million 
 Internal flash disk size: 12.875 MBytes 
 SD card size: 32 MByte to 4 GByte 
 

 by operating system 
 by JetSym 
 via FTP connection 
 by e-mail client 
 by browser (via HTTP server) 
 by means of file commands from within the application program  

 
 

Introduction 

Features 

Memory Access 



 

196 Jetter AG 
 

11  Programming 

Application Program Memory 

By default, the application program is uploaded from JetSym to the HMI and is 
stored to it. 
 

 Stored as file within the file system 
 Default directory: "/app" 
 files may also be stored to other directories (or on SD card) 
 Size: 256 KByte max. 
 

 by operating system 
 by JetSym 
 via FTP connection 
 by means of file commands from within the application program  
 

 
 Application Program on page 343 

 
 

Introduction 

Features 

Memory Access 

Related Topics 



 

Jetter AG 197 
 

JVM-407 Programming 

Memory for Volatile Application Program Variables 

Volatile variables are used to store data which may be discarded when the 
JVM-407 is de-energized. 
 

 Global variables which are not assigned to permanent addresses (not %VL 
or %RL) 

 Local variables 
 Variables are stored in a compact way 
 Variables are initialized with value 0 when they are created 
 

 by JetSym 
 from within the application program  
 

In the following program a global variable is incremented by 1 every 2 
seconds: 
 
#Include "Platforms.stxp" 

 

Var 

    Count:    Int; 

End_Var; 

 

Task Increment Autorun 

    Loop 

        Inc(Count); 

        Delay(T#2s); 

    End_Loop; 

End_Task; 

 

The JetSym setup pane displays the content of the variable. 
 

 
 
 

Number Description Function 

1 Present content of the 
variable 

The content of the variable is incremented by 
1 every 2 seconds. 

 
 

Introduction 

Properties 

Memory Access 

JetSym STX Program 

Setup Pane 



 

198 Jetter AG 
 

11  Programming 

Memory for Non-Volatile Application Program Registers 

Non-volatile registers are used to store data which must be maintained when 
the JVM-407 is de-energized. 
 

 Global variables which are assigned to permanent addresses (%VL) 
 Register variables always occupy 4 bytes 
 Register variables are not initialized by the operating system 
 Number of register variables: 6.000 
 Register numbers: 1,000,000 through 1,005,999 
 

 by JetSym 
 by e-mail client 
 by browser (via HTTP server) 
 from HMIs 
 from within the application program 
 from other controllers/HMIs 
 

In the following program a register variable is incremented by 1 every time the 
application program is launched. Thus, it is used to count the number of 
program launches. 
 
Var 

    ProgramStartCounter:    Int At %VL 1000000; 

End_Var; 

 

Task Work Autorun 

    ProgramStartCounter := ProgramStartCounter + 1; 

    Loop 

        // ... 
    End_Loop; 

End_Task; 

 

The JetSym setup pane displays the content of the register variable. 
 

 
 

Number Content Description 

1 Present content of the 
register variable 

The content of the register variable is 
incremented by 1 every time the program is 
launched. 

 
 

Introduction 

Properties 

Memory Access 

JetSym STX Program 

Setup Pane 



 

Jetter AG 199 
 

JVM-407 Programming 

Memory for Non-Volatile Application Program Variables 

Non-volatile variables are used to store data which must be maintained when 
the JVM-407 is de-energized. 
 

 Global variables which are assigned to permanent registers (%RL) 
 Variables are stored in a compact way 
 Size: 24,000 bytes 
 Register numbers: 1,000,000 through 1,005,999 
 

 by JetSym 
 from HMIs 
 from within the application program 
 

In the following program 4 non-volatile variables are incremented every 
second. The working range of the counters is between 0 and 255 (variable 
type: byte). For these 4 variables the 4 bytes of register 1000010 are used. 
 
Var 

    Cnt1, Cnt2, Cnt3, Cnt4:    Byte At %RL 1000010; 

End_Var; 

 

Task Count4 Autorun 

    Loop 

        Inc(Cnt1); 

        Inc(Cnt2, 2); 

        Inc(Cnt3, 5); 

        Inc(Cnt4, 10); 

        Delay(T#1s); 

    End_Loop; 

End_Task; 

 

The JetSym setup pane displays the content of the variable. As the type of the 
4 counters is byte, this will result in counter overflow after a relatively short 
time: 
 

 
 
 

Number Content Description 

1 Present content of the 
variable Cnt1 

The content of the variable is incremented by 
1 every second. 

Introduction 

Properties 

Memory Access 

JetSym STX Program 

Setup Pane 



 

200 Jetter AG 
 

11  Programming 

Number Content Description 

2 Present content of the 
variable Cnt2 

The content of the variable is incremented by 
2 every second. 

3 Present content of the 
variable Cnt3 

The content of the variable is incremented by 
5 every second. 

4 Present content of the 
variable Cnt4 

The content of the variable is incremented by 
10 every second. 

 
 



 

Jetter AG 201 
 

JVM-407 Programming 

Special Registers 

Special registers are used to control OS functions and to retrieve status 
information. 
 

 Global variables which are assigned to permanent addresses (%VL) 
 When the operating system is launched, special registers are initialized 

using default values. 
 Register numbers: 100,000 through 999,999 
 

 by JetSym 
 via e-mail client 
 by browser (via HTTP server) 
 from HMIs 
 from within the application program 
 from other controllers 
 

In the following program 2 special registers are used. The first is the special 
register for status LEDs, the second is the special register for digipot values. 
In this task, the value is just copied from the special register containing digipot 
values to the special registers assigned to the status LEDS. If the application 
program is running on the HMI and the user turns the digipot, the value 
contained in the digipot special register is displayed by the status LEDs. 
 
Var 

    Digipot:    Int at %VL 363000; 

    Status_LEDs:Int at %VL 362100; 

End_Var; 

 

Task Main Autorun 

 

    Loop 

        Status_LEDs:= Digipot; 

    End_Loop; 

 

End_Task; 

 
 

Introduction 

Properties 

Memory Access 

JetSym STX Program 



 

202 Jetter AG 
 

11  Programming 

Inputs and Outputs 

Inputs and outputs are 1-bit variables. This means they can either have the 
value TRUE or FALSE. 
 

 Global variables assigned to permanent addresses (%IX, %QX) 
 Used for RemoteScan via Modbus/TCP 
 Quantity: 16,000 
 I/O numbers: 20001 through 36000 
 

 by JetSym 
 via e-mail client 
 by browser (via HTTP server) 
 from HMIs 
 from within the application program 
 

The following program is for dimming the background lighting of the HMI if 
input In11 is set. 
 
Var 

    In11        :Bool at %XL 362100.10; 

    //Background lighting 
    BackgroundLighting    :Int at %VL 364000; 

End_Var; 

 

Task Main Autorun 

    Loop 

            // If In11 is set, then 
            If In11 Then 

                //dim background lighting 
                Inc(BackgroundLighting); 

                Delay(T#30ms); 

            End_If; 

    End_Loop; 

End_Task; 

 
 

Introduction 

Properties of Virtual 
Inputs/Outputs 

Memory Access 

JetSym STX Program 



 

Jetter AG 203 
 

JVM-407 Programming 

Flag 

Flags are 1-bit operands. This means they can either have the value TRUE or 
FALSE. 
 

 Global variables assigned to permanent addresses (%MX) 
 Non-volatile 
 Quantity: 256 
 Flag numbers: 0 through 255 
 

 Global variables assigned to permanent addresses (%MX) 
 Non-volatile 
 Overlaid by registers 1000000 through 1000055 
 Quantity: 1,792 
 Flag numbers: 256 through 2047 
 

 Global variables assigned to permanent addresses (%MX) 
 When the operating system is launched, special flags are initialized using 

default values. 
 Quantity: 256 
 Flag numbers: 2048 through 2303 
 

 by JetSym 
 by e-mail client 
 by browser (via HTTP server) 
 from HMIs 
 from within the application program 
 

In the following program, a flag is set when the user presses key F1. If on an 
HMI key F2 is pressed, the flag is reset. As long as this flag is set, special 
register 361000 (Status LED) is incremented. Incrementing of the special 
register continues until the flag is reset. 
 
Var 

    Flag1:        Bool at %MX 1; 

    Input_Button_1: Bool at %XL 361000.0; 

    Input_Button_2: Bool at %XL 361000.1; 

    Status_LEDs:    Int  at %VL 362100; 

End_Var; 

 

Task Main Autorun 

    Flag1:= False; 

    Loop 

        If Input_Button_1 Then 

            Flag1 := True; 

        ElseIf Input_Button_2 Then 

            Flag1:= False; 

Introduction 

Properties of User Flags 

Properties of Overlaid 
User Flags 

Properties of Special 
Flags 

Memory Access 

JetSym STX Program 



 

204 Jetter AG 
 

11  Programming 

        End_IF; 

 

        If Flag1 Then 

            Inc(Status_LEDs); 

            Delay(T#100ms); 

        End_If; 

    End_Loop; 

End_Task; 

 
 



 

Jetter AG 205 
 

JVM-407 Programming 

11.2 Inputs and Outputs 

This chapter covers the programming of inputs and outputs, controls and 
ignition and switching off delay for the JVM-407. 
 

 

Topic Page 
Function Keys ............................................................................................. 206 
Digipot ......................................................................................................... 207 
Digital Inputs and Outputs .......................................................................... 208 
Ignition and Switching Off Delay ................................................................. 209 

 
 
 

Introduction 

Contents 



 

206 Jetter AG 
 

11  Programming 

Function Keys 

The HMI JVM-407 has four function keys F1 to F4. The function keys are 
freely programmable. 
 

In register 361000 of the JVM-407, there is a bit-coded mapping of the 
function keys which can be used for programming. 
 

Prerequisites: 
So that the status LEDs are not also controlled via the JVM-407 inputs, the 
inputs IN1 to IN10 should not be set whilst running the sample program. 
In the following sample program, the function keys are continuously 
interrogated in one task. Pressing one or more keys controls the status LEDs 
assigned in the program.  
 

Var 

    F_Button_Register: Int At %VL 361000;  

 

    Status_Led_1: Bool At %XL 362100.0; 

    Status_Led_2: Bool At %XL 362100.1; 

    Status_Led_3: Bool At %XL 362100.2; 

    Status_Led_4: Bool At %XL 362100.3; 

End_Var; 

 

Task Main Autorun 

    F_Button_Register := 0; 

    Loop 

        If F_Button_Register.0 Then 

             Status_Led_1 := True; 

        Else Status_Led_1 := False; 

        End_If; 

        If F_Button_Register.1 Then 

             Status_Led_2 := True; 

        Else Status_Led_2 := False; 

        End_If; 

        If F_Button_Register.2 Then 

             Status_Led_3 := True; 

        Else Status_Led_3 := False; 

        End_If; 

        If F_Button_Register.3 Then 

             Status_Led_4 := True; 

        Else Status_Led_4 := False; 

        End_If; 

    End_Loop; 

End_Task; 

 
 

Introduction 

Special Registers 

JetSym STX Program 



 

Jetter AG 207 
 

JVM-407 Programming 

Digipot 

The JVM-407 has a digipot with pushbutton feature, which offers a convenient 
input option. The following provides details of the digipot's special registers 
with a corresponding sample program. 
 

The following special registers exist for the digipot: 
 

Registers Description 

363000 This register counts up and down when the digipot is rotated and 
contains the current reading. Here, the following applies: 

 Rotate digipot clockwise = register incremented 
 Rotate digipot counter-clockwise = register decremented 

363001 Bit 0: 0 = Digipot not pressed 
Bit 0: 1 = Digipot pressed 

363002 The lower limit for the digipot reading is specified here. If the digipot is 
further rotated counter-clockwise, the register 363000 remains at this 
minimum value. 

363003 The upper limit for the digipot reading is specified here. If the digipot is 
further rotated clockwise, the register 363000 remains at this maximum 
value. 

 

In the following sample program, the background lighting for the JVM-407 is 
dimmed using the digipot. An upper and lower limit for the digipot is specified 
for this purpose. Pressing the digipot sets full background lighting. 
 
Var 

    Digipot_Count    :  Int At %VL 363000; 

    Digipot_Limit_min:  Int At %VL 363002; 

    Digipot_Limit_max:  Int At %VL 363003; 

    Digipot_Button   :  Int At %VL 363001; 

    BackgroundLighting: Int At %VL 364000; 

End_Var; 

 

Task Main Autorun 

    Digipot_Count := 0; 

    Digipot_Limit_max := 17; 

    Digipot_Limit_min := 0; 

    Loop 

      If Digipot_Button Then 

                 BackgroundLighting := 255; 

            Else BackgroundLighting := Digipot_Count*15; 

      End_If 

    End_Loop 

End_Task; 

 
 

Introduction 

Digipot Registers 

JetSym STX Program 



 

208 Jetter AG 
 

11  Programming 

Digital Inputs and Outputs 

The HMI JVM-407 has the following inputs and outputs: 
 

 15 digital inputs. Ten of these have a fixed connection with status LEDs 
and five are freely programmable. 

 1 digital output, e.g. to control a bypass relay. However, outputs are always 
set simultaneously to enable provision of a higher current. 

 

The following registers are available for the digital inputs and outputs: 
 

Register Description 

362100 Bit-coded mapping of digital inputs IN1 - IN15.  
IN1 - IN10 are linked to the JVM-407 status LEDs. 
Example: 
Bit 0 = 1: IN1 in and status LED 1 on. 

362200 Bit 0 of the register is responsible for setting the digital output. 
Bit 0 = 1: Digital output is set. 

 

 

In this sample program, the freely programmable input IN11 is continuously 
interrogated. If this input is set, then the 2 digital outputs are set, which serve 
to control e.g. a bypass relay. 
 
Var 

    IN11:    Bool At %XL 362100.10; 

    // Digital outputs 
    Output:  Bool At %XL 362200.0; 

End_Var; 

 

Task Main Autorun 

    Loop 

        // If In11 is set, then 
        If IN11 Then 

            // Set the digital outputs 
            Output := True; 

            Delay(T#100ms); 

        End_If; 

    End_Loop;  

End_Task; 

 
 

Introduction 

Special Registers 

JetSym STX-Program 



 

Jetter AG 209 
 

JVM-407 Programming 

Ignition and Switching Off Delay 

The ignition and shutdown function are detailed here. 
 

The special register 361100 of the JVM-407 is responsible for prompting 
ignition. Here, the following applies: 
 

If ... ... Then ... 

Bit 0 = 0 Ignition is switched on and voltage is 
applied to KL 15 ignition (+). 

Bit 0 = 1 Ignition is switched off and no voltage is 
applied to KL 15 ignition (+). 

 

The HMI has the following default settings in connection with ignition: 
 

If ... ...and... ... Then ... 

the power supply is 
connected to the HMI 

the ignition is off the HMI does not boot up. 

the power supply is 
connected to the HMI 

the ignition is on the HMI boots up. 

the HMI is running the ignition is switched 
off (not the power supply) 

then the HMI remains 
switched on. 

 

Notwithstanding the default ignition function, the Shutdown function provides 
the following options: 
 

 The HMI can be individually shut down. 
 The HMI can be restarted. 
 

Function Shutdown (Reboot:Bool) :Bool; 
 

 

The Shutdown () function has the following parameters. 
 

Parameter Description Value 

Reboot System restart: 
System shutdown: 

True 
False 

 

Introduction 

Special Registers 

Default Ignition Function 

Shutdown Function - 
Options 

Function Declaration 

Function Parameters 



 

210 Jetter AG 
 

11  Programming 

 

The function transfers the following return values to the higher-level program. 
 

Return Value 

0 ok 

-1 Ignition is still switched on 

 

If the ignition is still switched on, the device will not be switched off. However, 
a restart will always be performed and is not dependent on the ignition. 
 

In the sample program, the Shutdown () function is executed after 3 seconds, 
if the ignition of the vehicle is switched off. The Reboot parameter for the 
Shutdown () function has the value false. This means that the device is 
switched off. 
 
Var 

 

    Ignition: Int At %VL 361100; 

End_Var; 

 

Task Ign Autorun 

    Loop 

     When Ignition Continue; 

            Delay(3000); 

            Shutdown(False); 

    End_Loop; 

End_Task; 

 
 

Return Value 

Note 

JetSym STX Program 



 

Jetter AG 211 
 

JVM-407 Programming 

11.3 Realtime Clock (RTC) 

The JVM-407 is equipped with a timing circuit (realtime clock for date and 
time). This clock continues to work even when the JVM-407 is deenergized. 
 

The realtime clock is used by the OS for the following functions: 
 

 File date and time when creating a file 
 

When using the realtime clock the following restrictions have to be taken into 
account: 
 

 When the JVM-407 is deenergized the power reserve is limited. 
 The RTC has no automatic daylight savings time function  
 

 

Topic Page 
Technical Data ............................................................................................ 212 
Sample Program for Real-Time Clock ........................................................ 213 

 
 
 

Introduction 

Usage by OS 

Restrictions 

Contents 



 

212 Jetter AG 
 

11  Programming 

Technical Data 

 

Parameter Description 

Power reserve 4 years 

Deviation Max. 1 minute per month 
 

 

 

If the HMI has been de-energized for a longer period of time and the RTC 
power reserve has elapsed, it takes the following actions when re-booting: 
 

Stage Description 

1 During the boot process the HMI detects that the power reserve has 
elapsed. 

2 Date and time are set to their default values: 
Date: Saturday, January 01, 2000 
Time: 0:00 a.m. 

 

 

In as-delivered condition the date is Saturday, 01 January, 2000. 
 

 

Technical Data - 
Real-Time Clock 

 

Behavior when the 
Power Reserve has 
Elapsed 

As-Delivered Condition 



 

Jetter AG 213 
 

JVM-407 Programming 

Sample Program for Real-Time Clock 

Actual date and time from the JVM-407 are to be displayed in JetSym. 
 

An application program task reads out the realtime clock at regular intervals 
and outputs the readings properly formatted as trace message. These 
readings can be displayed in JetSym when trace mode has been activated. 
 

#Include "Platforms.stxp" 

 

Type 

    // structure of RTC buffer 
    TimeAndDate:   Struct 

                    Second:      Int; 

                    Minute:      Int; 

                    Hour:        Int; 

                    DayOfWeek:   Int; 

                    Day:         Int; 

                    Month:       Int; 

                    Year:        Int; 

                    Trigger:     Int; 

                    End_Struct; 

End_Type; 

     

Var 

    RTCregs:    TimeAndDate At %VL 102921; 

End_Var; 

     

Task ShowTimeAndDate Autorun 

    Var 

        Dummy:    Int; 

    End_Var; 

     

    Loop 

        // wait one second 
        Delay(T#1s); 

        // copy actual time and date to buffer 
        Dummy := RTCregs.Trigger; 

     

        // show day of week 
        Case RTCregs.DayOfWeek Of 

            0:  Trace('Sunday'); 

                Break; 

            1:  Trace('Monday'); 

                Break; 

            2:  Trace('Tuesday'); 

                Break; 

            3:  Trace('Wednesday'); 

                Break; 

Task 

Solution 

JetSym STX Program 



 

214 Jetter AG 
 

11  Programming 

            4:  Trace('Thursday'); 

                Break; 

            5:  Trace('Friday'); 

                Break; 

            6:  Trace('Saturday'); 

                Break; 

        End_Case; 

        // show date 
        Trace(StrFormat(' , %2d.%02d.%4d , ',  

                        RTCregs.Day,  

                        RTCregs.Month,  

                        RTCregs.Year + 2000)); 

        // show time (plus cr/lf) 
        Trace(StrFormat('%2d:%02d:%02d$n',  

                        RTCregs.Hour,  

                        RTCregs.Minute,  

                        RTCregs.Second)); 

    End_Loop; 

End_Task; 

 
 



 

Jetter AG 215 
 

JVM-407 Programming 

11.4 Runtime Registers 

The JVM-407 provides several registers which are incremented by the 
operating system at regular intervals. 
 

These registers can be used to easily carry out time measurements in the 
application program. 
 

 

Topic Page 
Description of Runtime Registers ............................................................... 216 
Sample Program - Runtime Registers ........................................................ 218 

 
 
 

Introduction 

Application 

Contents 



 

216 Jetter AG 
 

11  Programming 

Description of Runtime Registers 

The following registers are used in this manual: 
 

Registers Description 

R 201000 Application time base in milliseconds 

R 201001 Application time base in seconds 

R 201002 Application time base in R 201003 * 10 milliseconds 

R 201003 Application time base unit for R 201002 

R 201004 System time base in milliseconds 

 
 

Application time base in milliseconds 

Every millisecond this register is incremented by 1. 
 

Register properties 

Values -2,147,483,648 ... 2,147,483,647 (with overflow function) 

 
 

Application time base in seconds 

Every second this register is incremented by 1. 
 

Register properties 

Values -2,147,483,648 ... 2,147,483,647 (with overflow function) 

 
 

Application time base in application time base units 

Every [201003] * 10 milliseconds this register is incremented by 1. Using the 
reset value in register 201003 of 10, this register is incremented every 
100 milliseconds. 
 

Register properties 

Values -2,147,483,648 ... 2,147,483,647 (with overflow function) 

 
 

Overview of Registers 

R 201000 

R 201001 

R 201002 



 

Jetter AG 217 
 

JVM-407 Programming 

 

Application time base unit for R 201002 

This register contains the multiplier for runtime register R 201002. 
 

Register properties 

Values 1 ... 2,147,483,647 (* 10 ms) 

Value following reset 10 (--> 100 ms) 

Enabling Conditions after at least 10 ms 

 
 

System time base in milliseconds 

Every millisecond this register is incremented by 1. 
 

Register properties 

Values -2,147,483,648 ... 2,147,483,647 (with overflow function) 

Access Read access 

 
 
 

R 201003 

R 201004 



 

218 Jetter AG 
 

11  Programming 

Sample Program - Runtime Registers 

Measure how much time it takes to store variable values to a file. 
 

Before storing the values register 201000 is set to 0. Once the values have 
been stored, from this register can be seen how much time it took to store the 
values [in milliseconds]. 
 

Var 

    DataArray:    Array[2000] Of Int; 

    File1:        File; 

    WriteTime:    Int; 

    WriteIt:      Bool; 

     

    MilliSec:     Int At %VL 201000; 

End_Var; 

     

Task WriteToFile Autorun 

    Loop 

        // clear start flag 
        WriteIt := False; 

        // wait until start flag set by user 
        When WriteIt Continue; 

        // open file in write mode 
        If FileOpen(File1, '/Test.dat', fWrite) Then 

            // restart timer register 
            MilliSec := 0; 

            // write array data to file 
            FileWrite(File1, DataArray,  

                      SizeOf(DataArray)); 

            // capture time 
            WriteTime := MilliSec; 

            FileClose(File1); 

            // show measured time 
            Trace(StrFormat('Time : %d [ms]$n',  

                            WriteTime)); 

        Else 

            // show error message 
            Trace('Unable to open file!$n'); 

        End_If; 

    End_Loop; 

End_Task; 

 
 

Task 

Solution 

JetSym STX Program 



 

Jetter AG 219 
 

JVM-407 Programming 

11.5 Monitoring the Interface Activity 

Several servers for variables have been integrated into the HMI to make 
variables used within the HMI accessible from outside. These servers support 
several protocols on different interfaces. The servers do not require any 
programming in the application program, but process requests from external 
clients on their own. 
This chapter explains one possibility for detecting from within the application 
program whether communication with the servers takes places through these 
interfaces. 
 

