

User Manual

JVM-104 - HMI

60880105

We automate your success.

2 Jetter AG

Introduction

Variant: Jetter
Design: O01
Item #: 60880105
Revision 4.01.2
May 2015 / Printed in Germany

This document has been compiled by Jetter AG with due diligence, and based on the known state of the art.
In the case of modifications, further developments or enhancements to products shipped in the past, a revised document
will be supplied only if required by law, or deemed appropriate by Jetter AG. Jetter AG shall not be liable for errors in form
or content, or for missing updates, as well as for damages or disadvantages resulting from such failure.
The logos, brand names, and product names mentioned in this document are trademarks or registered trademarks of
Jetter AG, of associated companies or other title owners and must not be used without consent of the respective title
owner.

Jetter AG 3

JVM-104 Introduction

How to contact us:

Jetter AG

Graeterstrasse 2

D-71642 Ludwigsburg

Germany

Phone - Switchboard: +49 7141 2550-0

Phone - Sales: +49 7141 2550-433

Phone - Technical Hotline: +49 7141 2550-444

Fax - Sales: +49 7141 2550-484

E-mail - Sales: sales@jetter.de

E-mail - Technical Hotline: hotline@jetter.de

Address

mailto:sales@jetter.de
mailto:hotline@jetter.de

4 Jetter AG

Introduction

This document is an integral part of the JVM-104:

 Keep this document in a way that it is always at hand until the JVM-104 will
be disposed of.

 Pass this document on if the JVM-104 is sold or loaned/leased out.

In any case you encounter difficulties to clearly understand the contents of this
document, please contact Jetter AG.
We would appreciate any suggestions and contributions on your part and
would ask you to contact us at the following e-mail address: info@jetter.de.
Your feedback will help us produce manuals that are more user-friendly, as
well as address your wishes and requirements.

This document contains important information on the following topics:

 Transport
 Mounting
 Installation
 Programming
 Operation
 Maintenance
 Repair

Therefore, you must carefully read, understand and observe this document,
and especially the safety instructions.

In the case of missing or inadequate knowledge of this document Jetter AG
shall be exempted from any liability. Therefore, the operating company is
recommended to obtain the persons' confirmation that they have read and
understood this manual in writing.

Significance of this
User Manual

mailto:info@jetter.de

Jetter AG 5

JVM-104 Contents

Table of Contents

1 Safety instructions 9

Basic safety instructions .. 10

2 Product description and design 13

Product description .. 14
Parts and interfaces ... 15
Order reference .. 17
Physical dimensions .. 18

3 Identifying the JVM-104 19

3.1 Identification by means of the nameplate ... 20
Nameplate .. 21

3.2 Version registers .. 22
Software versions ... 23

4 Mounting and installation of the JVM-104 25

4.1 Interfaces .. 26
Example - Wiring .. 27
Connecting the power supply ... 28
CAN interface ... 30

4.2 Installing the JVM-104 ... 32
Installation .. 33

5 Initial commissioning 39

5.1 Preparatory work and first insight into programming with JetSym STX 40
Preparatory work for initial commissioning .. 41
Programming in the programming language JetSym STX .. 43

5.2 Configuring a project for the ER-STX-CE platform .. 44
Initial commissioning in JetViewSoft .. 45
Creating and configuring a visualization project in JetSym ... 50

5.3 ER-STX-CE platform - Programming .. 58
Entering data via digipot .. 59
Using visualization commands to manipulate visualization objects ... 63

6 CANopen® STX API 65

STX function: CanOpenInit() .. 67
STX function: CanOpenSetCommand() .. 69
STX function: CanOpenUploadSDO() ... 71
STX function: CanOpenDownloadSDO() ... 76
STX function: CanOpenAddPDORx() .. 81
STX function: CanOpenAddPDOTx() .. 88
Heartbeat monitoring ... 94
CANopen® object dictionary for JVM-104 ... 98

6 Jetter AG

Contents

7 SAE J1939 STX API 103

Content of a J1939 message .. 104
STX Function SAEJ1939Init() ... 106
STX function SAEJ1939SetSA() ... 107
STX function SAEJ1939GetSA() ... 108
STX function SAEJ1939AddRx() .. 109
STX function SAEJ1939AddTx() .. 112
STX function SAEJ1939RequestPGN() ... 115
STX function SAEJ1939GetDM1() ... 118
STX function SAEJ1939GetDM2() .. 121
STX function SAEJ1939SetSPNConversion() .. 124
STX Function SAEJ1939GetSPNConversion() .. 125

8 File system 127

8.1 Directories .. 128
Directories ... 129

8.2 Properties ... 132
Flash disk - Properties ... 133

9 Programming 135

Abbreviations, module register properties and formats .. 136
9.1 Memories - Overview .. 137

Operating system memory .. 138
File system memory .. 139
Application program memory .. 140
Memory for volatile application program variables .. 141
Memory for non-volatile application program registers ... 142
Memory for non-volatile application program variables .. 143
Special registers .. 145
Flags .. 146

9.2 Controls and ignition .. 148
Input keys .. 149
Digipot ... 151
Ignition and shutdown delay .. 153

9.3 Runtime registers .. 155
Description of the runtime registers .. 156
Sample program - Runtime registers .. 158

10 Operating system update 161

10.1 Updating the operating system of an HMI .. 162
OS update by means of JetSym ... 163
Operating system update via \App .. 164

11 Application program 165

Application program - Default path .. 166
Loading an application program .. 167

Jetter AG 7

JVM-104 Contents

12 Quick reference JVM-104 169

Appendix 175

A: Interfaces .. 176
Pinout - Overview ... 177

B: Technical data... 179
Technical specifications ... 180
Physical dimensions .. 182
Operating parameters - Environment and mechanics ... 183
Operating parameters - EMC ... 184

C: Index .. 185

Jetter AG 9

JVM-104 Safety instructions

1 Safety instructions

This chapter informs the user of basic safety instructions. It also warns the
user of residual dangers, if there are any.

Topic Page
Basic safety instructions ... 10

Introduction

Contents

10 Jetter AG

1 Safety instructions

Basic safety instructions

This device complies with the valid safety regulations and standards.
Jetter AG attaches great importance to the safety of the users.
Of course, the user should adhere to the following regulations:

 Relevant accident prevention regulations
 Accepted safety rules
 EC guidelines and other country-specific regulations

Usage according to the intended conditions of use implies operation in
accordance with this User Manual.
The device has been designed for use in commercial vehicles and mobile
machines. The device JVM-104 is an HMI with integrated controller for
exchange of data with peripheral devices.
The HMI JVM-104 meets the requirements of the European Automotive EMC
Directive for electric/electronic subassemblies.
Operate the JVM-104 only within the limits set forth in the technical
specifications. Because of its low operating voltage, the JVM-104 is classified
as a SELV (Safety Extra-Low Voltage) system. Therefore, the HMI JVM-104 is
not subject to the EU Low Voltage Directive.

The device must not be used in technical systems which to a high degree
have to be fail-safe, such as, for example, in ropeways and airplanes.
The JVM-104 is no safety-related part as per Machinery Directive 2006/42/EC.
This device is not qualified for safety-relevant applications and must,
therefore, NOT be used to protect persons.
If you intend to operate the device at ambient conditions not being in
conformity with the permitted operating conditions, please contact Jetter AG
beforehand.