The following interface activitites can be monitored: 
 

 JetIP server via Ethernet interface 
 STX debug server via Ethernet interface 
 

The monitoring function for interface activities can be used, amongst others, 
for the following scenarios: 
 

 Plants requiring process visualization to ensure safe operation can be 
transferred into a save condition if communications fails. 

 When the service technician connects an HMI, the application program 
automatically displays additional status information. 

 

 

Topic Page 
Operating Principle ..................................................................................... 220 
Programming .............................................................................................. 222 

 
 
 

Introduction 

Monitored Interface 
Activities 

Application 

Contents 



 

220 Jetter AG 
 

11  Programming 

Operating Principle 

The activity of a client communicating with a server in the JVM-407 can be 
monitored from the application program by means of two special flags and one 
special register per interface. 
 

The diagram below shows the interdependence between interface activity and 
the two special flags, as well as the special register: 
 

Telegrams

OS Flag

User Flag

Timeout

Application program:
WHEN OS_FLAG Continue
User_FLAG := TRUE;

1

2

3

4
 

 
 

Number Element Function 

1 Telegrams Requests from client to server 

2 OS flag OS flag set by the JVM-407 once a request has 
been received. 

3 User flag The user flag should be set in the application 
program once the OS flag has been set. This 
indicates that the connection has temporarily 
been disrupted even if the OS flag is reset very 
quickly. 

4 Timeout Time of inactivity after which both special flags 
are reset by the OS. This time can be set in a 
special register. 

 

Interface activities are monitored as follows: 
 

Stage Description 

1 To activate monitoring mode the desired value is entered into the timeout 
register from within the application program. 

2 When the JVM-407 receives the next telegram, it sets the corresponding 
OS flag. 

3 Once the OS flag has been set, the corresponding user flag is set in the 
application program. 

4 Each new telegram causes the timeout to restart. 

5 If telegrams cease to arrive, both special flags are reset by the JVM-407 
upon expiry of the timeout interval. 

Introduction 

Overview 

Description 



 

Jetter AG 221 
 

JVM-407 Programming 

6 The application program detects that the special flags have been reset 
and takes appropriate action. 

7 When further telegrams start to arrive, the JVM-407 sets the 
corresponding OS flag. The user flag, however, remains reset. 

 
 



 

222 Jetter AG 
 

11  Programming 

Programming 

The following registers and flags are used in this manual: 
 
Timeout Registers 
 

Register Interface Application 

R 203000 JetIP via Ethernet  Visualization 
 Networking 

R 203005 STX debug via Ethernet  JetSym via Ethernet 
 

 
Special Flags 
 

Flag Interface Application 

F 2088 JetIP via Ethernet OS flag 

F 2089 User-defined flag 

F 2098 STX debug via Ethernet OS flag 

F 2099 User-defined flag 
 
 

Timeout in the case of JetIP via Ethernet 

This register contains the timeout for the JetIP server via Ethernet in 
milliseconds. 
 

Register properties 

Values 0 ... 2,147,483,647 [ms] 

Value after reset 0 (monitoring disabled) 

 
 

Timeout in the case of STX debug via Ethernet 

This register specifies the timeout for STX debug server via Ethernet in 
milliseconds. 
 

Register properties 

Values 0 ... 2,147,483,647 [ms] 

Value after reset 0 (monitoring disabled) 

 
 

Registers/Flags - 
Overview 

R 203000 

R 203005 



 

Jetter AG 223 
 

JVM-407 Programming 

 

To enable monitoring of interface activities, proceed as follows: 
 

Step Action 

1 Enter the desired value into the timeout register of this interface. 

2 Wait until the OS flag of this interface is set by the HMI. 

3 Set the corresponding user flag. 
 
 

To detect a timeout, proceed as follows: 
 

Step Action 

1 Enable monitoring of interface activities (see above). 

2 Wait until the user flag of this interface is reset by the HMI. 
Result: A timeout has occurred. 

3 Check the corresponding OS flag 
 

If ... ... Then ... 

the OS flag is set the connection was temporarily 
disrupted 

the OS flag is reset the connection is still disrupted 

  
 

 
 

Enabling the Monitoring 
Function 

Timeout Detection 



 

224 Jetter AG 
 

11  Programming 

11.6 E-Mail 

E-mails are created using template files into which variable values are 
inserted as required when the e-mail is sent. E-mails are sent from the HMI to 
an e-mail server which will then forward the message. 
This chapter gives a description on how to configure the e-mail feature in the 
HMI JVM-407, and on how to create and send e-mails. 
 

To perform the functions described in this chapter, the following skills are 
required: 
 

 Since files are used to configure the e-mail feature, and e-mails as such 
are based on these files, the user must be familiar with the file system of 
the HMI. 

 The user must be familiar with IP networks. 
 

 

Topic Page 
Configuring the E-Mail Feature ................................................................... 225 
Creating E-Mails ......................................................................................... 233 
Sending an E-Mail ....................................................................................... 240 
Registers ..................................................................................................... 244 

 
 
 

Introduction 

Required Programmer's 
Skills 

Contents 



 

Jetter AG 225 
 

JVM-407 Programming 

11.6.1 Configuring the E-Mail Feature 

This chapter gives a description on how to configure the e-mail feature so as 
to allow sending of e-mails from within the application program. 
During the boot process, the JVM-407 reads out configuration data from the 
file "/EMAIL/email.ini". 
 

When creating the configuration file, the following requirements have to be 
met: 
 

 The IP address of the e-mail server must be known. 
 If the IP address of the e-mail server is not known, name resolution through 

a DNS server must be possible (refer to Using Names for IP Addresses on 
page 79). 

 The log-on and authentication parameters at the e-mail server must be 
known. 

 
To obtain this information contact your network administrator. 
 

 

Topic Page 
Configuration File "/EMAIL/email.ini" .......................................................... 226 
Section [SMTP] ........................................................................................... 227 
Section [POP3] ........................................................................................... 229 
Section [DEFAULT] ..................................................................................... 231 
Configuration File - Examples .................................................................... 232 

 
 
 

Introduction 

Prerequisites 

Contents 



 

226 Jetter AG 
 

11  Programming 

Configuration File "/EMAIL/email.ini" 

The configuration of the e-mail client in the JVM-407 is based on the contents 
of the file "/EMAIL/email.ini". This file is read out only when the controller is 
booting. 
 

This configuration file is a text file the entries of which are grouped into several 
sections. 
 

 These sections are for setting values which are then used by the e-mail 
client. 

 Blank lines can be inserted as required. 
 The following characters precede a comment line: "!", "#" or ";". 
 

The configuration file contains up to 3 sections. Section [SMTP] is mandatory. 
The other sections have to be created only in case they are actually required. 
 

Section Configuration Values 

[SMTP]  IP address and port number of SMTP server 
 Log-on parameters 

[POP3]  IP address and port number of POP3 server 
 Log-on parameters 

[DEFAULT]  Name of an e-mail template file containing default values 
 

 
 

Introduction 

File Structure 

Sections 



 

Jetter AG 227 
 

JVM-407 Programming 

Section [SMTP] 

In this section the parameters are specified which are used to connect to the 
SMTP server. 
 

[SMTP] 

IP       = 192.168.40.1 

PORT     = 25000 

HELO     = JetControl_2 

USER     = JetControl0815 

PASSWORD = MyPassWord 

 

This type of authentication requires the JVM-407 to log on at the SMTP server 
before an e-mail can be sent. During the logon process USER and 
PASSWORD have to be entered. JetControl supports the following 
authentication methods: 
 

 LOG-ON 
 PLAIN 
 CRAM-MD5 
 

 

IP 

In the given example 192.168.40.1 

Description IP address of the SMTP server; 
can also be specified as name. 

Allowed values  > 1.0.0.0  
 < 223.255.255.255 

Illegal values  Network address 
 Broadcast address 

In case of illegal value or 
missing entry 

E-mail feature will not be available 

 

PORT 

In the given example 25.000 

Description Port number of SMTP server 

Allowed values  > 0 
 < 65.536 

Illegal values  > 65.335 

In case of missing entry 25 

 

HELO 

In the given example JetControl_2 

Description Name for logging on at the e-mail server 

Allowed values String of 63 characters max. 

Introduction 

Example: 

Authentication 

Configuration Values 

 

 



 

228 Jetter AG 
 

11  Programming 

In case of missing entry When sending the e-mail, the JVM-407 uses the entry 
contained in [FROM] 

 

USER 

In the given example JetControl0815 

Description Log-on name for SMTP authentication. If this entry 
exists, a PASSWORD must be specified, too. 

Allowed values String of 63 characters max. 

In case of missing entry SMTP authentification will not be carried out 
 

PASSWORD 

In the given example MyPassWord 

Description Log-on password for SMTP authentication. If this entry 
exists, a USER must be specified, too. 

Allowed values String of 63 characters max. 

In case of missing entry SMTP authentification will not be carried out 
 

 
 



 

Jetter AG 229 
 

JVM-407 Programming 

Section [POP3] 

In this section the parameters are specified which are used to connect to the 
POP3 server. 
This section is only needed if the e-mail server, to which the e-mails are to be 
sent, requires authentication through POP3-before-SMTP. 
 

[POP3] 

IP       = 192.168.40.1 

PORT     = 25100 

USER     = JetControl4711 

PASSWORD = Pop3PassWord 

 

This type of authentication requires the JVM-407 to establish a connection to 
the POP3 server first. During this process USER and PASSWORD have to be 
entered. After that, the SMTP server allows to send e-mails for a given period 
of time (mostly 10 to 30 minutes). 
 

 

IP 

In the given example 192.168.40.1 

Description IP address of POP3 server; 
can also be specified as name. 

Allowed values  > 1.0.0.0  
 < 223.255.255.255 

Illegal values  Network address 
 Broadcast address 

In case of illegal value or 
missing entry 

POP3 log-in will not be carried out 

 

PORT 

In the given example 25.100 

Description Port number of POP3 server 

Allowed values  > 0 
 < 65.536 

Illegal values  > 65.335 

In case of missing entry 110 
 

USER 

In the given example JetControl4711 

Description Log-on name for POP3 authentication. If this entry 
exists, a PASSWORD must be specified, too. 

Allowed values String of 63 characters max. 

In case of missing entry POP3 log-in will not be carried out 
 

Introduction 

Example: 

Authentication 

Configuration Values 

 

 



 

230 Jetter AG 
 

11  Programming 

PASSWORD 

In the given example Pop3PassWord 

Description Log-on password for POP3 authentication. If this entry 
exists, a USER must be specified, too. 

Allowed values String of 63 characters max. 

In case of missing entry POP3 log-in will not be carried out 

 
 
 



 

Jetter AG 231 
 

JVM-407 Programming 

Section [DEFAULT] 

In this section the name of an e-mail template file is specified which contains 
default settings for e-mails. The settings made here will be used when sending 
an e-mail if the corresponding section in an e-mail template is missing. 
 

[DEFAULT] 

MAILCFG = EmailDefaults.cfg 

 

 
 Structure of Template File on page 235 

 
 

Introduction 

Example 

Related Topics 



 

232 Jetter AG 
 

11  Programming 

Configuration File - Examples 

This section contains several examples of the e-mail configuration file 
"/EMAIL/email.ini". 
 

If no authentication is required and the default value is assigned to the IP port 
of the SMTP server, the configuration file must contain only the IP address of 
the SMTP server. 
 

[SMTP] 

IP       = 192.168.40.1 

 

In case the e-mail server requires previous log-on through POP3 and an 
e-mail template containing default setting has been defined: 
 

[SMTP] 

IP       = 192.168.40.1 

 
[POP3] 

IP       = 192.168.40.1 

USER     = JetControl4711 

PASSWORD = Pop3PassWord 

 
[DEFAULT] 

MAILCFG = EmailDefaults.cfg 

 

In case the e-mail server requires an encrypted authentication: 
 

[SMTP] 

IP       = 192.168.40.1 

USER     = JetControl0815 

PASSWORD = MyPassWord 

 
 

Introduction 

Minimum Configuration 

Authentication through 
POP3 Log-on 

Authentification through 
SMTP 



 

Jetter AG 233 
 

JVM-407 Programming 

11.6.2 Creating E-Mails 

This chapter gives a description on how to create e-mails so as to allow 
sending them from within the application program. 
For each e-mail the user has to create an e-mail template file. 
 

 

Topic Page 
Name of the E-Mail Template File .............................................................. 234 
Structure of the E-Mail Template File .......................................................... 235 
Inserting Realtime Controller Values .......................................................... 237 

 
 
 

Introduction 

Contents 



 

234 Jetter AG 
 

11  Programming 

Name of the E-Mail Template File 

The name of an e-mail template file consists of a constant part of the name 
and a variable part. The variable part of the name allows the application 
program to choose an e-mail for sending. 
 

email_#.cfg 

 

Part of the name Description 

email_ Constant prefix 

# Number of e-mail; value between 0 and 255 

.cfg Constant file extension 

 

E-mail template files and the configuration file have to be stored to the same 
directory on the internal flash disk: 
 

/EMAIL 

 

email_0.cfg 

email_37.cfg 

email_255.cfg 

 
 

Introduction 

File Name 

Storage Location 

Examples 



 

Jetter AG 235 
 

JVM-407 Programming 

Structure of the E-Mail Template File 

An e-mail template file is a text file which is divided into sections. When 
sending an e-mail, it is compiled based on the information contained in these 
sections. 
 

 Sections [FROM] and [TO] are mandatory. This information may be 
specified either in the e-mail to be sent or in the e-mail template file 
containing the default settings. 

 All parameters in this section can be tagged with realtime controller values 
(refer to Inserting Realtime Controller Values on page 184). 

 
[FROM] 
Sender 
 
[TO] 
Addressee 
 
[CC] 
Additional addressee(s) 
 
[SUBJECT] 
Subject 
 
[ATTACHMENT] 
Complete path and file name 
 
[MESSAGE] 
E-mail message text 
 

 

[FROM] 

Description E-Mail sender 

Comments Please check with your IT administrator which 
information has to be entered here. 

Length 63 characters 

Example [FROM] 
JetControl@jetter.de 

 

[TO] 

Description E-mail addressee 

Comments Several addressees are separated by ";". 

Length 255 characters 

Example [TO] 
service@mydomain.com 

 

Introduction 

E-Mail Template File 
 

Sections 

 

 

 

 

mailto:JetControl@jetter.de
mailto:service@mydomain.com


 

236 Jetter AG 
 

11  Programming 

[CC] 

Description Additional e-mail addressee(s) 

Comments Several addressees are separated by ";". 

Length 255 characters 

Example [CC] 
service@mydomain.com;hotline@mydomain.com 

 

[SUBJECT] 

Description Subject 

Length 255 characters 

Example [SUBJECT] 
Fatal Error 

 

[ATTACHMENT] 

Description Complete name of the file to be attached 

Comments This file must be a text file. 

Length 511 characters 

Example [ATTACHMENT] 
/logfiles/error_report.log 

 

[MESSAGE] 

Description E-mail message text 

Comments Text only message 

Length 65,535 characters 

Example [MESSAGE] 
Have a nice day ! 
JetControl. 

 
 
 

mailto:service@mydomain.com
mailto:hotline@mydomain.com


 

Jetter AG 237 
 

JVM-407 Programming 

Inserting Realtime Controller Values 

Actual realtime controller values can be integrated into parameter entries 
within the sections via tag functions. This way, the contents respectively states 
of registers, text registers, and flags can be displayed. 
 

All tags start and end with defined strings. Between these tag delimiters 
variables can be defined: 
 

Delimiter String 

Tag start <JW:DTAG 

Tag end /> 

 

The variable definition in a tag contains attributes which are used to set, for 
example, how the value of a variable is to be displayed: 
 

name 

Function Variable Name 

Comments Code letter followed by the variable number 

Example name="R1000023" 

 

type 

Function Variable type of notation 

Example type="REAL" 

 

format 

Function Representation format 

Comments Refer to format definition 

Example format="+0####.###" 

 

factor 

Function Factor by which the realtime controller value is 
multiplied 

Comments This operation is executed prior to adding the offset 

Example factor="1.5" 

 

offset 

Function Value which is added to the realtime controller value 

Comments This operation is executed after multiplication by the 
factor 

Example offset="1000" 

 
 

Introduction 

Tag Delimiters 

Defining Variables 



 

238 Jetter AG 
 

11  Programming 

 

The representation of variables can be defined by means of their attribute. 
 

 The number of digits/characters used for representing a variable can be 
defined by the character "#". 

 Prefix "0" allows to output leading zeroes. This option applies to the 
following register types: INT, INTX and REAL. 

 Prefix "+" allows to output a sign. This option applies to the following 
register types: INT, and REAL. 

 Prefixing a blank allows to output a space character for positive values. 
This option applies to the following register types: INT, and REAL. 

 

The variable name begins with a capital "R" followed by the register number. 
The following types are possible: 
 

Type Notation 

INT Integer, decimal 

INTX Integer, hexadecimal 

INTB Integer, binary 

BOOL Register content = 0 --> Display: 0 
Register content != 0 --> Display: 1 

REAL Floating point, decimal 

STRING Text register 
 
Standard type: INT 
 
Example: 

<JW:DTAG name="R1000250" type="REAL" format="+0####.###" 
factor="3.25" offset="500" /> 

 
Result: 
The content of register 1000250 is multiplied by 3.25. Then, 500 is added to 
the product, and the result is displayed with sign and at least five integer 
positions. Leading zeros are added if necessary. Furthermore, three decimal 
positions are inserted. 
 

The variable name begins with a capital "F" followed by the flag number. 
The following types are possible: 
 

Type Notation 

BOOL Flag = 0 --> Display: 0 
Flag = 1 --> Display: 1 

STRING Flag = 0 --> Display: FALSE 
Flag = 1 --> Display: TRUE 

 
Standard type: BOOL 
 

Format Definition 

Registers / Text 
Registers 

Flags 



 

Jetter AG 239 
 

JVM-407 Programming 

Example: 

<JW:DTAG name="F100" type="STRING" format="#" /> 

 
Result: 
The state of flag 100 is inserted as string "T" or "F". 
 

Access via pointer register is realized by inserting the capital letter "P" in front 
of the variable name. In each case the value of the variable is displayed 
whose number corresponds to the content of the register specified in the 
variable name. 
 
Examples: 

<JW:DTAG name="PR1000300" /> 

Result: The content of the register is displayed whose number is contained in 
register 1000300. 
 
<JW:DTAG name="PF1000300" /> 

Result: The state of the flag is displayed whose number is contained in 
register 1000300. 
 

To specify the number of the variable to be displayed, it is also possible to add 
a constant value or another register content to the pointer register value 
 
Examples: 

<JW:DTAG name="PR1000300 + 100" /> 

Result: The content of the register is displayed whose number results from the 
addition of the content of register 1000300 and value 100. 
 
<JW:DTAG name="PR1000300 + R1000100" /> 

Result: The content of the register is displayed whose number results from the 
addition of the content of register 1000300 and the content of register 
1000100. 
 
<JW:DTAG name="PF1000300 + 100" /> 

Result: The state of the flag is displayed whose number results from the 
addition of the content of register 1000300 and value 100. 
 
<JW:DTAG name="PF1000300 + R1000100" /> 

Result: The state of the flag is displayed whose number results from the 
addition of the content of register 1000300 and the content of register 
1000100. 

 
 

Access via Pointer 
Register 

Access via Pointer 
Register and Offset 



 

240 Jetter AG 
 

11  Programming 

11.6.3 Sending an E-Mail 

This chapter gives a description on how to send previously created e-mails 
from within the application program.  
When sending an e-mail from the application program, the JVM-407 creates 
the e-mail based on the e-mail template file and inserts variable values if 
required. 
 

Sending an e-mail may take considerable time. Therefore, other tasks of the 
application program are processed while an e-mail is being sent. However, 
only one e-mail function call can be carried out at a time. While an e-mail of a 
task is being sent, all other tasks which invoke the e-mail function are 
therefore blocked until this operation is completed. 
 

 

Topic Page 
Sending E-Mails Using the System Function.............................................. 241 
Sample Program ......................................................................................... 242 

 
 
 

Introduction 

Processing by the 
Application Program 

Contents 



 

Jetter AG 241 
 

JVM-407 Programming 

Sending E-Mails Using the System Function 

A system function is used for sending e-mails. 
 

Systemfunction(110, &RegEmailNo, &RegResult); 

 

Parameter Description 

RegEmailNo Number of the register that contains the number of 
the e-mail to be sent. This number is part of the file 
name of the e-mail template file. 

RegResult Number of the register to which the result of this 
function will be stored. 

 
 

This function will produce one of the following return values: 
 

Result Description Possible error cause 

0 No error  

-1 Insufficient memory Operating system error 

-2 FROM not defined The e-mail template file is faulty or could not 
be located. 

-3 TO not defined Error in e-mail template file 

-4 No connection to the 
e-mail server or error 
during data transfer to 
the e-mail server. 

 No e-mail server available 
 An error occurred during configuration 

using file "/EMAIL/email.ini" 
 Data transfer error 

-10 E-mail function not 
available. Bit 2 in 
register "Web status" 
not reset 

Initialization error. For example, configuration 
file "/EMAIL/email.ini" does not exist or is 
faulty. 

-12 Internal error Operating system error 
 

 
 
 

Introduction 

JetSym STX 

Return Value 



 

242 Jetter AG 
 

11  Programming 

Sample Program 

The e-mail template file is stored to the JVM-407 under the name 
"/EMAIL/email_0.cfg". 
 
[FROM] 

JVM-407 

 

[TO] 

test1@test.mail 

 

[CC] 

test2@test.mail 

 

[SUBJECT] 

Test <JW:DTAG name="R1000000" /> 

 

[ATTACHMENT] 

/System/config.ini 

 

[MESSAGE] 

Register 1000001 (int) = <JW:DTAG name="R1000001"  

                          format="+0######" /> 

Register 1000001 (hex) = <JW:DTAG name="R1000001"  

                          type="INTX" /> 

Text register: <JW:DTAG name="R1001000"  

                type="STRING" />" 

Float register: <JW:DTAG name="R1001900" type="REAL"  

                 factor="2.35" offset="100" /> 

Flag 10: <JW:DTAG name="F10" type = "STRING" /> 

Output R[1000113] = <JW:DTAG name="PO1000113"  

                     type="BOOL" /> 

 

Have a nice day... 

JVM-407 

 

Set "bSend" to cause an e-mail to be sent.  
 
Var 

    Counter:    Int    At %VL 1000000; 

    TestReg:    Int    At %VL 1000001; 

    TextReg:    String At %VL 1001000; 

    FloatReg:   Float  At %VL 1001900; 

     

    RegEmail:   Int    At %VL 1000200; 

    RegResult:  Int    At %VL 1000201; 

    Send:       Bool; 

End_Var; 

E-Mail Template File 

JetSym STX Program 

mailto:test1@test.mail
mailto:test2@test.mail


 

Jetter AG 243 
 

JVM-407 Programming 

 

Task SendMail Autorun 

    Counter  := 0; 

    TestReg  := 1234; 

    TextReg  := 'Hello World !'; 

    FloatReg := 20.5; 

    RegEmail := 0; 

    Loop 

        Send := False; 

        When Send Continue; 

        Inc(Counter); 

        SystemFunction(110, &RegEmail, &RegResult); 

    End_Loop; 

End_Task; 

 
 



 

244 Jetter AG 
 

11  Programming 

11.6.4 Registers 

This chapter gives a description of those registers from which the status of 
e-mail processing can be seen. 
 