Depending on the life cycle of the product, the persons involved must possess
specific qualifications. The qualifications required to ensure safe handling of
the device at different phases of the product life cycle are listed below:

Product life cycle Minimum qualification

Transport/storage: Trained and instructed personnel with knowledge in
handling electrostatically sensitive components

Mounting/installation: Specialized personnel with training in
electrical/automotive engineering, such as automotive
mechatronics fitters

Commissioning/
programming:

Trained and instructed experts with profound
knowledge of, and experience with,
automotive/automation technology, such as
automotive engineers for mobile machinery

Operation: Trained, instructed and assigned personnel with
knowledge in operating electronic devices for mobile
machinery

Decommissioning/
disposal:

Specialized personnel with training in
electrical/automotive engineering, such as automotive
mechatronics fitters

Introduction

Intended conditions of
use

Usage other than
intended

Personnel qualification

Jetter AG 11

JVM-104 Safety instructions

For safety reasons, no modifications and changes to the device and its
functions are permitted.
Any modifications to the device not expressly authorized by Jetter AG will
result in a loss of any liability claims to Jetter AG.
The original parts are specifically designed for the device. Parts and
equipment from other manufacturers have not been tested by Jetter AG
and are, therefore, not released by Jetter AG.
The installation of such parts may impair the safety and the proper functioning
of the device.
Any liability on the part of Jetter AG for any damages resulting from the use of
non-original parts and equipment is excluded.

The JVM-104 contains electrostatically sensitive components which can be
damaged if not handled properly.
To exclude damages to the JVM-104 during transport it must be shipped in its
original packaging or in packaging protecting against electrostatic discharge.

 Use an appropriate outer packaging to protect the JVM-104 against impact
or shock.

 In case of damaged packaging inspect the device for any visible damage.
Inform your freight forwarder and Jetter AG.

When storing the JVM-104 observe the environmental conditions given in the
technical specification.

The operator is not allowed to repair the device. The device does not contain
any parts that could be repaired by the operator.
If the device needs repairing, please send it to Jetter AG.

When disposing of devices, the local environmental regulations must be
complied with.

Modifications and
alterations to the module

Transport

Storing

Repair and maintenance

Disposal

Jetter AG 13

JVM-104 Product description and design

2 Product description and design

This chapter covers the design of the device, as well as how the order
reference is made up including all options.

Topic Page
Product description ... 14
Parts and interfaces .. 15
Order reference .. 17
Physical dimensions ... 18

Introduction

Contents

14 Jetter AG

2 Product description and design

Product description

The JetView of the mobile automation series 104 is a compact full-graphics
HMI. The HMI JVM-104 is extremely versatile thanks to its compact design
and the integrated controller. The JVM-104 has especially been designed for
use in the harsh environment of commercial vehicles and mobile machines.
The HMI can be operated in all light conditions, due to the backlit keys and the
light sensor, which automatically adapts the brightness of the display to the
brightness of the surroundings.

The features of this product are listed below:

 Display: 3.5" TFT, 350 cd/m2

 Resolution: QVGA (320 x 240 pixels)

 Touchscreen

 4 function keys (lighted)

 1 digipot with pushbutton function

 Adjustable background lighting

 Adjustable night-lighting
 Loudspeaker

Volume: 83 dB at a distance of 10 cm at
resonance frequency of 2,670 Hz
Adjustable frequency and volume.

 Powerful programming language JetSym STX

 Fast ARM11 CPU

 Non-volatile registers 30,000

 RAM: 128 MBytes

 Flash memory: 512 MBytes

 1 CAN-2.0B interface

The accessories are provided in the fastening kit. It includes a fastening
bracket, a sealing ring and the corresponding screws and nuts.

Item no. Quantity Description

60880138 1 Fastening kit

The following items are included in the scope of delivery of the JVM-104:

Item no. Quantity Description

10001018 1 HMI JVM-104

60879282 1 Installation manual

The HMI JVM-104

Product features

Accessories

Scope of delivery

Jetter AG 15

JVM-104 Product description and design

Parts and interfaces

This chapter describes the parts and interfaces of the JVM-104.

The HMI JVM-104 provides a touchscreen of an active surface of 3.5". The
illustration shows the front panel of the HMI with all its control elements.

6
7

1

3
4

5

2

Number Part Description

1 TFT display Active surface, touchscreen

2 Brightness sensor Senses the surrounding brightness

3 Input key UP Key with background lighting

4 Input key DOWN Key with background lighting

5 Digipot Rotary and pushbutton

6 Input key OK Key with background lighting

7 Input key ESC Key with background lighting

Introduction

Front panel of the
JVM-104

16 Jetter AG

2 Product description and design

The illustration shows the rear panel of the HMI with all its connections and
the nameplate.