 

Topic Page 
Overview of Registers ................................................................................. 245 
Register Description .................................................................................... 246 

 
 
 

Introduction 

Contents 



 

Jetter AG 245 
 

JVM-407 Programming 

Overview of Registers 

The JVM-407 provides several registers from which the status of e-mail 
processing can be seen. 
 

 

Register(s) Description 

202930 Web status 

292932 IP address of SMTP server 

292933 IP address of POP3 server 

292934 Port number of SMTP server 

292935 Port number of POP3 server 

292937 Status of e-mail processing 

292938 ID of the task that is just sending an e-mail 
 

 
 

Introduction 

Overview of Registers 

 



 

246 Jetter AG 
 

11  Programming 

Register Description 

Web Status 

In register "Web status" all available functions are displayed (bit-coded). 
 

Meaning of the Individual Bits 

Bit 0 FTP Server 

 1 = available 

Bit 1 HTTP Server 

 1 = available 

Bit 2 E-Mail 

 1 = available 

Bit 3 Data File Function 

 1 = available 

Bit 4 Modbus/TCP 

 1 =  existing 

Bit 5 Modbus/TCP 

 1 = available 
 

Module Register Properties 

Access Read access 

Value following a reset Depending on options purchased 

 
 

IP Address of SMTP Server 

From this register the IP address of the SMTP server can be seen as it has 
been specified in the file "/EMAIL/email.ini". 
 

Module Register Properties 

Access Read access 

Value following a reset Depending on configuration 

Takes effect once R 202930.2 = 1 

 
 

IP Address of POP3 Server 

From this register the IP address of the POP3 server can be seen as it has 
been specified in the file "/EMAIL/email.ini". 
 

R 202930 

R 292932 

R 292933 



 

Jetter AG 247 
 

JVM-407 Programming 

Module Register Properties 

Access Read access 

Value following a reset Depending on configuration 

Takes effect once R 202930.2 = 1 

 
 

Port Number of SMTP Server 

From this register the port number of the SMTP server can be seen as it has 
been specified in the file "/EMAIL/email.ini". 
 

Module Register Properties 

Access Read access 

Value following a reset Depending on configuration 

Takes effect  once R 202930.2 = 1 

 
 

Port Number of POP3 Server 

From this register the port number of the POP3 server can be seen as it has 
been specified in the file "/EMAIL/email.ini". 
 

Module Register Properties 

Access Read access 

Value following a reset Depending on configuration 

Takes effect once R 202930.2 = 1 

 
 

Status of E-Mail Processing 

With the help of this registers the user can track the e-mail status. 
 

Module Register Properties 

Values 
 

0 No e-mail is being sent 

1 Parameters are being handed over to the 
e-mail client of the JVM-407 

2 E-mail is being compiled and connection 
with the server is being established. 

3 E-mail was sent to the server 

Access Read access 
 
 

R 292934 

R 292935 

R 292937 



 

248 Jetter AG 
 

11  Programming 

 

Task ID (E-Mail) 

The ID of the task that is just sending an e-mail can be seen from this register 
 

Module Register Properties 

Values 
 

0 ... 99 Task ID 

255 None of the tasks is sending an e-mail 

Value following a reset 255 

Access Read access 

 
 
 

R 292938 



 

Jetter AG 249 
 

JVM-407 Programming 

11.7 Modbus/TCP 

This chapter describes the functions of the Modbus/TCP server and client 
integrated into JVM-407. 
 

To be able to use the functions described in this chapter, the following skills 
are required: 
 

 The user must be familiar with Modbus/TCP and the supported commands. 
 The user must be familiar with IP networks. 
 

 

Topic Page 
Modbus/TCP Server ................................................................................... 250 
Modbus/TCP Client ..................................................................................... 255 

 
 
 

Introduction 

Required Programmer's 
Skills 

Contents 



 

250 Jetter AG 
 

11  Programming 

11.7.1 Modbus/TCP Server 

In the case of a valid license (Modbus/TCP feature is enabled) and after 
successful launch of the Modbus/TCP server, an external client can access 
registers, inputs and outputs. 
This chapter covers the addressing process and describes the commands 
supported by the Modbus/TCP server. 
 

4 connections may be opened at the same time. 
 
 

Modbus/TCP only supports transmission of registers with a width of 16 bits. 
From this follows, that only the lower-order 16 bits are transmitted when 32-bit 
registers are sent. 
When assigning incoming register values to the internal 32-bit registers no 
sign extension will be carried out. 
 

 

Topic Page 
Addressing .................................................................................................. 251 
Supported Commands - Class 0 ................................................................. 252 
Supported Commands - Class 1 ................................................................. 253 
Supported Commands - Class 2 ................................................................. 254 

 
 
 

Introduction 

Number of Possible 
Connections 

Restriction 

Contents 



 

Jetter AG 251 
 

JVM-407 Programming 

Addressing 

The addresses which have been received via Modbus/TCP can be modified 
locally in the server. For this purpose, three registers have been provided. The 
respective basic address for accessing registers, inputs and outputs can be 
entered into these registers. Then, the address contained in the Modbus/TCP 
frame specifies the address with reference to the basic address. 
 

Register offset 

The basic address for accessing registers via Modbus/TCP is entered into 
R 272702. 
 

Module register properties 

Value after reset 1000000 

 
 

Input offset 

The basic address for accessing inputs via Modbus/TCP is entered into 
R 272704. 
 

Module register properties 

Value after reset 100000000 

 
 

Output offset 

The basic address for accessing outputs via Modbus/TCP is entered into 
R 272705. 
 

Module register properties 

Value after reset 100000000 

 
 

The Modbus/TCP server on the JVM-407 receives from a Modbus/TCP client 
the command read multiple registers starting from register number 100. The 
number of registers to be read is 5. Register 272702 Register Offset contains 
value 1000000. 
Hence, registers 1000100 through 1000104 are read. 

 
 

Introduction 

R 272702 

R 272704 

R 272705 

Example 1 



 

252 Jetter AG 
 

11  Programming 

Supported Commands - Class 0 

read multiple registers 

Reading register blocks: 
 
The starting register number within JVM-407 is calculated as follows: Register 
number specified in the command plus the content of register 272702 Register 
Offset. 
 

write multiple registers 

Writing register blocks 
 
The starting register number within JVM-407 is calculated as follows: Register 
number specified in the command plus the content of register 272702 Register 
Offset. 

 
 

fc 3 

fc 16 



 

Jetter AG 253 
 

JVM-407 Programming 

Supported Commands - Class 1 

read coils 

Reading outputs. 
 
The output number within the JVM-407 is calculated as follows: Output 
number specified in the command plus the content of register 272705 Output 
Offset. 
 

read input discretes 

Reading inputs. 
 
The input number within JVM-407 is calculated as follows: Input number 
specified in the command plus the content of register 272704 Input Offset. 
 

read input registers 

Reading inputs blockwise in 16-bit words. 
 
The starting register number within JVM-407 is calculated as follows: Register 
number specified in the command plus the content of register 272702 Register 
Offset. 
 

write coil 

Enabling/disabling an individual output. 
 
The output number within the JVM-407 is calculated as follows: Output 
number specified in the command plus the content of register 272705 Output 
Offset. 
 

write single register 

Entering values into the lower-order 16 bits of a register. 
 
The starting register number within JVM-407 is calculated as follows: Register 
number specified in the command plus the content of register 272702 Register 
Offset. 
 

 

fc 1 

fc 2 

fc 4 

fc 5 

fc 6 



 

254 Jetter AG 
 

11  Programming 

Supported Commands - Class 2 

force multiple coils 

Enabling/disabling several outputs 
 
The output number within the JVM-407 is calculated as follows: Output 
number specified in the command plus the content of register 272705 Output 
Offset. 
 

read / write registers 

Reading/writing registers simultaneously 
 
The starting register number within JVM-407 is calculated as follows: Register 
number specified in the command plus the content of register 272702 Register 
Offset. 

 
 

fc 15 

fc 23 



 

Jetter AG 255 
 

JVM-407 Programming 

11.7.2 Modbus/TCP Client 

The Modbus/TCP client included in JVM-407 supports only Class 0 
Conformance. This means that commands for reading and writing multiple 
registers are used. Up to 125 registers with a width of 16 bits can be 
transmitted in one frame. 
As protocol ID "0" is used. Assignment of sent and received frames is carried 
out using the transaction ID. 
This chapter describes how to carry out acyclical or cyclical transmission to a 
Modbus/TCP server using system functions. 
 

Connections to 11 different Modbus/TCP servers may be opened at the same 
time. 
 

 

System functions 65 and 67 (reading registers), as well as 66 and 68 (writing 
registers) can be used to establish a acyclical transmission channel to a 
Modbus/TCP server. 
These system functions establish a connection to the specified Modbus/TCP 
server, transmit the desired data and clear down the connection. 
If RemoteScan has already established a connection (cyclical data 
transmission), this connection will be used. Setting-up and clearing-down the 
connection is, therefore, not required. 
 

The configurable function RemoteScan is for cyclically transferring the inputs 
and outputs 20001 through 36000 that are combined in the 16-bit registers 
278000 through 278999 from and to the configured Modbus/TCP servers. 
Only one connection is established to each Modbus/TCP server (IP address 
and port) irrespective of the number of communication units which have been 
configured on this server. 
If several communication units are configured on one Modbus/TCP server, 
accesses are serialized since servers often do not support "command 
pipelining". If several servers have been configured, communication is carried 
out in parallel. 
 

 

Registers Inputs and Outputs 

278000 20001 ... 20016 

278001 20017 ... 20032 

278002 20033 ... 20048 

... ... 

278999 35985 ... 36000 
 

These registers and inputs/outputs mapped to them are merely storage cells 
within the RAM. The registers are not directly mapped to the hardware. 
Therefore, it is not defined whether inputs or outputs are mapped to a register. 
Assignment is made not until configuration in the communication units takes 
place.  
 

Introduction 

Number of Possible 
Connections 

Acyclical Data 
Transmission 

Cyclical Data 
Transmission 

Combined Inputs / 
Outputs 

 



 

256 Jetter AG 
 

11  Programming 

 

The instruction header of a Modbus/TCP telegram contains a Unit ID. This 
"Unit ID" is not evaluated by Modbus/TCP devices, as they can be addressed 
without ambiguity by their IP address. Therefore, in the case of system 
functions 65, 66 and 80 always value "1" is sent. 
 
Converters from Modbus/TCP to Modbus RTU use the Unit ID for addressing 
the Modbus RTU servers. Therefore, the corresponding special functions for 
reading and writing registers (system functions 67 and 68), as well as for 
initializing RemoteScan (system function 85) have been provided. These 
special functions can be used to set the "Unit ID". 
 

Modbus/TCP only supports transmission of registers with a width of 16 bits. 
From this follows, that only the lower-order 16 bits are transmitted when 32-bit 
registers are sent. 
When assigning incoming register values to the internal 32-bit registers no 
sign extension will be carried out. 
 

 

Topic Page 
System Function 65: Acyclical Reading of Registers ................................. 257 
System Function 67: Acyclical Reading of Registers ................................. 259 
System Function 66: Acyclical Writing of Registers .................................... 261 
System Function 68: Acyclical Writing of Registers .................................... 263 
Example of an Application........................................................................... 265 

 
 
 

Unit ID 

Restriction 

Contents 



 

Jetter AG 257 
 

JVM-407 Programming 

System Function 65: Acyclical Reading of Registers 

Using system function 65, a register block from a Modbus/TCP server is 
copied to the registers of the local memory. 
 

 While this system function is being carried out, simultaneous calls of this 
function in other tasks are blocked until this function will be completed. 

 While this system function is being executed, it is not advisable to carry out 
TaskBreak or TaskRestart for this task or to restart the program via JetSym. 
In the a.m. cases the connection remains open and it might happen that 
further communication is blocked. 

 The IP address is always to be specified directly. It cannot be specified 
using names. 

 

Systemfunction(65, &StructModbusTCP, &RegResult); 

 

Parameter Function 

StructModbusTCP Structure of the type MODBUS_TCP 

RegResult Number of the register to which the result of this 
function will be stored. 

 

Type 

  MODBUS_TCP: 

  Struct 

    IPadress    : Int; 

    Port        : Int; 

    Timeout: Int; 

    Source      : Int; 

    Destination : Int; 

    Values      : Int; 

  End_Struct; 

End_Type; 

 

 

Parameter Value Comment 

IPadress IP-Address of Modbus/TCP 
Server 

direct input 

Port 502  

Timeout in ms  

Source remote Register number of source 

Destination local Register number of 
destination 

Values 1 ... 125 Quantity of registers 
 

 

Introduction 

Important Notes 

Function Declaration 

Type Declaration 
MODBUS_TCP 

Function Parameters 

 



 

258 Jetter AG 
 

11  Programming 

 

This function will produce one of the following return values: 
 

Return Value 

0 No error 

-1 or -2 Error during connection set-up 

-4 Error during data transfer 

-5 Error message from Modbus/TCP Server 

-8 Timeout 

-10 No Modbus/TCP license 

 

 
 Example of an Application on page 265 

 
 

Return Value 

Related Topics 



 

Jetter AG 259 
 

JVM-407 Programming 

System Function 67: Acyclical Reading of Registers 

Using system function 67, a register block from a Modbus/TCP server is 
copied to the registers of the local memory. 
Unlike system function 65, the Unit ID can be set here. 
 

 While this system function is being carried out, simultaneous calls of this 
function in other tasks are blocked until this function will be completed. 

 While this system function is being executed, it is not advisable to carry out 
TaskBreak or TaskRestart for this task or to restart the program via JetSym. 
In the a.m. cases the connection remains open and it might happen that 
further communication is blocked. 

 The IP address is always to be specified directly. It cannot be specified 
using names. 

 

Systemfunction(67, &StructModbusTCP, &RegResult); 

 

Parameter Function 

StructModbusTCP Structure of the type MODBUS_TCP 

RegResult Number of the register to which the result of this 
function will be stored. 

 

Type 

  MODBUS_TCP: 

  Struct 

    IPadress    : Int; 

    Port        : Int; 

    Timeout: Int; 

    Source      : Int; 

    Destination : Int; 

    Values      : Int; 

    UnitID      : Int; 

    Internal_1  : Int; 

    Internal_2  : Int; 

  End_Struct; 

End_Type; 

 

Introduction 

Important Notes 

Function Declaration 

Type Declaration 
MODBUS_TCP 



 

260 Jetter AG 
 

11  Programming 

 

 

Parameter Value Comment 

IPadress IP-Address of Modbus/TCP 
Server 

direct input 

Port 502  

Timeout in ms  

Source remote Register number of source 

Destination local Register number of 
destination 

Values 1 ... 125 Quantity of registers 

UnitID 0 ... 255 Unit ID 

Internal_1 0 Internal usage 

Internal_2 0 Internal usage 
 

 

This function will produce one of the following return values: 
 

Return Value 

0 No error 

-1 or -2 Error during connection set-up 

-4 Error during data transfer 

-5 Error message from Modbus/TCP Server 

-8 Timeout 

-10 No Modbus/TCP license 

 
 

Function Parameters 

 

 

 

 

Return Value 



 

Jetter AG 261 
 

JVM-407 Programming 

System Function 66: Acyclical Writing of Registers 

Using system function 66, the content of registers contained in the local 
memory is copied to the Modbus/TCP server as a register block. 
 

 While this system function is being carried out, simultaneous calls of this 
function in other tasks are blocked until this function will be completed. 

 While this system function is being executed, it is not advisable to carry out 
TaskBreak or TaskRestart for this task or to restart the program via JetSym. 
In the a.m. cases the connection remains open and it might happen that 
further communication is blocked. 

 The IP address is always to be specified directly. It cannot be specified 
using names. 

 

Systemfunction(66, &StructModbusTCP, &RegResult); 

 

Parameter Function 

StructModbusTCP Structure of the type MODBUS_TCP 

RegResult Number of the register to which the result of this 
function will be stored. 

 

Type 

  MODBUS_TCP: 

  Struct 

    IPadress    : Int; 

    Port        : Int; 

    Timeout: Int; 

    Source      : Int; 

    Destination : Int; 

    Values      : Int; 

  End_Struct; 

End_Type; 

 

 

Parameter Value Comment 

IPadress IP-Address of Modbus/TCP 
Server 

direct input 

Port 502  

Timeout in ms  

Source local Register number of source 

Destination remote Register number of 
destination 

Values 1 ... 125 Quantity of registers 
 

 

Introduction 

Important Notes 

Function Declaration 

Type Declaration 
MODBUS_TCP 

Function Parameters 

 



 

262 Jetter AG 
 

11  Programming 

 

This function will produce one of the following return values: 
 

Return Value 

0 No error 

-1 or -2 Error during connection set-up 

-4 Error during data transfer 

-5 Error message from Modbus/TCP Server 

-8 Timeout 

-10 No Modbus/TCP license 

 

 
 Example of an Application on page 265 

 
 

Return Value 

Related Topics 



 

Jetter AG 263 
 

JVM-407 Programming 

System Function 68: Acyclical Writing of Registers 

Using system function 68, the content of registers contained in the local 
memory is copied to the Modbus/TCP server as a register block. 
Unlike system function 66, the Unit ID can be set here. 
 

 While this system function is being carried out, simultaneous calls of this 
function in other tasks are blocked until this function will be completed. 

 While this system function is being executed, it is not advisable to carry out 
TaskBreak or TaskRestart for this task or to restart the program via JetSym. 
In the a.m. cases the connection remains open and it might happen that 
further communication is blocked. 

 The IP address is always to be specified directly. It cannot be specified 
using names. 

 

Systemfunction(68, &StructModbusTCP, &RegResult); 

 

Parameter Function 

StructModbusTCP Structure of the type MODBUS_TCP 

RegResult Number of the register to which the result of this 
function will be stored. 

 

Type 

  MODBUS_TCP: 

  Struct 

    IPadress    : Int; 

    Port        : Int; 

    Timeout     : Int; 

    Source      : Int; 

    Destination : Int; 

    Values      : Int; 

    UnitID      : Int; 

    Internal_1  : Int; 

    Internal_2  : Int; 

  End_Struct; 

End_Type; 

 

Introduction 

Important Notes 

Function Declaration 

Type Declaration 
MODBUS_TCP 



 

264 Jetter AG 
 

11  Programming 

 

 

Parameter Value Comment 

IPadress IP-Address of Modbus/TCP 
Server 

direct input 

Port 502  

Timeout in ms  

Source local Register number of source 

Destination remote Register number of 
destination 

Values 1 ... 125 Quantity of registers 

UnitID 0 ... 255 Unit ID 

Internal_1 0 Internal usage 

Internal_2 0 Internal usage 
 

 

This function will produce one of the following return values: 
 

Return Value 

0 No error 

-1 or -2 Error during connection set-up 

-4 Error during data transfer 

-5 Error message from Modbus/TCP Server 

-8 Timeout 

-10 No Modbus/TCP license 

 
 

Function Parameters 

 

 

 

 

Return Value 



 

Jetter AG 265 
 

JVM-407 Programming 

Example of an Application 

JetControl is to cyclically exchange I/O data with two Modbus/TCP servers on 
the network. 
On external request, the content of a single register is to be sent to one of the 
two communication partners. 
 

For cyclic data transmission the function "RemoteScan" is used. System 
functions 80 and 81 are executed one after the other. 
The value contained in a single register is sent to the second communication 
partner in acyclical mode using system function 66. 
 

First, the configuration data are entered into the structures required for 
configuring the RemoteScan function. The starting address of these structures 
is transferred along with other data when system function 80 (InitRscan) is 
invoked. If initialization was successful, RemoteScan function is started via 
system function 81 (StartRscan) and cyclic communication sets in. 
Then, the parameter structure for acyclic data transmission is prepared. 
Setting flag "Send" triggers a register block to be sent to a second 
communication partner one time. 
 

Type 

 

    RSCAN_HEADER: 

    Struct 

        Protocol        :    Int; 

        Units           :    Int; 

    End_Struct; 

 

    RSCAN_ELEMENT: 

    Struct 

        Ipadress        :    Int; 

        Port            :    Int; 

        UpdateRate      :    Int; 

        OutRegs         :    Int; 

        OutSource       :    Int; 

        OutDestination  :    Int; 

        InRegs          :    Int; 

        InSource        :    Int; 

        InDestination   :    Int; 

        Status          :    Int; 

        Timeout         :    Int; 

    End_Struct; 

 

    RSCAN_STATUS: 

    Struct 

        Status          :    Int; 

        Error           :    Int; 

        ErrCnt          :    Int; 

Task 

Solution 

Action 

JetSym STX Program 



 

266 Jetter AG 
 

11  Programming 

    End_Struct; 

 

    MODBUS_TCP: 

    Struct 

        Ipadress        :    Int; 

        Port            :    Int; 

        Timeout         :    Int; 

        Source          :    Int; 

        Destination     :    Int; 

        Values          :    Int; 

    End_Struct; 

End_Type; 

 

Const 

    RscanRegs        = 1000100; 

    RscanStatRegs    = 1001000; 

    Elements         = 2; 

 

    InitRscan        = 80; 

    StartRscan       = 81; 

 

    ProtModbusTCP    = 5; 

    ModbusTCPort     = 502; 

 

    Rscan            = 0; 

End_Const; 

 

Var 

    RemoteScan        : RSCAN_HEADER At %VL RscanRegs; 

 

    RscanElements     : Array[Elements] Of RSCAN_ELEMENT At  

                        %VL RscanRegs + Regsizeof(RSCAN_HEADER); 

 

    RscanStatus       : Array[Elements] Of RSCAN_STATUS  At  

                        %VL RscanStatRegs; 

 

    ModbusTCP         : MODBUS_TCP At %VL 1000500; 

 

    Result            : Int        At %VL 1000099; 

    Send              : Bool       At %MX 1; 

End_Var; 

 

 

Task tRscan Autorun 

    RemoteScan.Protocol := ProtModbusTCP; 

    RemoteScan.Units    := Elements; 

 

    // first communication unit 
    RscanElements[0].Ipadress        := IP#192.168.10.211; 



 

Jetter AG 267 
 

JVM-407 Programming 

    RscanElements[0].Port            := ModbusTCPort; 

    RscanElements[0].UpdateRate      := 50; 

    RscanElements[0].OutRegs         := 3; 

    RscanElements[0].OutSource       := 278000; 

    RscanElements[0].OutDestination  := 20000; 

    RscanElements[0].InRegs          := 3; 

    RscanElements[0].InSource        := 21000; 

    RscanElements[0].InDestination   := 278100; 

    RscanElements[0].Status          := &RscanStatus[0]; 

    RscanElements[0].Timeout         := 20; 

 

    // second communication unit 
    RscanElements[1].Ipadress        := IP#192.168.10.150; 

    RscanElements[1].Port            := ModbusTCPort; 

    RscanElements[1].UpdateRate      := 20; 

    RscanElements[1].OutRegs         := 5; 

    RscanElements[1].OutSource       := 278300; 

    RscanElements[1].OutDestination  := 20000; 

    RscanElements[1].InRegs          := 10; 

    RscanElements[1].InSource        := 25000; 

    RscanElements[1].InDestination   := 278400; 

    RscanElements[1].Status          := &RscanStatus[1]; 

    RscanElements[1].Timeout         := 200; 

 

    Systemfunction(InitRscan, &RemoteScan, &Result); 

    If Result > 0 Then 

        Systemfunction(StartRscan, 0, &Result); 

    End_If; 

 

    ModbusTCP.Ipadress        := IP#192.168.10.212; 

    ModbusTCP.Port            := ModbusTCPort; 

    ModbusTCP.Values          := 1; 

    ModbusTCP.Source          := 1040000; 

    ModbusTCP.Destination     := 1050000; 

    ModbusTCP.Timeout         := 100; 

    Send                      := False; 

 

    Loop 

        When Send Continue; 

        Systemfunction(66, &ModbusTCP, &Result); 

        Send := False; 

    End_Loop; 

 

End_Task; 

 
 



 

268 Jetter AG 
 

11  Programming 

11.8 User-programmable IP Interface 

The user-programmable IP interface allows to send or receive data via 
Ethernet interface on the JVM-407 using TCP/IP or UDP/IP. When using this 
feature, data processing is completely carried out by the application program. 
 

The user-programmable IP interface allows the programmer to exchange data 
via Ethernet connections which do not use standard protocols, such as FTP, 
HTTP, JetIP or Modbus/TCP. The following applications are possible: 
 

 Server 
 Client 
 TCP/IP 
 UDP/IP 
 

To be able to program user-programmable IP interfaces the following 
knowledge of data exchange via IP networks is required: 
 

 IP addressing (e.g. IP address, port number, subnet masks etc.) 
 TCP (e.g. connection establishment/termination, data stream, data backup 

etc.) 
 UDP (e.g. datagram, etc.) 
 

For communication via user-programmable IP interface, ports which are 
already used by the operating system of the controller must NOT be used. 
Therefore, do not use the following ports: 
 

Protocol Port number Default value User 

TCP depending on the FTP 
client 

20 FTP server (data) 

TCP 21  FTP server (controller) 

TCP 23  System logger 

TCP 80  HTTP server 

TCP  from file 
/EMAIL/email.ini 

25, 110 e-mail client 

TCP 502  Modbus/TCP Server 

TCP, UDP 1024 - 2047  various users 

TCP, UDP IP configuration 50000, 50001 JetIP 

TCP IP configuration 52000 Debug server 

 
 

The user-programmable 
IP interface 

Applications 

Required Programmer's 
Skills 

Restrictions 



 

Jetter AG 269 
 

JVM-407 Programming 

 

 

Topic Page 
Programming .............................................................................................. 270 
Registers ..................................................................................................... 282 
Sample Programs ....................................................................................... 287 

 
 
 

Contents 



 

270 Jetter AG 
 

11  Programming 

11.8.1 Programming 

The user-programmable IP interface is used to exchange data between 
application program and network clients via TCP/IP or UDP/IP connections. 
For this purpose, function calls are used. These function calls are included in 
the programming language of the JVM-407. Carry out the following steps to 
program this feature: 
 

Step Action 

1 Initializing the user-programmable IP interface 

2 Establishing the connection(s) 

3 Transferring data 

4 Terminating the connection(s) 

 

Technical data of the user-programmable IP interface: 
 

Feature Description 

Number of connections 20 

Maximum data size 4,000 bytes 

 

In the application program, tasks serving the user-programmable IP interface 
should not be stopped through TaskBreak or restarted through TaskRestart 
while the JVM-407 is processing one of these functions. Failure to do so could 
result in the following errors: 

 Connections are not opened  
 Data loss during sending or receiving 
 Connections, which should be terminated, remain established 
 Connections, which should be used, are terminated 
 

 

Topic Page 
Initializing the User-Programmable IP Interface ......................................... 271 
Establishing a Connection .......................................................................... 272 
Sending Data .............................................................................................. 276 
Receiving Data ............................................................................................ 278 
Terminating a Connection ........................................................................... 281 

 
 
 

Introduction 

Technical Data 

Restrictions 

Contents 



 

Jetter AG 271 
 

JVM-407 Programming 

Initializing the User-Programmable IP Interface 

The user-programmable IP interface must be initialized at least each time the 
application program is launched.  
 

 

Function ConnectionInitialize():Int; 
 

 

The following return value is possible: 
 

Result of the function 

0 always 

 

This function can be used and its return value be assigned to a variable for 
further utilization in the following way: 
 

Result := ConnectionInitialize(); 

 

The JVM-407 processes the function in the following steps: 
 

Stages Description 

1 All established connections of the user-programmable IP interface are 
terminated 

2 All OS-internal data structures of the user-programmable IP interface are 
initialized 

 

 
 Establishing a connection on page 272 
 Terminating a connection on page 281 
 Sending data on page 276 
 Receiving data on page 278 

 
 

Introduction 

Function Declaration 

Return Value 

Using the Function 

Operating Principle 

Related Topics: 



 

272 Jetter AG 
 

11  Programming 

Establishing a Connection 

Before data can be sent or received, a connection has to be established. In 
doing so, it must be decided which transport protocol (TCP or UDP) is to be 
used and whether a client or a server should be established. 
 

Function ConnectionCreate(ClientServerType:Int, 

                          IPType:Int, 

                          IPAddr:Int, 

                          IPPort:Int, 

                          Timeout:Int):Int; 

 

Description of function parameters: 
 

Parameter Value Comment 

ClientServerType Client = 1 = 
CONNTYPE_CLIENT 
Server = 2 = 
CONNTYPE_SERVER 

 

IPType UDP/IP = 1 = 
IPTYPE_UDP 
TCP/IP = 2 =  
IPTYPE_TCP 

 

IPAddr Valid IP address Required only for TCP/IP 
client 

IPPort Valid IP port Will be ignored for UDP/IP 
client 

Timeout 0 .. 1,073,741,824 [ms] 0 = infinitely 

 

If the return value is positive, the connection could have been established. If 
the return value is negative, an error occurred and the connection could not be 
established. 
 

Return Value 

> 0 A positive return value must be stored to a variable, since it 
has to be passed on as handle with functions for receiving 
and sending data via this connection, as well as for 
terminating this connection. 

-1 Error during connection set-up 

-2 Internal error 

-3 Invalid parameter 

-8 Timeout 

 

This function can be used and its return value be assigned to a variable for 
further utilization in the following way if a client is to establish a TCP/IP 
connection to a server: 
 
Result := ConnectionCreate(CONNTYPE_CLIENT, 

Introduction 

Function Declaration 

Function Parameters 

Return Value 

Using this Function with 
a TCP/IP Client 



 

Jetter AG 273 
 

JVM-407 Programming 

                           IPTYPE_TCP, 

                           IP#192.168.75.123, 

                           46000, 

                           T#10s); 

 

The task stops at the program line until the connection is established or the 
specified timeout has elapsed. The following stages are taken when 
processing this function: 
 

Stage Description 

1 The JVM-407 tries to establish a TCP/IP connection via port 46000 to the 
network client with IP address 192.168.75.123. 

2  

If ... ... Then ... 

the network client has accepted 
the connection 

the function is terminated and a 
positive value is returned as handle 
for further access to the connection 

the connection could not be 
established and the timeout of 
10 seconds has not elapsed 

stage 1 is carried out   

an error has occurred or the 
timeout has elapsed 

the function is terminated and a 
negative value is returned 

  

 

This function can be invoked and its return value be assigned to a variable for 
further utilization in the following way if a server is to establish a TCP/IP 
connection to a client: 
 

Result := ConnectionCreate(CONNTYPE_SERVER,  

                           IPTYPE_TCP,  

                           0,  

                           46000,  

                           T#100s); 

 

Functioning Principle 
with a TCP/IP Client 

Using this Function with 
a TCP/IP Server 



 

274 Jetter AG 
 

11  Programming 

 

The task stops at the program line until the connection is established or the 
specified timeout has elapsed. The following stages are taken when 
processing this function: 
 

Stage Description 

1 The JVM-407 sets up TCP/IP port 46000 for receiving connection requests 

2  

If ... ... Then ... 

the network client has 
established an connection 

no further connection requests to this 
port are accepted, the function is 
terminated and a positive value is 
returned as handle for further access 
to the connection 

the connection has not been 
established and the timeout of 
100 seconds has not elapsed 

the system waits for a connection 
being established  

an error has occurred or the 
timeout has elapsed 

the function is terminated and a 
negative value is returned 

  

 

This function can be invoked and its return value be assigned to a variable for 
further utilization in the following way if a client is to establish a UDP/IP 
connection: 
 

Result := ConnectionCreate(CONNTYPE_CLIENT,  

                           IPTYPE_UDP,  

                           0,  

                           0,  

                           0); 

 

As UDP is a connectionless type of communication, the controller simply 
opens a communication channel which is used to send data to a network 
client. The following stages are taken when processing this function: 
 

Stage Description 

1 The JVM-407 sets up a UDP/IP communication channel for sending data 

2  

If ... ... Then ... 

no error has occurred the function is terminated and a 
positive value is returned as handle 
for further access to the connection 

an error has occurred the function is terminated and a 
negative value is returned 

  

 

Functioning Principle 
with a TCP/IP Server 

Using this Function with 
a UDP/IP Client 

Functioning Principle 
with a UDP/IP Client 



 

Jetter AG 275 
 

JVM-407 Programming 

 

This function can be invoked and its return value be assigned to a variable for 
further utilization in the following way if a server is to establish a UDP/IP 
connection: 
 

Result := ConnectionCreate(CONNTYPE_SERVER,  

                           IPTYPE_UDP,  

                           0,  

                           46000,  

                           0); 

 

As UDP is a connectionless type of communication, the server simply opens a 
communication channel over which a network client is able to receive 
data.The following stages are taken when processing this function: 
 

Stage Description 

1 The JVM-407 sets up a UDP/IP communication channel at port 46000 for 
receiving data 

2  

If ... ... Then ... 

no error has occurred the function is terminated and a 
positive value is returned as handle 
for further access to the connection 

an error has occurred the function is terminated and a 
negative value is returned 

  

 

 
 Terminating a connection on page 281 
 Sending data on page 276 
 Receiving data on page 278 
 Initializing the user-programmable IP interface on page 271 

 
 

Using this Function with 
a UDP/IP Server 

Functioning Principle 
with a UDP/IP Server 

Related Topics: 



 

276 Jetter AG 
 

11  Programming 

Sending Data 

Data can be sent via a previously established TCP/IP connection or via a 
UDP/IP connection of a client. Via UDP/IP connection of a server data can not 
be sent, but only received. 
 

Function ConnectionSendData(IPConnection:Int, 

                            IPAddr:Int, 

                            IPPort:Int, 

                            Const Ref SendData, 

                            DataLen:Int):Int; 

 

Description of function parameters: 
 

Parameter Value Comment 

IPConnection Handle Result of the function when 
establishing the connection 

IPAddr Valid IP address Required only for UDP/IP 
client 

IPPort Valid IP port Required only for UDP/IP 
client 

SendData Address of the data block 
to be sent 

 

DataLen 1 .. 4,000 Data block length in bytes 

 

The following return values are possible: 
 

Return Value 

0 Data have been sent successfully 

-1 Error when sending, e.g. connection interrupted 

-3 Invalid handle, e.g. sending via a UDP/IP server 

 

This function can be invoked and its return value be assigned to a variable for 
further utilization in the following way if data are to be sent via TCP/IP 
connection: 
 

Result := ConnectionSendData(hConnection,  

                             0,  

                             0,  

                             SendBuffer,  

                             SendLen); 

 

When using TCP/IP, data are sent via a previously established connection. 
Therefore, it is not required to specify the IP address and IP port and can be 
ignored in the function. The task stops at the command until data have been 
sent and acknowledgment has been received or an error has occurred. 
 

This function can be invoked and its return value be assigned to a variable for 
further utilization in the following way if data are to be sent from a client via 

Introduction 

Function Declaration 

Function Parameters 

Return Value 

Using this Function with 
a TCP/IP connection 

Functioning Principle 
with a TCP/IP 
Connection 

Using this Function with 
a UDP/IP Client 



 

Jetter AG 277 
 

JVM-407 Programming 

UDP/IP connection: 
 

Result := ConnectionData(hConnection, 

                         IP#192.168.75.123,  

                         46000,  

                         SendBuffer,  

                         SendLen); 

 

With UDP/IP there is no connection between 2 given network clients. 
Therefore, with each function call data can be sent to another client or another 
port. The task will pause at the command until the data are sent. There will be 
no acknowledgement that the data have been received by the remote network 
client. 
 

 
 Initializing the user-programmable IP interface on page 271 
 Establishing a Connection on page 272 
 Terminating a connection on page 281 
 Receiving data on page 278 

 
 

Functioning Principle 
with a UDP/IP Client 

Related Topics: 



 

278 Jetter AG 
 

11  Programming 

Receiving Data 

Data can be sent via a previously established TCP/IP connection or via a 
UDP/IP connection of a server. Via UDP/IP connection of a client data can not 
be received, but only sent. 
 

Function ConnectionReceiveData(IPConnection:Int, 

                               Ref IPAddr:Int, 

                               Ref IPPort:Int, 

                               Ref ReceiveData, 

                               DataLen:Int, 

                               Timeout:Int):Int; 

 

Description of function parameters: 
 

Parameter Value Comment 

IPConnection Handle Return value when 
establishing the connection 

IPAddr Address of a variable for 
storing the sender's IP 
Address 

Required only for UDP/IP 
server 

IPPort Address of a variable for 
storing the sender's IP port 

Required only for UDP/IP 
server 

ReceiveData Address of the data block 
to be received 

 

DataLen 1 .. 4,000 Maximum data block length 
in bytes 

Timeout 0 .. 1,073,741,824 [ms] 0 = infinitely 

 

The following return values are possible: 
 

Return Value 

> 0 Number of received data bytes 

-1 Error when receiving data, e.g. connection interrupted 

-3 Invalid handle, e.g. receiving data via a UDP/IP client 

-8 Timeout 

 

This function can be invoked and its return value be assigned to a variable for 
further utilization in the following way if data are to be received via TCP/IP 
connection: 
 

Result := ConnectionReceiveData(hConnection, 

                                Dummy,  

                                Dummy,  

                                ReceiveBuffer,  

                                sizeof(ReceiveBuffer), 

                                T#10s); 

Introduction 

Function Declaration 

Function Parameters 

Return Value 

Using this Function with 
a TCP/IP Connection 



 

Jetter AG 279 
 

JVM-407 Programming 

 

When using TCP/IP, data are sent via a previously established connection. 
Therefore, it is not required to specify the IP address and IP port and can be 
ignored in the function. The task will pause at the command until the data are 
received or an error has occurred. In case of a TCP/IP connection, data are 
transmitted as data stream.  
The JVM-407 processes the function in the following stages: 
 

Stage Description 

1 The JVM-407 waits until data have been received, but no longer than the 
specified timeout 

2  

If ... ... Then ... 

the timeout has elapsed or the 
connection has been terminated 

the function is exited and an error 
message is issued 

data have been received they are copied to the receiving buffer 
given along with the data (but not 
exceeding the amount given along 
with the data). Then, the function 
continues with stage 3 

  

3  

If ... ... Then ... 

more data have been received 
than could have been copied 
into the receiving buffer 

these data are buffered by the 
JVM-407 an can be retrieved from 
within the application by invoking the 
function several times 

  

4 The function is exited and the number of data, which have been copied 
into the receiving buffer, is returned 

 

This function can be invoked and its return value be assigned to a variable for 
further utilization in the following way if data are to be received from a server 
via UDP/IP connection: 
 

Result := ConnectionReceiveData(hConnection, 

                                IPAddr,  

                                IPPort,  

                                ReceiveBuffer,  

                                sizeof(ReceiveBuffer), 

                                T#10s); 

 

Functioning Principle 
with a TCP/IP 
Connection 

Using this Function with 
a UDP/IP Server 



 

280 Jetter AG 
 

11  Programming 

 

The task will pause at the command until all of the data are received or an 
error has occurred. In case of a UDP/IP connection, data are transmitted as 
datagram.  
The JVM-407 processes the function in the following stages: 
 

Stage Description 

1 The JVM-407 waits until all data of a datagram have been received, but no 
longer than the specified timeout 

2  

If ... ... Then ... 

the timeout has elapsed or the 
connection has been terminated 

the function is exited and an error 
message is issued 

data have been received they are copied to the receiving buffer 
given along with the data (but not 
exceeding the amount given along 
with the data). Then, the function 
continues with stage 3 

  

3  

If ... ... Then ... 

more data have been received 
than could have been copied 
into the receiving buffer (that is, 
if the sent datagram is too 
large) 

these data are discarded 

  

4 The sender's IP address and IP port are transferred into the variables 
which are given along with the data 

5 The function is exited and the number of data, which have been copied 
into the receiving buffer, is returned 

 

 
 Initializing the user-programmable IP interface on page 271 
 Establishing a Connection on page 272 
 Terminating a connection on page 281 
 Sending Data on page 276 

 
 

Functioning Principle 
with a UDP/IP Server 

Related Topics: 



 

Jetter AG 281 
 

JVM-407 Programming 

Terminating a Connection 

Clear all connections which are no longer required as the number of 
concurrently opened connections is limited. 
 

 

Function ConnectionDelete(IPConnection:Int):Int; 
 

 

Description of function parameters: 
 

Parameter Value Comment 

IPConnection Handle Return value when 
establishing the connection 

 

The following return values are possible: 
 

Return Value 

0 Connection terminated and deleted 

-1 Invalid handle 

 

This function can be invoked and its return value be assigned to a variable for 
further utilization in the following way: 
 

Result := ConnectionDelete(hConnection); 

 

 
 Establishing a Connection on page 272 
 Sending Data on page 276 
 Receiving Data on page 278 
 Initializing the user-programmable IP interface on page 271 

 
 

Introduction 

Function Declaration 

Function Parameters 

Return Value 

Using the Function 

Related Topics: 



 

282 Jetter AG 
 

11  Programming 

11.8.2 Registers 

This chapter describes the registers of a JVM-407 from which the current 
connection list of the user-programmable IP interface can be read out. These 
registers can be used for debugging or diagnostic purposes. However, they 
can't be used for other functions, such as establishing or terminating a 
connection. 
 

 

Topic Page 
Register Numbers ....................................................................................... 283 
Register Description .................................................................................... 284 

 
 
 

Introduction 

Contents 



 

Jetter AG 283 
 

JVM-407 Programming 

Register Numbers 

Data of one connection each are displayed within the registers of a coherent 
register block. The basic register number of this block is dependent on the 
controller. 
 

 

Controller Basic Register Number Register Numbers 

JC-24x 10290 10290 ... 10297 

JM-D203-JC24x 10290 10290 ... 10297 

JC-340, JC-350, JC-360, 
JC-940MC, JVM-407 

350000 350000 ... 350007 

 

 

In this chapter only the last figure of a register number is specified. To 
calculate the actually used register number the basic register number of the 
corresponding device must be added. 
 

 

Register(s) Description 

MR 0 Selection of a connection 

MR 1 Type of connection 

MR 2 Transport protocol  

MR 3 IP address 

MR 4 IP port 

MR 5 Status 

MR 6 Number of sent bytes 

MR 7 Number of received bytes 
 

 
 

 
 

Introduction 

Register Numbers 

 

 

 

Determining Register 
Numbers 

Overview of Registers 

 

 



 

284 Jetter AG 
 

11  Programming 

Register Description 

Established connections are managed by the operating system in a list. 
Module register MR0 Selection of a connection is used to copy connection 
details into other registers of a register block. 
 

Selection of a connection 

Write access to this register is used to select connections and to display their 
details in the following registers. Read access is used to display whether the 
following registers contain connection details. 
 

Module Register Properties 

Reading values 0 Connection exists 

 -1 Connection does not exist 
 

Module Register Properties 

Writing values 0 Address the first connection in the list 

 > 0 Address the next connection in the list 

 < 0 Address the previous connection in the list 

 
 

Type of connection 

The value in this register shows whether the connection is a client or a server 
connection. 
 

Module Register Properties 

Values 1 Client 

 2 Server 

 
 

Transport Protocol 

The value in this register shows whether TCP or UDP is used as transport 
protocol. 
 

Module Register Properties 

Values 1 UDP 

 2 TCP 

 
 

Introduction 

MR 0 

MR 1 

MR 2 



 

Jetter AG 285 
 

JVM-407 Programming 

 

IP Address 

The value in this register shows the configured IP address. 
 

Module Register Properties 

Values 0.0.0.0 ... 255.255.255.255  

 
 

IP Port 

The value in this register shows the configured IP port. 
 

Module Register Properties 

Values 0 ... 65,535  

 
 

Status 

The value in this register shows status the connection is currently in. 
 

Module Register Properties 

Values 0 Connection terminated 

 1 Connection is being established 

 2 Connection is established 

 3 TCP/IP server: Waiting for connection 
request from client 

 4 Internal usage 

 
 

Number of sent bytes 

The value in this register shows the number of data bytes sent via the given 
connection. Since this is a signed 32-bit register and the sent bytes are added 
each time, the number range may be exceeded from the positive maximum 
value to the negative maximum value. 
 

Module Register Properties 

Values -2,147,483,648 ... 2,147,483,647  

 
 

MR 3 

MR 4 

MR 5 

MR 6 



 

286 Jetter AG 
 

11  Programming 

 

Number of received bytes 

The value in this register shows the number of data bytes received via the 
given connection. Since this is a signed 32-bit register and the received bytes 
are added each time, the number range may be exceeded from the positive 
maximum value to the negative maximum value. 
 

Module Register Properties 

Values -2,147,483,648 ... 2,147,483,647  

 
 

MR 7 



 

Jetter AG 287 
 

JVM-407 Programming 

11.8.3 Sample Programs 

This chapter contains sample programs for implementing a server and a 
corresponding client which will use TCP/IP for communication. 
 

The examples in this chapter are based on the following configuration: 
 

Jetter

Jetter
JC-940MC

X14

Err D1 RUN

X14

S11 RUN
STOP

LOAD

S10 RESET

X15

B
U

S 
O

U
T

X19

X61
ET

H
ER

N
ET

SD
-C

A
R

D

X11

S11

SE
R

RUN
STOP

LOAD

PO
W

ER

X10

0V

DC24V
1,2A

2

1

R

SD

U1

U3 U4

U2

E D1 D2

JC
-3

50

E
T
H
1

 
 

Number Component Function 

1 JC-940MC Controller 

2 JC-350 Controller 

 
Due to the platform-independent implementation of the user-programmable IP 
interface these sample programs can be used for other configurations without 
modification. 
 

 

Topic Page 
Server ......................................................................................................... 288 
Client ........................................................................................................... 292 

 
 
 

Introduction 

Sample Configuration 

Contents 



 

288 Jetter AG 
 

11  Programming 

Server 

A server is to receive a data block with a given number of characters and to 
return the received data to the client. 
 

Programming a server for the user-programmable IP interface. The server 
communicates via TCP/IP. 
 

This example is based on the configuration described under Sample 
Configuration on page 287. 
 

 

Const 

  TCP_PORT = 52100; 

  MSG_LEN  = 4000; 

End_Const; 

 

Var 

  // connection handle 
  ConnHandle      : Int;             

 

  // send buffer 
  SendBuf         : Array[MSG_LEN] Of Char;   

  // receive buffer 
  RecvBuf         : Array[MSG_LEN] Of Char;   

 

  ResConnInit     : Int; 

  ResConnCreate   : Int; 

  ResConnReceive  : Int; 

  ResConnSend     : Int; 

 

  ConnTimeOut     : Int; 

  RecvTimeOut     : Int; 

   

  // receive error count 
  RecvErrors      : Int;             

  // send error count 
  SendErrors      : Int;             

  // valid communication counter 
  CommCnt         : Int;             

 

  AmountToReceive : Int; 

   

  // dummy 
  NotUsed         : Int;             

End_Var; 

 

 

Task TCPserver Autorun 

 

  Var 

Task 

Solution 

Sample Configuration 

JetSym STX Program 



 

Jetter AG 289 
 

JVM-407 Programming 

    RecvTimer     : Timer; 

    ReceiveCnt    : Int; 

  End_Var; 

   

  // connection timeout 
  ConnTimeOut := T#5s; 

  // receiption timeout               
  RecvTimeOut := T#5s;               

 

  // expected amount of data to receive 
  AmountToReceive := MSG_LEN;           

 

  // close all connections, init. data structures 
  ResConnInit := ConnectionInitialize();     

 

  If ResConnInit >= 0 Then 

     

    Trace('Server running.$n'); 

     

    While (True) Do 

     

      // try to connect 
      ResConnCreate := ConnectionCreate 

                        ( CONNTYPE_SERVER,  

                          IPTYPE_TCP,  

                          0,  

                          TCP_PORT,  

                          ConnTimeOut ); 

 

      If ResConnCreate > 0 Then 

     

        Trace('Connection established.'); 

        // save connection handle 
        ConnHandle := ResConnCreate;          

 

        // loop, as long as connection established 
        Loop                       

           

          // timeout for the complete data packet 
          TimerStart(RecvTimeout, RecvTimeOut * 5);   

          // init. receive data counter 
          ReceiveCnt := 0;               

           

          // loop until all expected data received or timeout 
          While ReceiveCnt < AmountToReceive 

              And Not TimerEnd(RecvTimer) Do 

       

            ResConnReceive := ConnectionReceiveData 

                                ( ConnHandle,  

                                  NotUsed,  

                                  NotUsed,  



 

290 Jetter AG 
 

11  Programming 

                                  RecvBuf[ReceiveCnt], 

                                  SizeOf(RecvBuf),  

                                  RecvTimeOut ); 

       

            If ResConnReceive > 0 Then 

              // something received, increment counter 
              ReceiveCnt := ReceiveCnt + ResConnReceive; 

            Else 

              // error on receive 
              ResConnReceive := -1;       

              // increment error counter 
              inc(RecvErrors);           

              // leave loop 
              Exit;                   

            End_If; 

          End_While; 

         

          // here is the point to implement the server function; 
          // in this example we simply return the received data 
          If ReceiveCnt Then 

            // copy from receive to send buffer 
            MemCopy(SendBuf,RecvBuf,SizeOf(SendBuf));  

            ResConnSend := ConnectionSendData 

                             ( ConnHandle,  

                               0,  

                               0,  

                               SendBuf,  

                               ReceiveCnt ); 

            If ResConnSend < 0 Then 

              // increment error counter 
              Inc(SendErrors);           

            End_If; 

          End_If; 

 

          If ResConnSend >= 0 And ResConnReceive >= 0 Then 

            // no error --> increment OK counter 
            Inc(CommCnt);               

          Else 

            // leave loop 
            Exit;                   

          End_If; 

       

        End_Loop; 

     

        If ConnHandle > 0 Then 

          // close connection 
          ConnectionDelete(ConnHandle);         

          // no longer valid 
          ConnHandle := 0;               

          Trace('Connection close.$n'); 

        End_If; 



 

Jetter AG 291 
 

JVM-407 Programming 

 

      End_If;   

       

      // wait a little bit before trying to reconnect 

      Delay(T#3s); 

 

    End_While; 

         

  Else 

    Trace('ConnectionInitialize() failed, server stopped !$n'); 

  End_If; 

   

End_Task; 

 

 
 Client on page 292 

 
 

Related Topics: 



 

292 Jetter AG 
 

11  Programming 

Client 

A client is to send a data block with a given number of characters and to return 
the data received from the server. 
 

Programming a client for the user-programmable IP interface. The client 
communicates via TCP/IP. 
 

This example is based on the configuration described under Sample 
Configuration on page 287. 
 

Const 

  TCP_ADDR = IP#192.168.10.210; 

  TCP_PORT = 52100; 

  MSG_LEN  = 4000; 

End_Const; 

 

Var 

  // connection handle 
  ConnHandle       : Int;             

 

  // send buffer 
  SendBuf        : Array[MSG_LEN] Of Char;   

  // receive buffer 
  RecvBuf        : Array[MSG_LEN] Of Char;   

 

  ResConnInit      : Int; 

  ResConnCreate    : Int; 

  ResConnReceive   : Int; 

  ResConnSend      : Int; 

 

  ConnTimeOut      : Int; 

  RecvTimeOut      : Int; 

   

  // receive error count 
  RecvErrors       : Int;             

  // send error count 
  SendErrors       : Int;             

  // valid communication counter 
  CommCnt          : Int;             

 

  AmountToReceive  : Int; 

  SendDelay        : Int; 

   

  // dummy 
  NotUsed          : Int;             

End_Var; 

 

 

Task TCPclient Autorun 

Task 

Solution 

Sample Configuration 

JetSym STX Program 



 

Jetter AG 293 
 

JVM-407 Programming 

 

  Var 

    RecvTimer    : Timer; 

    ReceiveCnt     : Int; 

  End_Var; 

   

  // connection timeout 
  ConnTimeOut := T#5s; 

  // receiption timeout               
  RecvTimeOut := T#5s;               

 

  // expected amount of data to receive 
  AmountToReceive := MSG_LEN;           

  SendDelay       := T#500ms; 

 

  // close all connections, init. data structures 
  ResConnInit := ConnectionInitialize();     

 

  If ResConnInit >= 0 Then 

     

    Trace('Client running.$n'); 

     

    While (True) Do 

     

      // try to connect 
      ResConnCreate  := ConnectionCreate 

                         ( CONNTYPE_CLIENT,  

                           IPTYPE_TCP,  

                           TCP_ADDR,  

                           TCP_PORT,  

                           ConnTimeOut ); 

 

      If ResConnCreate > 0 Then 

     

        Trace('Connection established.'); 

        // save connection handle 
        ConnHandle := ResConnCreate;          

 

        // loop, as long as connection established 
        Loop                       

       

          ResConnSend := ConnectionSendData 

                          ( ConnHandle,  

                            0,  

                            0,  

                            SendBuf,  

                            AmountToReceive ); 

          If ResConnSend < 0 Then 

            // increment error counter 
            Inc(SendErrors);             

          End_If; 



 

294 Jetter AG 
 

11  Programming 

           

          // timeout for the complete data packet 
          TimerStart(RecvTimer, RecvTimeOut * 5);   

          // init. receive data counter 
          ReceiveCnt := 0;               

           

          // loop until all expected data received or timeout 
          While ReceiveCnt < AmountToReceive  

              And Not TimerEnd(RecvTimer) Do 

       

            ResConnReceive := ConnectionReceiveData 

                               ( ConnHandle,  

                                 NotUsed,  

                                 NotUsed,  

                                 RecvBuf[ReceiveCnt], 

                                 SizeOf(RecvBuf),  

                                 RecvTimeOut ); 

       

            If ResConnReceive > 0 Then 

              // something received, increment counter 
              ReceiveCnt := ReceiveCnt + ResConnReceive; 

            Else 

              // error on receive 
              ResConnReceive := -1;       

              // increment error counter 
              Inc(RecvErrors);           

              // leave loop 
              Exit;                   

            End_If; 

          End_While; 

         

          If ResConnSend >= 0 And ResConnReceive >= 0 Then 

            // no error --> increment OK counter 
            Inc(CommCnt);               

            Delay(SendDelay); 

          Else 

            // leave loop 
            Exit;                   

          End_If; 

       

        End_Loop; 

     

        If ConnHandle > 0 Then 

          // close connection 
          ConnectionDelete(ConnHandle);         

          // no longer valid 
          ConnHandle := 0;               

          Trace('Connection close.$n'); 

        End_If; 

 

      End_If;   



 

Jetter AG 295 
 

JVM-407 Programming 

       

      // wait a little bit before trying to reconnect 
      Delay(T#3s); 

 

    End_While; 

         

  Else 

    Trace('ConnectionInitialize() failed, client stopped !$n'); 

  End_If; 

   

End_Task; 

 

 
 Server on page 288 

 
 

Related Topics: 



 

296 Jetter AG 
 

11  Programming 

11.9 User-Programmable CAN-PRIM Interface 

The user-programmable CAN-PRIM interface allows to send and receive CAN 
messages. When using this feature, the CAN messages are completely 
processed by the application program. 
 

The user-programmable CAN-PRIM interface can be used for the following 
applications: 
 

 Connection of modules with CAN interface 
 

To be able to program user-programmable CAN-PRIM interfaces basic 
knowledge of Controller Area Networks (CAN) is required. This knowledge 
includes: 
 

 Structure of CAN messages 
 

 

Topic Page 
User-programmable CAN-PRIM interface - Operating Principle ................ 297 
Restrictions Regarding the CAN-PRIM Interface........................................ 298 
Programming the CAN-PRIM Interface ...................................................... 299 
Internal Processes of the CAN-PRIM Interface .......................................... 302 
Register Description - CAN-PRIM Interface ............................................... 303 
CAN-PRIM Interface - Sample Program ..................................................... 309 

 
 
 

CAN-PRIM Interface 

Applications 

Required Programmer's 
Skills 

Contents 



 

Jetter AG 297 
 

JVM-407 Programming 

User-programmable CAN-PRIM interface - Operating Principle 

The user-programmable CAN-PRIM interface uses message boxes for data 
exchange between CAN bus and application program. Each message box is 
able to accomodate a complete CAN message. 
32 message boxes are available to the user. Each of these boxes can be 
configured as inbox or outbox with a specific CAN ID. 
 

 

Function Description 

CAN ID 11-bit or 29-bit 

RTR messages are not supported 

Number of message boxes 32 
 

 
 

Operating Principle 

Technical Data 

 

 



 

298 Jetter AG 
 

11  Programming 

Restrictions Regarding the CAN-PRIM Interface 

The CAN-PRIM interface of a JVM-407 is available only with CAN-0. 
 

The interval between two CAN messages received via CAN-PRIM interface 
must be at least 10 ms. If the interval is shorter, the HMI JVM-407 is not able 
to receive all CAN messages. 
 

The following CAN IDs are earmarked as CANopen® is running in parallel: 
 

Earmarked CAN IDs Description 

0x00 With 11-bit NMT 

0x600 + node ID and 0x580 + node ID SDO 

0x80 Sync 

0x100 Time Stop 

0x80 + node ID Emergency message 

0x700 + node ID Heartbeat 

+ related PDOs In the application project 

+ IDs of other CANopen® nodes  

 
 

Only CAN-0 

Time Response 

Earmarked CAN IDs 



 

Jetter AG 299 
 

JVM-407 Programming 

Programming the CAN-PRIM Interface 

The following registers are used in this manual: 
 

Register Description 

R 200010500 CAN-PRIM status 

R 200010501 CAN-PRIM command register 

R 200010502 Box number 

R 200010503 FIFO buffer filling level 

R 200010510 Box status 

R 200010511 Box configuration 

R 200010512 CAN ID 

R 200010513 Number of data bytes 

R 200010514 
... 

R 200010521 

Data byte 0 
... 
Data byte 7 

 

To initialize the CAN-PRIM interface configure the length of the CAN ID for all 
message boxes as follows: 
 

If CAN ID length... ... Then ... 

is 11 bits R 200010501 = 8; 

is 29 bits R 200010501 = 9; 
 

 

Overview of Registers 

Initialization 



 

300 Jetter AG 
 

11  Programming 

 

To configure a message box for sending proceed as follows: 
 

Step Action 

1 Select message box 
R 200010502 := Message box number; 

2 Configure the message box as inbox 
R 200010511 := 1; 

3 Configure the CAN ID for receiving messages 
R 200010512 := CAN ID; 

4 Activate the box 
R 200010501 := 1; 
Result if configuration was successful: 
Bit 0 = 1 in R 200010510 

 

To send a CAN message proceed as follows: 
 

Step Action 

1 Select message box 
R 200010502 := Message box number; 

2 Number of bytes to be sent 
R 200010513 := Number of bytes; 

3 Writing the data bytes 
R 200010514 := Data byte 0; 
R 200010515 := Data byte 1; 
... 
R 200010521 := Data byte 7; 

4 Send data from the selected message box 
R 200010501 := 3; 
Result if sending was successful: 
Bit 3 = 0 in R 200010510 

 

Configuring a Message 
Box for Sending 

Sending a CAN Message 



 

Jetter AG 301 
 

JVM-407 Programming 

 

To configure a message box for receiving proceed as follows: 
 

Step Action 

1 Select message box 
R 200010502 := Message box number; 

2 Configure the message box as inbox 
R 200010511 := 0; 

3 Configure the CAN ID for receiving messages 
R 200010512 := CAN ID; 

4 Activate the box 
R 200010501 := 1; 
Result if configuration was successful: 
Bit 0 = 1 in R 200010510 

 

To receive a CAN message proceed as follows: 
 

Step Action 

1 Check bit 1 NEWDAT in R 200010500 
 

If ... ... Then ... 

Bit 1 = 1 in R 200010500 a CAN message has been received. 
Proceed with step 2 

  

2 Select the message box which has received a CAN message. 
R 200010502 := R 200010504; 

3 Check the message box for overflow. 
 

If ... ... Then ... 

Bit 2 = 1 in R 200010510 an overflow has occurred. 

  

4 Read the number of received bytes 
Number of bytes = R 200010513;  

5 Read the received bytes 
Data byte 0 = R 200010514; 
Data byte 1 = R 200010515; 
... 
Data byte 7 = R 200010521; 

6 Acknowledge that the message has been received 
R 200010501 := 4; 

7 The message box is again ready to receive. 

 
 

Configuring a Message 
Box for Receiving 

Receiving a CAN 
Message 



 

302 Jetter AG 
 

11  Programming 

Internal Processes of the CAN-PRIM Interface 

The CAN-PRIM interface processes the following tasks independently: 
 

 Reception of CAN messages 
 Sending of CAN messages 
 Filtering of CAN messages on reception 
 

The CAN-PRIM interface receives new messages in the following way: 
 

Stage Description 

1 The CAN bus receives a valid CAN message. 

2 The CAN ID matches the receiving mask. 

3 The CAN ID matches the CAN ID of a message box which has been 
configured as inbox. 

4  

If in R 200010510 of the 
message box ... 

... Then ... 

the NEW DAT bit = 0 the NEW DAT bit switches to 1 
proceed with stage 5 

the NEW DAT bit = 1 the OVERRUN bit switches to 1; 
CAN message data are discarded. 

  

5 R 200010503 FIFO filling level is incremented. 

6 The message box number is entered into R 200010504 FIFO data. 

7 In R 200010500 CAN-PRIM Status the NEW DAT bit is set to 1. 

 
 

Introduction 

Internal Reception of 
CAN Messages  



 

Jetter AG 303 
 

JVM-407 Programming 

Register Description - CAN-PRIM Interface 

CAN-PRIM status 

R 200010500 allows to evaluate the status of the CAN-PRIM interface. 
 

Meaning of the individual bits 

Bit 1 NEW-DAT 

 1 = At least one message box has received a new CAN message. 

Bit 2 ID length 

 0 = The length of sent/received CAN IDs is 11 bits 

 1 = The length of sent/received CAN IDs is 29 bits 
 

Module register properties 

Type of access Read access 

Value after reset CAN-PRIM interface is enabled. 

 
 

R 200010500 



 

304 Jetter AG 
 

11  Programming 

 

CAN-PRIM command register 

R 200010501 is used to transfer certain commands to the CAN-PRIM 
interface. 
 

CAN-PRIM Interface - Commands 

1 Enabling the message box 

 The selected message box in R 200010502 is enabled. When enabling the 
message box, the system checks whether the CAN ID of the box is 
reserved or not. 
Result: Bit 0 = 1 in R 200010510 

2 Disabling the message box 

 The selected message box in R 200010502 is disabled. 
Result: Bit 0 = 0 in R 200010510 

3 Sending CAN messages 

 A CAN message is sent containing the data of the selected message box. 

4 Clearing the NEW DAT bit 

 This command is for clearing the NEW DAT bit in R 200010500 which 
enables the selected message box to receive CAN messages again. 
Result: Bit 1 = 0 in R 200010510 

5 Clearing the OVERRUN bit 

 This command is for clearing the OVERRUN bit in R 200010510 of the 
selected message box. 
Result: Bit 2 = 0 in R 200010510 

6 Clearing the transmission error bit 

 This command is for clearing the transmission error bit in R 200010510 of 
the selected message box. 
Result: Bit 3 = 0 in R 200010510 

7 Clearing the FIFO buffer 

 This command is for clearing all entries in the FIFO buffer. 
Result: R 200010503 = 0 

8 Setting the default ID length to 11 bits 

 The ID length for all CAN messages is set to 11 bits. 
Result:  
Bit 2 = 0 in R 200010500 
R 200010506 = 0 
R 200010507 = 0 

9 Setting the default ID length to 29 bits 

 The ID length for all CAN messages is set to 29 bits. 
Result:  
Bit 2 = 1 in R 200010500 
R 200010506 = 0 
R 200010507 = 0 

R 200010501 



 

Jetter AG 305 
 

JVM-407 Programming 

CAN-PRIM Interface - Commands 

10 Checking message boxes for new messages 

 The CAN-PRIM interface automatically checks the inbox for new 
messages. Command 10 is for extending the interval between checks. 

 

Module register properties 

Type of access CAN-PRIM interface is enabled. 

 
 

Message box number 

R 200010502 is for selecting a message box. The data contained in the 
message box can then be accessed via module registers R 200010510 
through R 200010521. 
 

Module register properties 

Values Message box number: 0 ... 15 

Type of access Read access removes character  

Takes effect if the CAN-PRIM interface is enabled. 

 
 

FIFO buffer filling level 

R 200010503 shows whether new CAN messages have been received, as 
well as the number of messages. 
 

Module register properties 

Values Number of received messages: 0 ... 16 

Type of access Read access  

Takes effect if the CAN-PRIM interface is enabled. 

 
 

R 200010502 

R 200010503 



 

306 Jetter AG 
 

11  Programming 

 

FIFO data 

R 200010504 shows which of the messages boxes has received a new CAN 
message. Read access to R 200010504 removes the value which has been 
read last from the FIFO buffer. This access decrements the value of R 
200010503 by one. 
 

Module register properties 

Values No FIFO data available: -1 

 Number of the message box 
containing new data: 

 
0 ... 15 

Type of access Read access removes 
characters 

 

Value after reset -1  

Takes effect if the CAN-PRIM interface is enabled. 

 
 

Global receiving mask 

The global receiving mask is for filtering the bits of the received CAN-ID. If the 
bit of the global receiving mask is set, the received bit of the CAN-ID is 
compared with the global receiving ID. 
 

Module register properties 

Values in the case of 11-bit CAN IDs 0 ... 0x7FF 

 in the case of 29-bit CAN IDs 0 ... 0x1FFFFFFF 

Bit = 0 Bit is not compared with R 200010507. 

Bit = 1 Bit is compared with R 200010507. 

Takes effect if the CAN-PRIM interface is enabled. 

 
 

Global receiving ID 

The global receiving ID and R 200010506 Global receiving mask are for 
setting a CAN ID range which is then forwarded to the CAN-PRIM interface. 
 

Module register properties 

Values in the case of 11-bit CAN IDs 0 ... 0x7FF 

 in the case of 29-bit CAN IDs 0 ... 0x1FFFFFFF 

Takes effect if the CAN-PRIM interface is enabled. 

 
 

R 200010504 

R 200010506 

R 200010507 



 

Jetter AG 307 
 

JVM-407 Programming 

 

Box status 

R 200010510 allows to evaluate the status of a message box. 
 

Meaning of the individual bits 

Bit 0 Valid 

 1 = The message box is enabled 

Bit 1 NEW-DAT 

 1 = The message box has received a CAN message. Reception of 
additional CAN messages is blocked. 

Bit 2 OVERRUN 

 1 = The message box has received a new CAN message while 
NEW-DAT was 1. 

Bit 3 Sending error 

 1 = An error has occurred when sending a CAN message from this 
message box. 

 

Module register properties 

Type of access Read access 

Takes effect if the CAN-PRIM interface is enabled. 

 
 

Box configuration 

R 200010511 is for configuring the message box. 
 

Meaning of the individual bits 

Bit 0 Outbox/inbox 

 0 = Outbox 

 1 = Inbox 
 

Module register properties 

Takes effect if the CAN-PRIM interface is enabled. 

 
 

R 200010510 

R 200010511 



 

308 Jetter AG 
 

11  Programming 

 

CAN ID 

In the case of an outbox, a CAN message is sent using the CAN ID. 
In the case of an inbox, only CAN messages with this CAN ID are received. 
 

Module register properties 

Values in the case of 11-bit CAN IDs 0 ... 0x7FF 

 in the case of 29-bit CAN IDs 0 ... 0x1FFFFFFF 

Takes effect if the CAN-PRIM interface is enabled and the message box is 
disabled, i.e. if in MR 10510 bit 0 = 0. 

 
 

Number of data bytes 

In the case of an outbox, a CAN message is sent with this number of data 
bytes. 
In the case of an inbox, the number of received data bytes is entered. 
 

Module register properties 

Values Number of data bytes: 0 ... 8 

Takes effect if the CAN-PRIM interface is enabled. 

 
 

Data bytes 0 through 7 

In the case of an outbox, a CAN message is sent with these data bytes. 
In the case of an inbox, the received data bytes are entered. 
 

Module register properties 

Values Data of data bytes: 0 ... 255 

Takes effect if the CAN-PRIM interface is enabled. 

 
 
 
 

R 200010512 

R 200010513 

R 200010514 ... 
R 200010521 



 

Jetter AG 309 
 

JVM-407 Programming 

CAN-PRIM Interface - Sample Program 

CAN messages with CAN IDs 0x200 are to be sent via CAN-PRIM interface. 
On receipt, a CAN message with CAN ID 0x277 is to be sent. 
 

The data are sent and received via CAN-PRIM interface. To this end, a 
message box is configured as inbox for CAN ID 0x200. A second message 
box is configured as outbox with CAN ID 0x277. 
 

In this example, the CAN-PRIM interface of a JVM-407 is used. 
 

 

Type 

    TYPE_JC_CAN_PRIM: 

    Struct 

        State       : Int At 0*SizeOf(Int); 

        Command     : Int At 1*SizeOf(Int); 

        BoxNumber   : Int At 2*SizeOf(Int); 

        FifoNumData : Int At 3*SizeOf(Int); 

        FifoData    : Int At 4*SizeOf(Int); 

        GlobalMask  : Int At 6*SizeOf(Int); 

        GlobalID    : Int At 7*SizeOf(Int); 

        BoxState    : Int At 10*SizeOf(Int); 

        BoxConfig   : Int At 11*SizeOf(Int); 

        BoxCanId    : Int At 12*SizeOf(Int); 

        BoxDLC      : Int At 13*SizeOf(Int); 

        BoxData     : Array[8] of Int At 14*SizeOf(Int); 

    End_Struct; 

End_Type; 

 

Var 

    CanPrim         : TYPE_JC_CAN_PRIM At %VL 200010500; 

    Data            : Array[8] of Int; 

End_Var; 

Task 

Solution 

Configuration 

Configuring the JetSym 
STX Program 



 

310 Jetter AG 
 

11  Programming 

 

Task main Autorun   

         

    // 11-bit CAN ID 
    CanPrim.Command := 8; 

     

    // Selecting box 0 
    CanPrim.BoxNumber := 0; 

    // Configuring the box for ID 0x200 
    CanPrim.BoxCanId := 0x200; 

    // Configuring box as inbox 
    CanPrim.BoxConfig := 0; 

    // Enabling the box 
    CanPrim.Command := 1; 

    If 

        BitClear(CanPrim.BoxState, 0) 

    Then 

        // CAN ID already used by system bus 
    End_If; 

     

    // Selecting box 1 
    CanPrim.BoxNumber := 1; 

    // Configuring the box to ID 0x2FF 
    CanPrim.BoxCanId := 0x2FF;     

    // Configuring box as outbox 
    CanPrim.BoxConfig := 1; 

    // Enabling the box 
    CanPrim.Command := 1; 

    If 

        BitClear(CanPrim.BoxState, 0) 

    Then 

        // CAN ID is already used by CAN system bus 
    End_If; 

End_Task; 

 



 

Jetter AG 311 
 

JVM-407 Programming 

 

 

// Waiting for new CAN messages 
When 

    BitSet(CanPrim.State, 1) 

Continue; 

     

// Reading box number out of FIFO buffer and selecting box 
CanPrim.BoxNumber := CanPrim.FifoData; 

             

// Checking for overrun 
If 

    BitSet(CanPrim.BoxState, 2) 

Then 

    // Acknowledging overrun 
    CanPrim.Command := 5;     

End_If; 

                 

// Copying received data 
Data[0] := CanPrim.BoxData[0]; 

Data[1] := CanPrim.BoxData[1]; 

                 

// Resetting the NEW-DATA bit to be able to receive 
// new messages in this box 
CanPrim.Command := 4; 

 

 

 

// Selecting box 1 
CanPrim.BoxNumber := 1; 

     

// Number of data bytes = 2 
CanPrim.BoxDLC := 2; 

// Entering the data to be sent 
CanPrim.BoxData[0] := 12; 

CanPrim.BoxData[1] := 25; 

     

// Starting to send the CAN message 
CanPrim.Command := 3; 

     

// Checking for errors 
If 

    BitSet(CanPrim.BoxState, 3) 

Then 

    // Acknowledging errors 
    CanPrim.Command := 6; 

End_If; 

 
 

JetSym STX Program - 
Receiving Data 

JetSym STX Program - 
Sending Data 



 

312 Jetter AG 
 

12  Automatic Copying of Controller Data 

12 Automatic Copying of Controller Data 

This chapter describes the AutoCopy feature which allows to copy data within 
the JVM-407 and/or between the JVM-407 and an FTP server. To this end, a 
command file has to be created which is then stored along with the data to the 
SD card or a USB stick. This command file is automatically processed by the 
controller during the boot process. 
 

The following functions can be performed: 
 

 Storing registers and flags to a file 
 Restoring registers and flags from a file 
 Creating directories 
 Deleting directories 
 Copying files 
 Deleting files 
 

The following functions can be performed: 
 

 Copying files from the FTP server 
 Copying files to the FTP server 
 Deleting files 
 Changing directories 
 Creating directories 
 Deleting directories 
 

This function can be used in systems where remote maintenance is not 
feasible, no PC is available or the operator is not able (or should not be 
allowed) to make modifications to the plant. This function includes the 
following: 
 

 Modification to the application program 
 Modification to user data 
 Modification to the controller configuration 
 Operating system update (JVM-407, network nodes) 
 Duplication of a control system 
 

The following requirements must be met: 
 

 the programmer must be familiar with the file system of the JVM-407 
 the programmer must have basic knowledge in the area of FTP application 
 

Introduction 

Functions Within the 
Local File System 

Functions Within the File 
System of an FTP Server 

Areas of Application 

Prerequisites 



 

Jetter AG 313 
 

JVM-407 Automatic Copying of Controller Data 

 

In this description "Complete Name" means the name of the file or directory 
including its complete path. 
 

 

Topic Page 
Operating Principle ..................................................................................... 314 
The File "autocopy.ini" ................................................................................ 318 
Log File ....................................................................................................... 330 
Data Files .................................................................................................... 332 

 
 
 

Names 

Contents 



 

314 Jetter AG 
 

12  Automatic Copying of Controller Data 

12.1 Operating Principle 

This chapter describes how the AutoCopy funcion is started and how it is 
executed by the JVM-407. 
 

 

Topic Page 
Activating the AutoCopy Feature ................................................................ 315 
Executing AutoCopy Commands ................................................................ 316 
Terminating AutoCopy Mode ....................................................................... 317 

 
 
 

Introduction 

Contents 



 

Jetter AG 315 
 

JVM-407 Automatic Copying of Controller Data 

Activating the AutoCopy Feature 

The AutoCopy function can only be executed while the JVM-407 is booting. 
 

The command file has been created and stored to the SD card or USB stick. 
 

 Value Comment 

File Name autocopy.ini All lower case letters 

Directory - SD /SD/ Root directory on the SD Card 

Directory - USB /USB/ Root directory on USB stick 

 

To start AutoCopy proceed as follows: 
 

Step Action 

1 Switch the device OFF. 

2 Insert the SD card completely into the SD slot or insert the USB stick into 
the USB port. 

3 Keep the keys F1 and F3 pressed. 

4 Switch the device ON. 

5 Wait until the following message appears: Start operating system in 
STOP mode. 

 

Result: The device is booting in AutoCopy mode. 
 
 

Introduction 

Prerequisites 

Activating the AutoCopy 
Feature 



 

316 Jetter AG 
 

12  Automatic Copying of Controller Data 

Executing AutoCopy Commands 

During the boot process in AutoCopy mode the device executes the 
commands contained in the command file. 
 

In AutoCopy mode, the following restrictions apply as regards the functions of 
the device JVM-407: 
 

 The application program is not executed 
 No communication with the JVM-407 possible 
 

When executing AutoCopy commands, the OS of the JVM-407 proceeds as 
follows: 
 

Stage Description 

1 The device loads the file "/SD/autocopy.ini" from the SD card or from the 
USB stick. 

2 It reads the values from section [OPTIONS] 

3 The device reads the command and its parameters from the section 
[COMMAND_1], processes it and writes the results, if any, into the log file 

4 .. n The device processes the other commands in ascending order up to the 
number given in section [OPTIONS] 

n+1 The device calculates the statistic values for all command results and 
writes them into the log file. 

 
 

Introduction 

Restrictions 

Executing AutoCopy 
Commands 



 

Jetter AG 317 
 

JVM-407 Automatic Copying of Controller Data 

Terminating AutoCopy Mode 

The AutoCopy mode can only be exited by booting the JVM-407. 
 

Once the AutoCopy function is completed, proceed as follows to exit the 
AutoCopy mode: 
 

Step Action 

1 Remove the SD card or the USB stick. 

2 Press any key on the device. 
 

Result: The device reboots. 
 
 

Introduction 

Terminating AutoCopy 
Mode 



 

318 Jetter AG 
 

12  Automatic Copying of Controller Data 

12.2 The File "autocopy.ini" 

This chapter covers the structure of the file "autocopy.ini" and the available 
commands. 
 

This command file of the AutoCopy function is a text file the entries of which 
are grouped into several sections. 
  

 In these sections values can be set which are then used by the AutoCopy 
function. 

 Blank lines can be inserted as required 
 The following characters precede a comment line: "!", "#" or ";" 
 

The command file has two section types: 
 

 In section [OPTIONS] the basic settings are made. It exists only once. 
 In the sections [COMMAND_#] the commands to be executed are 

specified. The number of commands is limited to 128.  
 

 

Topic Page 
Section [OPTIONS] ..................................................................................... 319 
Command Sections ..................................................................................... 320 
Example of a Command File....................................................................... 328 

 
 
 

Introduction 

File Structure 

Sections 

Contents 



 

Jetter AG 319 
 

JVM-407 Automatic Copying of Controller Data 

Section [OPTIONS] 

This section contains the basic settings of the AutoCopy function. It exists only 
once, preferably at the beginning of the file. 
 

[OPTIONS] 

CommandCount = 14 

LogFile      = /SD/autocopy.log 

LogAppend    = 1 

 

This section consists of the following elements: 
 

CommandCount 

In the given example 14 

Description Number of command sections that follow 

Allowed values > = 0 

Illegal values < 0 

In case of illegal value or 
missing entry 

0 

LogFile 

In the given example /SD/autocopy.log 

Description Complete name of the log file 

Allowed values  All allowed file names  
 Directory exists 

Illegal values  Invalid file name  
 Nonexistent directory 

In case of illegal value or 
missing entry 

No log file will be created. 

LogAppend 

In the given example 1 

Description Defines whether a new log file is to be created or it is to 
be appended to an existing one. 

Allowed values  0 = Delete file which may exist and create a new 
one. 

 1 = Append file to existing one. If no file exists, a 
new log file is created.  

Illegal values  < 0 
 > 1 

In case of illegal value or 
missing entry 

A new log file will be created. 

 
 

Introduction 

Example  

Elements of this Section 



 

320 Jetter AG 
 

12  Automatic Copying of Controller Data 

Command Sections 

In these sections commands can be specified which are then executed by the 
AutoCopy function of the JVM-407.  
 

[COMMAND_1] 

Command = DirCreate 

Path    = /Homepage 

ErrorAsWarning = 1 

 

[COMMAND_2] 

Command     = FileCopy 

Source      = /SD/Index.htm 

Destination = /Homepage/index.htm 

 

[COMMAND_3] 

Command        = FtpConnect 

ServerAddr     = 192.168.123.45 

UserName       = admin 

Password       = admin 

 

 

The section names consist of the string COMMAND_ followed by a number 
which indicates the number of the entry CommandCount given in section 
[OPTIONS]. 
 

The AutoCopy function processes the commands in order of their section 
names.  
 

 Starting with the command under section [COMMAND_1] 
 Ending with the command under the section with the value of entry 

CommandCount from section [OPTIONS]  
 Each command section may hold only one command. That is, for each 

command a separate section has to be created. 
 

When an error occurs while a command is being processed, the 
corresponding entry in the log file is made. For each command the user can 
set, whether the error is entered into the log file as Error or as Warning. 
This setting is made through the optional parameter ErrorAsWarning: 
 

ErrorAsWarning Entry in log file 

Parameter does not exist Error 

ErrorAsWarning = 0 Error 

ErrorAsWarning = 1 Warning 

 

Introduction 

Example 

Section Names 

Processing Commands 

Troubleshooting 



 

Jetter AG 321 
 

JVM-407 Automatic Copying of Controller Data 

 

 The function parameter for the local file may contain the path to this file 
(e.g. "/Data/TestFiles/LocalTestFile.txt"). 

 The function parameter for the file on the FTP server may contain the path 
to this file if this feature is supported by the file system. If this feature is not 
supported, the corresponding directory must be set using the command 
FtpDirChange(...). 

 The file system of a JVM-407 PLC supports both options. 
 

The following commands are available for access to the local file system: 
 

Command = DirCreate 

Function This command is for creating a subdirectory 

Parameter name Path 

Parameter value Complete name of the directory 

Allowed values  All valid directory names  
 Existing higher-level directories 

Illegal values  Invalid directory names  
 Nonexistent higher-level directory 
 Name of an already existing directory 

In case of an illegal value The directory will not be created and the error message 
will be entered into the log file 

Example [COMMAND_1] 
Command = DirCreate 
Path    = /sub1 
 
[COMMAND_2] 
Command = DirCreate 
Path    = /sub1/sub2 

Command = DirRemove 

Function This command is for deleting a subdirectory 

Parameter name Path 

Parameter value Complete name of the directory 

Allowed values  All valid directory names 
 An empty directory 

Illegal values  Invalid directory names  
 Directory is not empty 

In case of an illegal value The directory will not be deleted and the error message 
will be entered into the log file 

Example [COMMAND_8] 
Command = DirRemove 
Path    = /sub1/sub2 

 

Command     = FileCopy 

Function This command is for copying a file 

Parameter name 1 Source 

Parameter value 1 Complete name of the source file 

File Names 

Available Commands in 
the Local File System 



 

322 Jetter AG 
 

12  Automatic Copying of Controller Data 

Parameter name 2 Destination 

Parameter value 2 Complete name of the destination file 

Allowed values  All allowed file names 
 The destination directory does exist 

Illegal values  Invalid file name  
 Nonexistent source file 
 Nonexistent destination directory 

In case of an illegal value The file will not be copied and the error message will be 
entered into the log file 

Example [COMMAND_1] 
Command     = FileCopy 
Source      = /SD/OS/JC-340_1.04.0.03.os 
Destination = /System/OS/op_system.os 
 
[COMMAND_2] 
Command     = FileCopy 
Source      = /SD/Manual.pdf 
Destination = /sub1/Manual.pdf 

Command = FileRemove 

Function This command is for deleting a file. 

Parameter name Path 

Parameter value Complete name of the file 

Allowed values All allowed file names 

Illegal values Invalid file name  

In case of an illegal value The file will not be deleted and the error message will 
be entered into the log file 

Example [COMMAND_5] 
Command = FileRemove 
Path    = /sub1/Manual.pdf 

 

Command = DaFileRead 

Function This command is for transferring register values and 
flag states from a data file to the JVM-407 

Parameter name DaFile 

Parameter value Complete name of the data file 

Allowed values All allowed file names for data files 

Illegal values  Invalid file name  
 Nonexistent data file 

In case of an illegal value The date will not be transferred to the controller and the 
error message will be entered into the log file 

Example [COMMAND_12] 
Command = DaFileRead 
DaFile      = /SD/Data/MyTestData.da 

Command = DaFileWrite 

Function This command is for storing register values and flag 
states to a data file 



 

Jetter AG 323 
 

JVM-407 Automatic Copying of Controller Data 

Parameter name 1 DaFile 

Parameter value 1 Complete name of the file 

Allowed values  All allowed file names for data files 
 The destination directory does exist 

Illegal values  Invalid file name 
 Nonexistent destination directory 

In case of an illegal value The file will not be created and the error message will 
be entered into the log file 

Parameter name 2 Append 

Parameter value 2 Defines whether a new data file is to be created or it is 
to be appended to an existing one. 

Allowed values  0 = Delete file which may exist and create a new 
one. 

 1 = Append file to existing one. If no file exists, 
create a new data file. 

Illegal values  < 0 
 > 1 

In case of an illegal value A new data file will be created 

Parameter name 3 Type 

Parameter value 3 Defines whether registers or flags are to be stored. 

Allowed values  Registers 
 Flag 

Illegal values Values other than "Register" or "Flag" 

In case of an illegal value The file will not be created and the error message will 
be entered into the log file 

Parameter name 4 First 

Parameter value 4 Number of the first register or flag 

Allowed values All valid numbers from the memory area of the 
corresponding JVM-407 

Illegal values Invalid numbers 

In case of an illegal value The file will not be created and the error message will 
be entered into the log file 

Parameter name 5 Last 

Parameter value 5 Number of the last register or flag 

Allowed values All valid numbers from the memory area of the 
corresponding JVM-407 which are equal to or greater 
than the value for "First". 

Illegal values  Invalid numbers 
 Numbers less than "First" 

In case of an illegal value Only one value (First) is stored 



 

324 Jetter AG 
 

12  Automatic Copying of Controller Data 

Example [COMMAND_11] 
Command = DaFileWrite 
DaFile      = /SD/MyTestData2.da 
Append      = 0 
Type        = Register 
First       = 1000000 
Last        = 1000000 
 
[COMMAND_12] 
Command = DaFileWrite 
DaFile      = /SD/MyTestData2.da 
Append      = 1 
Type        = Flag 
First       = 10 
Last        = 20 
 
[COMMAND_13] 
Command = DaFileWrite 
DaFile      = /SD/MyTestData2.da 
Append      = 1 
Type        = Register 
First       = 1000001 
Last        = 1000999 

 
 

The following commands are available for access via network using FTP: 
 

Command = FtpConnect 

Function Establishing a connection to an FTP server 

Parameter name 1 ServerAddr 

Parameter value 1 IP address or name of FTP server 

Allowed values  IP address of the FTP server 
 Name which can be resolved through DNS 

Illegal values  IP address other than tat of the FTP server  
 Name which cannot be resolved 

Parameter name 2 UserName 

Parameter value 2 User name for logging on at the FTP server 

Parameter name 3 Password 

Parameter value 3 Password for logging on at the FTP server 

In the case of a illegal 
values 

Connection will not be established and the error 
message will be entered into the log file 

Example [COMMAND_1] 
Command = FtpConnect 
ServerAddr = 192.168.123.45 
UserName   = admin 
Password   = admin 

Comment Only one connection with an FTP server can be 
established at a time. If a connection to another FTP 
server is to be established, the JVM-407 terminates the 
existing connection beforehand. 

 

Available Commands for 
Access via FTP 



 

Jetter AG 325 
 

JVM-407 Automatic Copying of Controller Data 

Command = FtpFileRead 

Function Copying file from FTP server into the local file system 

Parameter name 1 ServerFile 

Parameter value 1 Complete name of the source file in the FTP server 

Parameter name 2 ClientFile 

Parameter value 2 Complete name of the destination file in the local file 
system 

Allowed values  All allowed file names 
 The destination directory does exist 

Illegal values  Invalid file name 
 Nonexistent source file 
 Nonexistent destination directory 

In case of an illegal value The file will not be copied and the error message will be 
entered into the log file 

Example [COMMAND_8] 
Command  = FtpFileRead 
ServerFile = /app/cantest/cantest.es3 
ClientFile = /SD/cantest3.es 

Command = FtpFileWrite 

Function Copying file from the local file system into the file 
system of the FTP server 

Parameter name 1 ServerFile 

Parameter value 1 Complete name of the destination file in the FTP server 

Parameter name 2 ClientFile 

Parameter value 2 Complete name of the source file in the local file system 

Allowed values  All allowed file names 
 The destination directory does exist 

Illegal values  Invalid file name  
 Nonexistent source file 
 Nonexistent destination directory 

In case of an illegal value The file will not be copied and the error message will be 
entered into the log file 

Example [COMMAND_5] 
Command     = FtpFileWrite 
ServerFile  = /System/OS/op_system.os 
ClientFile  = /SD/OS/JC-340_1.09.0.00.os 

Command = FtpFileRemove 

Function This command is for deleting a file in the FTP server 

Parameter name ServerFile 

Parameter value Complete name of the file 

Allowed values All allowed file names 

Illegal values Invalid file name  

In case of an illegal value The file will not be deleted and the error message will 
be entered into the log file 



 

326 Jetter AG 
 

12  Automatic Copying of Controller Data 

Example [COMMAND_9] 
Command    = FtpFileRemove 
ServerFile = /sub1/Manual.pdf 

 

Command = FtpDirChange 

Function Changing the working directory in FTP server 

Parameter name ServerDir 

Parameter value Complete name of the directory 

Allowed values All valid directory names 

Illegal values Invalid directory names  

In case of an illegal value The directory will not be changed and the error 
message will be entered into the log file 

Example [COMMAND_12] 
Command = FtpDirChange 
ServerDir   = /Data/MyTestData 

Commando = FtpDirCreate 

Function This command is for creating a subdirectory in FTP 
server 

Parameter name ServerDir 

Parameter value Complete name of the directory 

Allowed values  All valid directory names  
 Existing higher-level directories 

Illegal values  Invalid directory names  
 Nonexistent higher-level directory 
 Name of an already existing directory 

In case of an illegal value The directory will not be created and the error message 
will be entered into the log file 

Example [COMMAND_6] 
Command     = FtpDirCreate 
ServerDir   = /Data/MyTestData 

Restriction If a directory with the corresponding path is specified as 
function parameter, all directories up to the directory to 
be created must exist. Recursive creation of several 
directories is not supported. 

Commando = FtpDirRemove 

Function This command is for removing a subdirectory in FTP 
server 

Parameter name ServerDir 

Parameter value Complete name of the directory 

Allowed values  All valid directory names 
 An empty directory 

Illegal values  Invalid directory names  
 Directory is not empty 

In case of an illegal value The directory will not be removed and the error 
message will be entered into the log file 



 

Jetter AG 327 
 

JVM-407 Automatic Copying of Controller Data 

Example [COMMAND_8] 
Command     = FtpDirRemove 
ServerDir   = /Data/MyTestData 

 
 
 



 

328 Jetter AG 
 

12  Automatic Copying of Controller Data 

Example of a Command File 

New functions are to be added to an installed JVM-407. To this end, the 
following modifications have to be made to the configuration: 
 

 Operating system update 
 New application program  
 New values for some of the registers 
 

The required files are copied to an SD card and a command file for the 
AutoCopy function is created. This SD card along with a short instruction 
sheet is sent to the customer. Once the update is completed, the customer 
returns the card. 
 

The SD card contains the following files: 
 

 The file "autocopy.ini" 
 The new OS 
 A .da file containing the new register values 
 A file "start.ini" and a .es3 file containing the new application program 
 
Following execution the log file "autocopy.log" has been added. 
 

[OPTIONS] 

CommandCount = 6 

LogFile      = /SD/autocopy.log 

LogAppend    = 0 

 

# update operating system of JVM-407 

[COMMAND_1] 

Command     = FileCopy 

Source      = /SD/OS/JVM4xx_1.15.1.00.os 

Destination = /System/OS/op_system.os 

 

# Creating user program directories 

# Probably already present - but to be sure ... 

[COMMAND_2] 

Command        = DirCreate 

Path           = /app 

ErrorAsWarning = 1 

 

[COMMAND_3] 

Command     = DirCreate 

Path        = /app/userprogtest 

 

# Copying user program start file 

[COMMAND_4] 

Command     = FileCopy 

Source      = /SD/UserProgs/start.ini 

Task 

Solution 

SD Card Contents 

Command File 



 

Jetter AG 329 
 

JVM-407 Automatic Copying of Controller Data 

Destination = /app/start.ini 

 

# Copying user program 

[COMMAND_5] 

Command     = FileCopy 

Source      = /SD/UserProgs/userprogtest.es3 

Destination = /app/userprogtest/userprogtest.es3 

 

# Setting registers and flags 

[COMMAND_6] 

Command     = DaFileRead 

DaFile      = /SD/UserData/MyTestData.da 

 
 



 

330 Jetter AG 
 

12  Automatic Copying of Controller Data 

12.3 Log File 

This chapter covers the structure and contents of the log file into which the 
results of each command are entered. 
 

 

Topic Page 
File Contents ............................................................................................... 331 

 
 
 

Introduction 

Contents 



 

Jetter AG 331 
 

JVM-407 Automatic Copying of Controller Data 

File Contents 

The log file is a plain text file. The command file defines whether a log file is to 
be created. And whether it is to be created from scratch or whether the entries 
are to be appended to an existing log file. 
 

JetControl AutoCopy log file 07.11.2008 09:14:09 

 

 1: Ok    - FileCopy   /SD/OS/JC-340_1.04.0.00.os  

                         /System/OS/op_system.os (345740 byte) 

 2: Warning - DirCreate  /app 

 3: Ok    - DirCreate  /app/userprogtest 

 4: Ok    - FileCopy   /SD/UserProgs/start.ini  

                         /app/start.ini (63 byte) 

 5: Ok    - FileCopy   /SD/UserProgs/userprogtest.es3  

                         /app/userprogtest/userprogtest.es3  

                         (169 byte) 

 6: Error   - DaFileRead /SD/UserData/MyTestData.da  

 

Command statistics: 

  Total  : 7 

  Ok     : 5 

  Warning: 1 

  Error  : 1 

 

When for each executed AutoCopy function a section is appended to an 
existing log file, the log file consists of three elements: 
 

 The header contains date and time 
 The following block contains information on the executed commands. 
 Finally, short statistics on command processing. 
 
In the above example, an error message occurs (which will be entered as 
warning) when trying to create the directory "/app" as this directory already 
exists. When reading the DA file an error occurs, too. The corresponding error 
message is entered into the log file. 

 
 

Introduction 

Example 

Description 



 

332 Jetter AG 
 

12  Automatic Copying of Controller Data 

12.4 Data Files 

This chapter covers data files where register and flag values are stored. 
 

 

Topic Page 
File Format .................................................................................................. 333 

 
 
 

Introduction 

Contents 



 

Jetter AG 333 
 

JVM-407 Automatic Copying of Controller Data 

File Format 

The file is structured as follows: 
 

 Pure text file 
 Each entry must be in a separate line of text 
 Each line must be terminated by carriage return / line feed 
 Comment lines must be preceded by ";" 
 Each data file is to start with the entry "SD1001". 
 

A data line consists of the following elements: 
 

 ID of the variable at the beginning of the line 
 Now follows the number of the variable separated by a blank or tab 
 Then follows the value of the variable separated by a blank or tab 
 

Variable ID Variable type 

FS Flags 

RS Integer registers 

QS Floating-point registers 

 

SD1001 

; Data File - Jetter AG 

;  

; Register 1000000 ... 1000005 

RS    1000000    12345 

RS    1000001    2 

RS    1000002    -1062729008 

RS    1000003    502 

RS    1000004    50 

RS    1000005    3 

QS    1009000    3.14 

;  

; Flag 10 ... 13 

FS    10    0 

FS    11    1 

FS    12    1 

FS    13    0 

 
 

Format 

Data Lines 

Example 





 

Jetter AG 335 
 

JVM-407 Operating System Update 

13 Operating System Update 

Jetter AG are continuously striving to enhance the operating systems for 
HMIs. Enhancing means adding new features, upgrading existing functions 
and fixing bugs.   
This chapter describes how to update the operating system. 
 

You can download operating systems from the Jetter AG homepage at 
www.jetter.de http://www.jetter.de. You get to the OS files by clicking on the 
quick link "Operating System Download" located on the website of the 
corresponding HMI. 
 

 

Topic Page 
Updating the Operating System of the HMI ................................................ 336 

 
 
 

Introduction 

Downloading an 
Operating System 

Contents 

http://www.jetter.de/
http://www.jetter.de


 

336 Jetter AG 
 

13  Operating System Update 

13.1 Updating the Operating System of the HMI 

This chapter describes how an OS update of the JVM-407 is carried out. 
There are several options to transfer the OS file to the device: 
 

 from within the programming tool JetSym 
 via FTP connection 
 from an SD Card 
 from a USB stick 
 from within the application program 
 

 

Topic Page 
Operating System Update from within JetSym ........................................... 337 
Operating System Update by Means of FTP .............................................. 338 
Automatic OS Update from SD Card and USB stick .................................. 339 
Operating System Update from within the Application Program................. 340 

 
 
 

Introduction 

Contents 



 

Jetter AG 337 
 

JVM-407 Operating System Update 

Operating System Update from within JetSym 

The programming tool JetSym offers an easy way to transfer an OS file to the 
JVM-407. 
 

 An OS file for the JVM-407 must be available. 
 There must be a UDP/IP and a TCP/IP connection between programming 

tool and IP port of the JVM-407. The number of this port must have been 
entered into the configuration memory as IP basic port number. 

 During booting, the JVM-407 is waiting for the OS update, or the OS is 
already running. 

 Make sure that the JVM-407 is not switched off during OS update. 
 

To update the OS proceed as follows: 
 

Step Action 

1 In JetSym, call up the "Build" menu and select item "Update OS..." there, 
or click in the configuration window of the hardware manager on "OS 
Update". 
Result: The file selection box opens. 

2 Select the desired OS file here. 
Result: In JetSym, a confirmation box opens. 

3 Start the OS upload by clicking the button "Yes". 

4 Wait until the update process is completed. 

5 Reboot the JVM-407 to launch the new operating system. 

 
 

Introduction 

Prerequisites 

Updating the Operating 
System 



 

338 Jetter AG 
 

13  Operating System Update 

Operating System Update by Means of FTP 

Using an FTP client an OS file can be transferred to the controller. 
 

 An OS file for the controller JVM-407 must be available. 
 An FTP connection to the controller must be possible. 
 The login parameters for a user with administrator or system rights must be 

at hand. 
 The operating system is running. 
 Make sure that the controller is not switched off during OS update. 
 

To update the OS proceed as follows: 
 

Step Action 

1 Establish an FTP connection to the controller. 

2 Log in with administrator or system rights. 

3 Navigate to the directory "/System/OS". 

4 Transfer the OS file. 

5 Wait until the update process is completed. 

6 Close the FTP connection. 

7 Reboot the controller to launch the new operating system. 

 
 

Introduction 

Prerequisites 

Updating the Operating 
System 



 

Jetter AG 339 
 

JVM-407 Operating System Update 

Automatic OS Update from SD Card and USB stick 

An automatic OS update of the HMI from SD card or USB stick can be carried 
out using the AutoCopy function. For a detailed description refer to AutoCopy 
on page 312. 

 
 

Reference: 



 

340 Jetter AG 
 

13  Operating System Update 

Operating System Update from within the Application Program 

The file functions included in the STX language allow to carry out a 
program-controlled OS update of a controller from within an OS file. 
 

 An OS file for the controller JVM-407 must be available in the file system of 
the controller. 

 The operating system of the controller and the application program are 
running. 

 Make sure that the controller is not switched off during OS update. 
 

To update the OS from within the application program proceed as follows: 
 

Step Action 

1 Open the OS file in read-only mode. 

2 Open a file with any name and the extension ".os" in the directory 
"/System/OS" in write mode. 

3 Read the data out of the OS file. 

4 Write these data to the target file. 

5 Close both files. 

6 Reboot the controller to launch the uploaded operating system (for 
example by entering a value into the system command register). 

 

 

Var 

    SourceName:             String[100]; 

    DestinationName:        String[100]; 

    UpdateIt:               Bool; 

End_Var; 

 

//***************************************************** 
// Name:      FileCopy 
// param[in]  SrcName        name of source file 
// param[in]  DstName        name of destination file 
// return     >= 0           size of source file 
// return     < 0            error 
// brief      copies a file 
//***************************************************** 
Function FileCopy(ref SrcName: String,  

                  ref DstName: String):Int; 

    Var 

        SrcFile, DstFile:    File; 

        FileBuffer:          Array[1000] of Byte; 

        Result:              Int; 

        ReadSize:            Int; 

        WriteSize:           Int; 

        FileSize:            Int; 

    End_Var; 

Introduction 

Prerequisites 

Updating the Operating 
System 

Sample Program 



 

Jetter AG 341 
 

JVM-407 Operating System Update 

 

    Result := 0; 

    FileSize := 0; 

    // open source file for reading 
    If FileOpen(SrcFile, SrcName, 'r') Then 

        // open destination file for writing 
        If FileOpen(DstFile, DstName, 'w') Then 

            // read first block of data 
            ReadSize := FileRead(SrcFile,  

                                 FileBuffer,  

                                 SizeOf(FileBuffer)); 

            While ReadSize <> 0 Do 

                // write read data to destination file 
                WriteSize := FileWrite(DstFile,  

                                       FileBuffer,  

                                       ReadSize); 

                If WriteSize <> ReadSize Then 

                    // write error 
                    Result := -3; 

                    Exit; 

                End_If; 

                Inc(FileSize, WriteSize); 

                // read next block of data 
                ReadSize := FileRead(SrcFile,  

                                     FileBuffer,  

                                     SizeOf(FileBuffer)); 

            End_While; 

            // close both files 
            FileClose(SrcFile); 

            FileClose(DstFile); 

        Else 

            // can't open destination file 
            FileClose(SrcFile); 

            Result := -2; 

        End_If; 

    Else 

        // can't open source file 
        Result := -1; 

    End_If; 

    If Result < 0 Then 

        FileCopy := Result; 

    Else 

        FileCopy := FileSize; 

    End_If; 

End_Function; 

 

//**************************************************** 
// 1. Enable Tracing in JetSym 
// 2. Put source file name into 'SourceName' 
// 3. Set flag 'UpdateIt' 
//**************************************************** 



 

342 Jetter AG 
 

13  Operating System Update 

Task OSupdate Autorun 

    Var 

        ResCopy:    Int; 

      End_Var; 

     

    DestinationName := '/System/OS/OperatingSystem.os'; 

    Loop 

        UpdateIt := False; 

        When UpdateIt Continue; 

        ResCopy := FileCopy(SourceName,  

                            DestinationName); 

        Trace('Result : ' + IntToStr(ResCopy) + '$n'); 

    End_Loop; 

End_Task; 

 
 



 

Jetter AG 343 
 

JVM-407 Application Program 

14 Application Program 

This chapter explains how the application program is stored to the JVM-407 
and how the user selects the program to be executed. 
 

This chapter requires knowledge on how to create application programs in 
JetSym and how to transmit them via the JVM-407 file system. 
 

 

Topic Page 
Loading an Application Program................................................................. 344 
Application Program - Default Path ............................................................ 345 
Storing the Application Program to an SD Card ......................................... 346 

 
 
 

Introduction 

Required Programmer's 
Skills 

Contents 



 

344 Jetter AG 
 

14  Application Program 

Loading an Application Program 

The application program is loaded and executed by the file system either on 
relaunch of the application program through JetSym or on re-boot of the 
JVM-407. 
 

The application program is loaded by the JVM-407's OS as follows: 
 

Stage Description 

1 The OS reads the file "/app/start.ini" from the internal flash disk. 

2 The OS reads out the path to the application program from the entry 
"Project". 

3 The OS reads out the program name from the entry "Program". The path 
is relative to the directory "/app". 

4 The OS loads the application program from the file <Project>/<Program>. 

 
 

Introduction 

Loading Process  



 

Jetter AG 345 
 

JVM-407 Application Program 

Application Program - Default Path 

When uploading the application program from JetSym to the JVM-407, it is 
stored as file to the internal flash disk. Path and file name are entered into the 
file "/app/start.ini". 
 

In the directory "/app" JetSym, by default, creates a subdirectory and assigns 
the project name to it. Then, JetSym stores the application program to this 
subdirectory assigning the extension "*.es3" to it. Path and file names are 
always converted into lower case letters. 
 

This file is a text file with one section holding two entries: 
 

Element Description 

[Startup] Section name 

Project Path to the application program. This path is relative 
to "/app". 

Program Name of the application program file 
 
Example: 

[Startup] 

Project = test_program 

Program = test_program.es3 

 
Result: The application program is loaded from the file 
"/app/test_program/test_program.es3". 
 

 
 Storing the Application Program to the SD Card on page 346 

 
 

Introduction 

Path and File Name 

File "/app/start.ini"  

Related Topics 



 

346 Jetter AG 
 

14  Application Program 

Storing the Application Program to an SD Card 

When uploading the application program from JetSym to the JVM-407, the 
default path for the application program is used. If the application program is 
to be read from the SD card or an USB stick, the user has to configure this 
option. 
The procedure is the same if you wish to store the application program to a 
different directory of the internal flash disk. 
 

Since the JVM-407's file system is case sensitive, make sure that path and file 
names, as well as file entries are spelled correctly. 
 

This is how the JVM-407 is to be configured if you wish to store the application 
program to the SD card: 
 

Step Action 

1 Create the desired directory on the SD card or the USB stick. 

2 Store the application program created by JetSym to this directory. 

3 Enter the path to the application program file and the program name into 
the file "/app/start.ini" on the controller's internal flash disk. 

 

Result: When the application program is relaunched, it is loaded from SD 
card or USB stick. 
 

This file is a text file with one section holding two entries: 
 

Entry Description 

[Startup] Section name 

Project Path to the application program. This path is relative 
to "/app". 

Program Name of the application program file 
 
 

Example - SD Memory Card 

[Startup] 

Project = /SD/TestProgram 

Program = Test1.es3 

 

Example - USB Stick 

[Startup] 

Project = /USB/TestProgram 

Program = Test1.es3 

 
 
Result: The application program is loaded from the file "Test1.es3" located in 
the directory "TestProgram" on SD card ("/SD/TestProgram/Test1.es3") and on 
USB stick ("/USB/TestProgram/Test1.es3"). 
 

Introduction 

Prerequisites 

Storing the application 
program to the SD card 
or the USB stick 

File "/app/start.ini"  



 

Jetter AG 347 
 

JVM-407 Application Program 

 
 Application Program - Default Path on page 345 

 
 

Related Topics: 





 

Jetter AG 349 
 

JVM-407 Quick Reference JVM-407 

15 Quick Reference 
JVM-407 

OS version 
 

This quick reference gives an overview of registers and flags used in 
connection with HMIs JVM-407, BTM 07, BTM 09, BTM 09V and BTM 012 
with OS version 1.17.1.00. 
 

 

General Overview - Registers 
 

100000 ... 100999 Electronic Data Sheet (EDS) 
101000 … 101999 Configuration 
102000 … 102999 Real-Time Clock (RTC) 
104000 ... 104999 Ethernet 
106000 ... 106999 CAN 
107000 ... 107999 SD Memory Card 
108000 ... 108999 CPU/backplane 
  

200000 ... 209999 General system registers 
210000 ... 219999 Application program 
230000 ... 239999 Networking via JetIP 
260000 ... 269999 Remote scan 
270000 ... 279999 Modbus/TCP 
290000 ... 299999 E-mail 
310000 ... 319999 File system / data files 
350000 ... 359999 User-programmable IP Interface 
360000 ... 369999 Display 
  

1000000 ... 1059999 JC-360: Application registers (remanent; 
Int/Float) 

 

 

General Overview - I/Os 
 

Entry keys  
361000 ... 361007 Bit-coded mapping of entry keys 
LED  
362000 ... 362006 Bit-coded mapping of LEDs 
I/Os  
362100 Bit-coded mapping of status LEDs 
362200 Bit-coded mapping of relay 
 

 

General Overview - Flags 
 

0 ... 255 Application flags (remanent) 
256 ... 2047 overlaid by registers 1000000 through 

1000055 
2048 ... 2303 Special Flags 
 

 

MAC Address 
 

100801 MAC Address (Jetter) 
100802 MAC Address (device) 
 

 

Configuration 
 

 From file /system/ config.ini 
101100 IP address 
101101 Subnet mask 
101102 Default gateway 
101103 DNS server 
101132 Host name suffix type 
101133 ... 
101151 

Host name (register string) 

101164 JetIP port number 
101165 STX debugger port number 
 Used by the system 

101200 IP address 
101201 Subnet mask 
101202 Default gateway 
101203 DNS server 

101232 Host name suffix type 
101233 … 
101251 

Host name (register string) 

101264 JetIP port number 
101265 STX debugger port number 
 

 

Realtime clock (RTC) 
 

 Direct access 

102911 Seconds 
102912 Minutes 
102913 Hours 
102914 Weekday (0 = Sunday) 
102915 Day 
102916 Month 
102917 Year 
 Buffer access 

102921 Seconds 
102922 Minutes 
102923 Hours 
102924 Weekday (0 = Sunday) 
102925 Day 
102926 Month 
102927 Year 
102928 Read/write trigger 
 

 

Ethernet 
 

 IP 

104531 current IP address (rw) 
104532 current subnet mask (rw) 
104533 current default gateway (rw) 
 

 

CAN 
 

106000 Baud rate CAN 0 
106001 Node ID CAN 0 
106100 Baud rate CAN 1 
106101 Node ID CAN 1 
106200 Baud rate CAN 2 
106201 Node ID CAN 2 
 

 

SD memory card 
 

107000 
  

Bit 0 = 1: Card available 
Bit 1 = 1: Card ready 

107001 1 = card is read-only 
(only applies if reg. 107000 = 3) 

107002 Size in MBytes 
107003 Baud rate in MBaud 
 

 

CPU Hardware 
 

108015 
 

Backup voltage (e.g. of the clock) 
0 = Data invalid 
1 = Power supply OK 
You can confirm the register by entering 1, if the power 
supply has been recovered.  

 

 

USB Data Carrier 
 

109000 Bit 0 = 1: Data carrier exists 
Bit 1 = 1: Data carrier is ready 

107001 1 = data carrier is read-only 
(only applies if reg. 109000 = 3) 

107002 Size in MBytes 
 

 

CPU 
 

108002 all LED on/off (bit-coded) 
Bit 1: LED E 

108004 LED E 
0 = off 
3 = on 

108015 Application status 
2 = RUN 
3 = STOP 



 

350 Jetter AG 
 

15  Quick Reference JVM-407 

 

 

General System Registers 
 

200000 OS version (Major * 100 + Minor) 
200001 Application program running (Bit 0 = 1) 
200008 Error register (identical to 210004) 
  
200168 Bootloader version (IP format) 
200169 OS version (IP format) 
  
201000 Runtime registers in milliseconds (rw) 
201001 Runtime registers in seconds (rw) 
201002 Runtime registers in reg. 201003 
 Units (rw) 

201003 * 10 ms units for reg. 201002 (rw) 
201004 Runtime registers in milliseconds (ro) 
  
202930 
 

Web status (bit-coded) 
Bit 0 = 1: FTP server available 
Bit 1 = 1: HTTP server available 
Bit 2 = 1: E-mail available 
Bit 3 = 1: Data file function available 
Bit 4 = 1: Modbus/TCP has been licensed 
Bit 5 = 1: Modbus/TCP available 
Bit 6 = 1: Ethernet/IP available 

202936 Control register file system 
0xc4697a4b: Formatting the Flash Disk 
0xd364e64d: Formatting the SD Card 
0x2c9b3c94: Checking the SD Card 
0x8f3d5185: Formatting the USB data carrier 
0x17dbd42a: Checking the USB data carrier 

202960 Password for system command register (0x424f6f74) 
202961 System Command Registers 
  
202980 Error history: Number of Entries 
202981 Error history: Index 
202982 Error history: Item 
  
203000 Interface Monitoring: JetIP 
203001 Interface Monitoring: SER 
203005 Interface Monitoring: Debug server 
  
203100 ... 
203107 

32-bit overlay - Flag 0 ... 255 

203108 ... 
203123 

16-bit overlay - Flag 0 ... 255 

203124 ... 
203131 

32-bit overlay - Flag 2048 ... 2303 

203132 ... 
203147 

16-bit overlay - Flag 2048 ... 2303 

  
209700 System logger: global enable 
209701 ... 
209739 

Enable system components 
 

 

Application Program 
 

210000 Application program running (Bit 0 = 1) 
210001 JetVM version 
210004 Error register (bit-coded) 

Bit 1: Error JX3 bus 
Bit 2: Error JX2 bus 
Bit 8: illegal jump 
Bit 9: illegal call 
Bit 10: illegal index 
Bit 11: illegal Opcode 
Bit 12: divide by 0 
Bit 13: stack overflow 
Bit 14: stack underflow 
Bit 15: stack invalid 
Bit 16: Error when loading the application program 
Bit 24: Cycle time overrun 
Bit 25: Tasklock timeout 
Bit 31: Unknown error 

210006 Highest task number 

210007 Minimum program cycle time 
210008 Maximum program cycle time 
210009 Current program cycle time 
210011 Current task number 
210050 Current program count within an execution unit 
210051 ID of the execution unit just processed 
210056 Required total cycle time in µs 
210057 Calculated total cycle time in µs 
210058 Maximum time slice per task in µs 
210060 Task ID (for reg. 210061) 
210061 Task priority for task [reg. 210060] 
210063 Length of Scheduler Table 
210064 Index in Scheduler Table 
210065 Task ID in Scheduler Table 
210070 Task ID (for reg. 210071) 
210071 Timer number (0 ... 31) 
210072 Manual triggering of a Timer Event (bit-coded) 
210073 End of cyclic task (Task ID) 
210074 Command for cyclic tasks 
210075 Number of timers 
210076 Timer number (for reg. 210077) 
210077 Timer value in milliseconds 
  

210100 ... 
210199 

Task status 

  

210400 ... 
210499 

Task program address 

  

210600 Task ID of a cyclic task (for reg. 210601) 
210601 Processing time for a cyclic task in 1/10 of a percent 
210609 Tasklock timeout in ms 
 -1: Monitoring disabled 

210610 Time overrun (bit-coded, 
 Bit 0 -> Timer 0 etc.) 
 

 

Networking via JetIP 
 

230000 JetIP/TCP Server: Number of open connections 
230001 JetIP/TCP Server: Mode 
230002 JetIP/TCP Server: Time 
  

232708 Timeout in milliseconds 
232709 Response time in milliseconds 
232710 Number of network errors 
232711 
 

Error code of the last access 
0 = No error 
1 = Timeout 
3 = Error message of the remote station 
5 = Invalid network address 
6 = Invalid number of registers 
7 = Invalid interface number 

232717 Max. number of retries 
232718 Number of retries 
 

 

Modbus/TCP 
 

272702 Register offset 
272704 Input offset 
272705 Output offset 
278000 ... 
278999 

16-bit I/O register; overlaid by virtual I/O 20001 through 
36000 

 

 

E-mail 
 

292932 IP address of SMTP server 
292933 IP address of POP3 server 
292934 Port number of SMTP server 
292935 Port Number of POP3 server 
292937 Status of E-Mail Processing 
292938 E-Mail Task ID 
 

 

File system / data file function 
 

312977 Status of file operation 
312978 Task ID 



 

Jetter AG 351 
 

JVM-407 Quick Reference JVM-407 

 

 

User-Programmable IP Interface 
 

 Reading the IP-PRIM connections list 

350000 Last result (-1 = no connection selected) 
350001 1 = Client; 2 = Server 
350002 1 = UDP; 2 = TCP 
350003 IP Address 
350004 Port number 
350005 Connection status 
350006 Number of bytes sent 
350007 Number of bytes received 
 

 

Application Registers 
 

1000000 ... 
1005999 

32 bit integer (remanent) 
 

 

CAN-PRIM register 
 

200010500 CAN-PRIM status 
200010501 CAN-PRIM command register 
200010502 Message box number 
200010503 FIFO level 
200010504 FIFO data 
200010506 Global receiving mask 
200010507 Global receiving ID 
200010510 Box status 
200010511 Box configuration 
200010512 CAN ID 
200010513 Number of data bytes 
200010514 
... 
200010521 

Data bytes 

 

 

Display 
 

Function keys 
361000 ... 
361007 

Bit-coded mapping of function keys 
e.g. bit 0: 1 = key 1 is pressed 

  

Ignition (IGN) 
361100 Bit 0:  

0 = Ignition switched on 
1 = Ignition switched off 

 
LEDs for keys 
362000 ... 
362006 

Bit-coded mapping of LEDs 
e.g. bit 0: 1 = LED key 1 on 

  

I/O (IN1 ... IN15 and OUT) 
362100 Bit-coded mapping of status LEDs 

e.g. bit 0: 1 = IN1 on 
362200 Bit-coded mapping of output 

e.g. bit 0: 1 = OUT on 
  

Digipot 
363000 Current count value 
363001 Digipot - Enter function 
363002 Minimum count value 
363003 Maximum count value 
  

Display 
364000 Backlighting 
364001 Keys night-lighting 
364003 Brightness sensor 
  

Video 
is displayed by default on object 14000 (rectangle) 
364200 Video input (Input) 
364201 Video input external Mux (only BTM 07) 
364202 Video type  

1 = composite 
2 = svideo 

364203 Video format 
1 = PAL 
2 = NTSC 

364204 Video Options 
Bit 0: 1 = Interlaced 
Bit 1: 1 = Mirror vertical 

  

364210 Video input brightness 
364211 Video input contrast 
364212 Video input saturation 
  

364220 Video Output ID (Rectangle ID in IOP) 
  

364230 Video Input Source X 
364231 Video Input Source Y 
364232 Video Input Source Width 
364233 Video Input Source Height 
  

Visualization 
365000 ... 
365029 

Name of IOP file 

365050 ... 
365079 

Name of language 

365100 Language selection according to ID 
365200 Number of available languages 
365201 Current selection for the Info Register 
365202 Info Register Default ID = 1 
365203 Info Register size of IOP file 

365210 ... 
365240 

Info Register file name of IOP file 

365260 ... 
365289 

Info Register name of language 

  

System status 
367000 HAL name 
367010 Backup battery / Battery full (> 2 V) 
 

 

Special Flags - Network 
 

2075 Error in networking via JetIP 
 

 

Special flags - interface monitoring 
 

2088 OS flag - JetIP 
2089 User flag - JetIP 
2090 OS flag - SER 
2091 User flag - SER 
2098 OS flag - debug server 
2099 User flag - debug server 
 

 

32 Combined Flags 
 

203100 0 ... 31 
203101 32 ... 63 
203102 64 ... 95 
203103 96 ... 127 
203104 128 ... 159 
203105 160 ... 191 
203106 192 ... 223 
203107 224 ... 255 
 

 

16 Combined Flags 
 

203108 0 ... 15 
203109 16 ... 31 
203110 32 ... 47 
203111 48 ... 63 
203112 64 ... 79 
203113 80 ... 95 
203114 96 ... 111 
203115 112 ... 127 
203116 128 ... 143 
203117 144 ... 159 
203118 160 ... 175 
203119 176 ... 191 
203120 192 ... 207 



 

352 Jetter AG 
 

15  Quick Reference JVM-407 

203121 208 ... 223 
203122 224 ... 239 
203123 240 ... 255 
 

 

32 Combined Special Flags 
 

203124 2048 ... 2079 
203125 2080 ... 2111 
203126 2112 ... 2143 
203127 2144 ... 2175 
203128 2176 ... 2207 
203129 2208 ... 2239 
203130 2240 ... 2271 
203131 2272 ... 2303 
 

 

16 Combined Special Flags 
 

203132 2048 ... 2063 
203133 2064 ... 2079 
203134 2080 ... 2095 
203135 2096 ... 2111 
203136 2112 ... 2127 
203137 2128 ... 2143 
203138 2144 ... 2159 
203139 2160 ... 2175 
203140 2176 ... 2191 
203141 2192 ... 2207 
203142 2208 ... 2223 
203143 2224 ... 2239 
203144 2240 ... 2255 
203145 2256 ... 2271 
203146 2272 ... 2287 
203147 2288 ... 2303 
 

 

Overlaid User Registers/Flags 
 

1000000 256 ... 287 
1000001 288 ... 319 
1000002 320 ... 351 
1000003 352 ... 383 
1000004 384 ... 415 
1000005 416 ... 447 
1000006 448 ... 479 
1000007 480 ... 511 
1000008 512 ... 543 
1000009 544 ... 575 
1000010 576 ... 607 
1000011 608 ... 639 
1000012 640 ... 671 
1000013 672 ... 703 
1000014 704 ... 735 
1000015 736 ... 767 
1000016 768 ... 799 
1000017 800 ... 831 
1000018 832 ... 863 
1000019 864 ... 895 
1000020 896 ... 927 
1000021 928 ... 959 
1000022 960 ... 991 
1000023 992 ... 1023 
1000024 1024 ... 1055 
1000025 1056 ... 1087 
1000026 1088 ... 1119 
1000027 1120 ... 1151 
1000028 1152 ... 1183 
1000029 1184 ... 1215 
1000030 1216 ... 1247 
1000031 1248 ... 1279 
1000032 1280 ... 1311 
1000033 1312 ... 1343 
1000034 1344 ... 1375 
1000035 1376 ... 1407 
1000036 1408 ... 1439 
1000037 1440 ... 1471 
1000038 1472 ... 1503 
1000039 1504 ... 1535 
1000040 1536 ... 1567 
1000041 1568 ... 1599 
1000042 1600 ... 1631 
1000043 1632 ... 1663 

1000044 1664 ... 1695 
1000045 1696 ... 1727 
1000046 1728 ... 1759 
1000047 1760 ... 1791 
1000048 1792 ... 1823 
1000049 1824 ... 1855 
1000050 1856 ... 1887 
1000051 1888 ... 1919 
1000052 1920 ... 1951 
1000053 1952 ... 1983 
1000054 1984 ... 2015 
1000055 2016 ... 2047 
 

 

System Functions 
 

4 BCD to HEX conversion 
5 HEX to BCD conversion 
20 Square Root 
21 Sine 
22 Cosine 
23 Tangent 
24 Arc Sin 
25 Arc Cosine 
26 Arc Tangent 
27 Exponential Function 
28 Natural Logarithm 

29 Absolute value 
30 Separation of digits before and after the decimal point 
60 CRC generation for Modbus RTU 
61 CRC check for Modbus RTU 
65/67 Reading register block via Modbus/TCP 
66/68 Writing register block via Modbus/TCP 
90 Writing data file 
91 Appending data file 
92 Reading data file 
96 Deleting data file 
110 E-mail feature 
150 Configuring NetCopyList 
151 Deleting NetCopyList 
152 Sending NetCopyList 
 

 
 
 



 

Jetter AG 353 
 

JVM-407 Appendix 

Appendix 

This appendix contains electrical and mechanical data, as well as operating 
data. 
 

 

Topic Page 
Technical Data ............................................................................................ 354 
Index ........................................................................................................... 362 

 
 
 

Introduction 

Contents 



 

354 Jetter AG 
 

  Appendix 

A: Technical Data 

This chapter contains information on electrical and mechanical data, as well 
as on operating data of the JVM-407. 
 

 

Topic Page 
Technical Data............................................................................................. 355 
Physical Dimensions ................................................................................... 357 
Operating Parameters - Environment and Mechanics ................................ 360 
Operating Parameters - EMC ..................................................................... 361 

 
 
 

Introduction 

Contents 



 

Jetter AG 355 
 

JVM-407 Appendix 

Technical Data 

 

Parameter Description 

Rated voltage U BATT DC 12 V or DC 24 V 

Permissible voltage range 9 ... 32 VDC 

Input current without camera typ. 650 mA for DC 12 V 

Input current without camera typ. 320 mA for DC 24 V 

Power consumption without camera 7.8 W 
 

 

 

Parameter Description 

Voltage DC 12 V or  
U BATT, if U BATT < DC 13 V 

Current max. 1 A 
 

 

 

Parameter Description 

Display 7" TFT LCD flat screen 

Brightness LED backlight (white) 300 cd/m2 

Display resolution 800 x 480 pixels (WVGA) 
 

 

 

Parameter Description 

Keys 4 illuminated silicone keys with 
night-lighting 

Digipot 16-position digital potentiometer with 
ENTER function 

 

 

 

Parameter Description 

Memory size up to 8 GBytes 

Supply voltage 5 V, max. 150 mA 

Short-circuit proof yes,  
Short-circuit current: ~ 1 A 

 

 

 

Parameter Description 

Number of remanent registers 6.000 

Remanent memory for variables 24,000 bytes 

Flash disk 12.875 MBytes 
 

 

Technical Data - 
Electrical System: Power 
Supply 

 

 

 

Camera Connection 

 

 

Display 

 

 

Keys, Digipot 

 

 

USB Stick 

 

 

 

Memory Configurations 

 

 



 

356 Jetter AG 
 

  Appendix 

 

Parameter Desription 

Operating life up to 4 years 

Battery type CR1225 (lithium button cell) 

Voltage 3 V 

Capacity 48 mAh 
 

 

 

Parameter Description 

Power reserve 4 years 

Deviation Max. 1 minute per month 
 

 

 
 

Battery 

 

 

 
 

Technical Data - 
Real-Time Clock 

 



 

Jetter AG 357 
 

JVM-407 Appendix 

Physical Dimensions 

This chapter details the physical dimensions of the JVM-407 and the 
conditions for installation. 
 

The diagram shows the dimensions of the JVM-407. 
 

 
 

The diagram shows the positions permitted for installation. 
 

 
 

Introduction  

Physical Dimensions  

Permissible Installation 
Positions 



 

358 Jetter AG 
 

  Appendix 

 

Explanations are as follows:  
 

Number  Permissible Installation Positions  

1  horizontally or tilted 

2  vertical or tilted 

 

The diagram shows the positions prohibited for installation. 
 

 
 
The rear panel of the HMI JVM-407 has no moisture protection, particularly 
against spray or water droplets. If the installation location cannot be 
guaranteed to be moisture-free, this method of installation (see diagram 
above) is prohibited. The accumulation of moisture and water droplets in the 
device can lead to current leakages and corrosion.  
 

The diagram shows the space required for the HMI JVM-407. 
 

 
 
Ensure there is enough space around the housing for servicing requirements. 

 It should be possible to disconnect the connector at any time. 
 It should be possible to exchange the SD card at any time. 
 It must be possible to easily loosen the wing nut on the SD card locking 

device. 
 

Prohibited Installation 
Positions  

Space Required for 
Installation and Service  



 

Jetter AG 359 
 

JVM-407 Appendix 

 

Explanations are as follows: 
 

Number  Description 

1  Connectors for CANopen®, video, power supply, inputs and outputs 

2  Wing nut to secure the SD card 

3 Network connector 

4 SD memory card 

 

The diagram indicates the safe distance to protect against overheating. 
 

 
 
Please note:  

 The JVM-407 increases the temperature of the environment as a result of 
heat emission under load. 
Power consumption is 7.8 W. 

 The JVM-407 operates without interruption at an ambient temperature of 
up to +65 °C. 

 
Consider the heat emission from the device, in particular when installing it in a 
critical environment: 

 in the vicinity of the fuel tank 
 in the vicinity of the fuel pipe 
 in the vicinity of flammable vehicle components 
 in the vicinity of thermally malleable vehicle components 
 

The JVM-407 must be installed in the driver's cab. 
 

 
 

Space Required to 
Protect Against 
Overheating 

Installation Location 



 

360 Jetter AG 
 

  Appendix 

Operating Parameters - Environment and Mechanics 

 

Parameter Value Standard 

Operating temperature range -20 ... +65 °C  

Storage temperature range -30 ... +80 °C DIN EN 61131-2 
DIN EN 60068-2-1 
DIN EN 60068-2-2 

Air humidity 10 ... 95 % 
Do not use a steam jet or 
other such devices to clean 
the JVM-407. 

DIN EN 61131-2 

Climate test Humid heat DIN EN 60068-2-30 

Pollution degree 2 DIN EN 61131-2 

Installation Location The JVM-407 must be 
installed in the driver's cab. 

 

 

 

 

Parameter Value Standard 

Vibration resistance Vibration, broadband noise DIN EN 60068-2-6 
Severity level 2 

Shock resistance 25 g occasionally, 11 ms, 
sinusoidal half-wave, 3 
shocks in the directions of all 
three spatial axes 

DIN EN 60068-2-27 

Degree of protection 
Installation directly in console 

front panel: IP64 
rear panel: IP10 

DIN EN 60529 
including all changes 
to date 

Degree of protection 
mounted on support arm 

front panel: IP64 
rear panel: IP64 

DIN EN 60529 
including all changes 
to date 

 

 
 
 

Environment 

 

 

Mechanical Parameters 

 

 

 



 

Jetter AG 361 
 

JVM-407 Appendix 

Operating Parameters - EMC 

As per Directive 72/245/EEC with all amendments up to 2009/19/EC checked 
and compliant. 
 

 

Parameter Value Standard 

Interference immunity to 
conducted faults 

compliant Directive 72/245/EEC 
with all changes up to 
2009/19/EC 

Interference immunity to 
external magnetic field 

20 ... 1,000 MHz: 100 V/m 
1,000 ... 2,000 MHz: 30 V/m 

Directive 72/245/EEC 
with all changes up to 
2009/19/EC 

Load Dump Impulse 5b 70 V ISO 7637-2 
 

 
 

EMC - Emitted 
Interference 

EMC - Interference 
Immunity 

 



 

362 Jetter AG 
 

Index 

B: Index 

A 
Application Program 

default path - 345 
loading - 344 
storing to an SD Card - 346 

Automatic Copying of Controller Data - 312 
Example of a Command File - 328 

C 
CANopen® - 93 
Changing an IP address - 76 
Components of JVM-407 - 19 

E 
E-Mail Feature - 224 

Configuration - 225 
Creating E-Mails - 233 
Overview of Registers - 246 
Sending E-Mails - 240 

EMC 
EMC - 14 

F 
File System - 151 

Formatting and Checking - 170 
Properties - 152 

FTP Server - 177 

H 
HTTP Server - 181 

I 
Initial Commissioning - 81 
Inserting Realtime Controller Values - 237 
Installation 

Installing the Beam - 66 
Installing the JVM-407 - 63 

Interfaces - 34 
CAN - 45 
CANopen® Bus Cable - Specification - 49 
Digital Inputs and Outputs - 38 
Ethernet - 43 
Example - Wiring - 35 
Power Supply - 36 
Video - 51 

M 
Memory - Overview - 193 

Memory Types - 193 
Modbus/TCP - 249 

Modbus/TCP Client - 255 
Modbus/TCP Server - 250 

Monitoring Interface Activities - 219 

N 
Nameplate - 29 

O 
Operating Parameters 

EMC - 361 
Environment and Mechanics - 360 

Operating System Update - 335 
Order reference JVM-407 - 23 
OS/Hardware Revision Registers - 31 

P 
Physical Dimensions - 24 
Product Description – JVM-407 - 18 
Programming 

Digipot - 207 
Digital Inputs and Outputs - 208 
Function Keys - 206 
Ignition and OFF delay - 209 

Q 
Quick Reference - 349 

R 
Real-time clock - 211 
Runtime Registers - 215 

S 
SAE J1939 - 123 
Safety Instructions - 11 

T 
Technical Data - 355 

U 
User administration - 156 
User-Programmable CAN-PRIM Interface - 296 

Operating Principle - 297 
Overview of Registers - 303 
Programming the CAN-PRIM Interface - 299 
Restrictions - 298 

User-programmable IP Interface - 268 
Overview of Registers - 283 
Programming the IP Interface - 270 
Sample Programs - 287 

 





 

364 Jetter AG 
 

  

 

  

  Jetter AG   

  Graeterstrasse 2   

  D-71642 Ludwigsburg   

  Germany   

  Phone: +49 7141 2550-0   

  Phone - 
Sales: 

 
+49 7141 2550-433 

  

  Fax - 
Sales: 

 
+49 7141 2550-484 

  

  Hotline: +49 7141 2550-444   

  Internet: http://www.jetter.de   

  E-Mail: sales@jetter.de   

Jetter Subsidiaries     

Jetter (Switzerland) AG Jetter UK Ltd. Jetter USA Inc. 

Münchwilerstrasse 19 Old Witney Road 13075 US Highway 19 North 

CH-9554 Tägerschen Eynsham Florida - 33764 Clearwater 

 OX29 4PU Witney  

Switzerland Great Britain U.S.A  

Phone: +41 71 91879-50 Phone: +44 1865 883346 Phone: +1 727 532-8510 

Fax: +41 71 91879-69 Fax: +44 1865 883347 Fax: +1 727 532-8507 

E-Mail: info@jetterag.ch E-Mail: info@jetter.uk.com E-Mail: bschulze@jetterus.com 

Internet: http://www.jetterag.ch Internet: http://www.jetter.uk.com Internet: http://www.jetter.de 

      

   

   
   

    

   

      

      

     

     
 

 

http://www.jetter.de
mailto:sales@jetter.de
mailto:info@jetterag.ch
mailto:info@jetter.uk.com
mailto:bschulze@jetterus.com
http://www.jetterag.ch
http://www.jetter.uk.com
http://www.jetter.de

	User Manual JVM-407
	Table of Contents
	1 Safety Instructions
	Basic Safety Instructions
	Instructions on EMI

	2 Product Description and Design
	Product Description - JVM-407
	Parts and Interfaces
	Order Reference / Options
	Physical Dimensions

	3 Identifying the JVM-407
	3.1 Identification by Means of the Nameplate
	Nameplate

	3.2 Version Registers
	Software Versions


	4 Installing the JVM-407
	4.1 Interfaces
	Example of Wiring Layout
	Connecting the Power Supply
	Connecting Digital Inputs and Outputs
	HMI Switch Off Delay
	Ethernet Interface
	CAN Interface
	Specification - CANopen® Bus Cable
	Connecting a Video Camera

	4.2 Interfaces on the Center Console with Mounted Support Arm
	Connection Cable - Power Supply
	Connection Cable - Inputs and Outputs
	Connection Cable - CANopen®
	Connection Cable - Video

	4.3 Installing the JVM-407
	Installing the HMI
	Mounting the Support Arm

	4.4 IP Configuration
	Factory Settings
	Configuration Memory
	Configuration File cfgvar.ini
	Configuration Registers
	Modifying the IP Address of the Controller
	Setting the IP Address via the File cfgvar.ini
	Setting the IP Address During Runtime
	Using Names for IP Address


	5 Initial Commissioning
	Preparatory Work for Initial Commissioning
	Initial Commissioning in JetViewSoft
	Initial Commissioning in JetSym

	6 CANopen® STX API
	STX Function CanOpenInit
	STX Function CanOpenSetCommand
	STX Function CanOpenUploadSDO
	STX Function CanOpenDownloadSDO
	STX Function CanOpenAddPDORx
	STX Function CanOpenAddPDOTx
	CANopen® Object Directory for JVM-407

	7 SAE J1939 STX API
	Content of a J1939 Message
	STX Function SAEJ1939Init
	STX Function SAEJ1939SetSA
	STX Function SAEJ1939GetSA
	STX Function SAEJ1939AddRx
	STX Function SAEJ1939AddTx
	STX Function SAEJ1939RequestPGN
	STX Function SAEJ1939GetDM1
	STX Function SAEJ1939GetDM2
	STX Function SAEJ1939SetSPNConversion
	STX Function SAEJ1939GetSPNConversion

	8 File System
	8.1 Properties
	Flash Disk - Properties
	SD Card - Properties
	USB Stick - Properties

	8.2 User Administration
	User Administration
	As-Delivered Condition / Predefined Users and Keys
	Assigning a Lock
	Assigning Names to Locks/Keys

	8.3 Reviewing the Flash Disk Capacity Used
	Flash Disk Capacity Used

	8.4 Operating System Update and Application Program
	8.5 Formatting and Checking
	Formatting the Flash Disk
	Formatting the SD Card
	Formatting the USB Stick
	Checking the SD Card
	Checking the USB Stick


	9 FTP Server
	Login
	Supported Commands
	Example: Windows FTP Client

	10 HTTP Server
	10.1 Server Side Includes
	Name Space Tag
	Inserting Realtime Controller Values
	Example of an HTML page


	11 Programming
	Abbreviations, Module Register Properties and Formats
	11.1 Memory Overview
	Operating System Memory
	File System Memory
	Application Program Memory
	Memory for Volatile Application Program Variables
	Memory for Non-Volatile Application Program Registers
	Memory for Non-Volatile Application Program Variables
	Special Registers
	Inputs and Outputs
	Flag

	11.2 Inputs and Outputs
	Function Keys
	Digipot
	Digital Inputs and Outputs
	Ignition and Switching Off Delay

	11.3 Realtime Clock (RTC)
	Technical Data
	Sample Program for Real-Time Clock

	11.4 Runtime Registers
	Description of Runtime Registers
	Sample Program - Runtime Registers

	11.5 Monitoring the Interface Activity
	Operating Principle
	Programming

	11.6 E-Mail
	11.6.1 Configuring the E-Mail Feature
	Configuration File "/EMAIL/email.ini"
	Section [SMTP]
	Section [POP3]
	Section [DEFAULT]
	Configuration File - Examples

	11.6.2 Creating E-Mails
	Name of the E-Mail Template File
	Structure of the E-Mail Template File
	Inserting Realtime Controller Values

	11.6.3 Sending an E-Mail
	Sending E-Mails Using the System Function
	Sample Program

	11.6.4 Registers
	Overview of Registers
	Register Description


	11.7 Modbus/TCP
	11.7.1 Modbus/TCP Server
	Addressing
	Supported Commands - Class 0
	Supported Commands - Class 1
	Supported Commands - Class 2

	11.7.2 Modbus/TCP Client
	System Function 65: Acyclical Reading of Registers
	System Function 67: Acyclical Reading of Registers
	System Function 66: Acyclical Writing of Registers
	System Function 68: Acyclical Writing of Registers
	Example of an Application


	11.8 User-programmable IP Interface
	11.8.1 Programming
	Initializing the User-Programmable IP Interface
	Establishing a Connection
	Sending Data
	Receiving Data
	Terminating a Connection

	11.8.2 Registers
	Register Numbers
	Register Description

	11.8.3 Sample Programs
	Server
	Client


	11.9 User-Programmable CAN-PRIM Interface
	User-programmable CAN-PRIM interface - Operating Principle
	Restrictions Regarding the CAN-PRIM Interface
	Programming the CAN-PRIM Interface
	Internal Processes of the CAN-PRIM Interface
	Register Description - CAN-PRIM Interface
	CAN-PRIM Interface - Sample Program


	12 Automatic Copying of Controller Data
	12.1 Operating Principle
	Activating the AutoCopy Feature
	Executing AutoCopy Commands
	Terminating AutoCopy Mode

	12.2 The File "autocopy.ini"
	Section [OPTIONS]
	Command Sections
	Example of a Command File

	12.3 Log File
	File Contents

	12.4 Data Files
	File Format


	13 Operating System Update
	13.1 Updating the Operating System of the HMI
	Operating System Update from within JetSym
	Operating System Update by Means of FTP
	Automatic OS Update from SD Card and USB stick
	Operating System Update from within the Application Program


	14 Application Program
	Loading an Application Program
	Application Program - Default Path
	Storing the Application Program to an SD Card

	15 Quick Reference JVM-407
	Appendix
	A: Technical Data
	Technical Data
	Physical Dimensions
	Operating Parameters - Environment and Mechanics
	Operating Parameters - EMC

	B: Index

	Addresses Jetter AG