11

11

2

Number Part Description

1 Screw holes For fastening the HMI. Max depth: 12 mm

2 Nameplate

3 M12 male connector

4 PV Protective vent

Rear panel of the
JVM-104

Jetter AG 17

JVM-104 Product description and design

Order reference

The HMI JVM-104 can be ordered from Jetter AG using the following item
number:

Item no. Order reference

10001018 JVM-104-K00-O01

Order reference

18 Jetter AG

2 Product description and design

Physical dimensions

The illustration below shows the physical dimensions of the JVM-104 in
millimeters.

5 25 18.7
3

51.7

12
8

12
0

113
105

The illustration shows the space required for the HMI JVM-104. It is stated in
millimeters.

100

Ensure there is enough space around the housing for servicing requirements.

 It should be possible to disconnect the connector at any time.

Physical dimensions

Space required for
installation and service

Jetter AG 19

JVM-104 Identifying the JVM-104

3 Identifying the JVM-104

This chapter supports you in retrieving the following information about the
JVM-104:

 Hardware revision
 Electronic data sheet (EDS). Numerous manufacturing-related data are

stored to the EDS.
 Software versions

To be able to identify technical data about the HMI JVM-104 the following
prerequisites must be fulfilled:

 The HMI is connected to a PC.
 The programming tool JetSym 5.1.2 or higher is installed on the PC.

If you wish to contact the hotline of Jetter AG in case of a problem, please
have the following information on the JVM-104 ready:

 Serial number
 OS version of the HMI
 Hardware revision

Topic Page
Identification by means of the nameplate ... 20
Version registers ... 22

Purpose of this chapter

Prerequisites

Information for hotline
requests

Contents

20 Jetter AG

3 Identifying the JVM-104

3.1 Identification by means of the nameplate

Each HMI JVM-104 can be identified by its nameplate attached to its
enclosure. If you wish to contact the hotline of Jetter AG in case of a problem,
please have information on the hardware revision and serial number ready.

Topic Page
Nameplate ... 21

Introduction

Contents

Jetter AG 21

JVM-104 Identifying the JVM-104

Nameplate

The location of the nameplate on the rear panel of the JVM-104 is shown
below.

The nameplate of a JVM-104 contains the following information:

Number Description

1 Product name

2 Serial number

3 Item number

4 Hardware revision

Position of the
nameplate

Nameplate

22 Jetter AG

3 Identifying the JVM-104

3.2 Version registers

The operating system of the JVM-104 provides several registers which let you
read out the version numbers of the OS and its components. If you wish to
contact the hotline of Jetter AG in case of a problem, please have this
information ready.

Topic Page
Software versions ... 23

Introduction

Contents

Jetter AG 23

JVM-104 Identifying the JVM-104

Software versions

The JVM-104 features software with unique version numbers which can be
read out via special registers.

The software version number of the JVM-104 is a four-figure value.

1 . 2 . 3 . 4

Element Description

1 Major or main version number

2 Minor or secondary version number

3 Branch or intermediate version number

4 Build version number

A released version can be recognized by both Branch and Build having got
value 0.

The following registers let you read out the software versions:

Register Description

200000 Operating system version

210001 Version of the STX interpreter for the STX application program
(JetVM version)

The following screenshot shows a JetSym setup window displaying version
registers. To have the version number displayed in the setup window of
JetSym, select the format IP address.

Introduction

Format of software
version numbers

Released version

Overview of registers

Version numbers in
JetSym setup

Jetter AG 25

JVM-104 Mounting and installation of the JVM-104

4 Mounting and installation of the JVM-104

This chapter describes the installation of the JVM-104 in the vehicle as
regards the following points:

 Planning the wiring of a JVM-104
 Installation
 Configuration of the IP interface for the JVM-104

Topic Page
Interfaces .. 26
Installing the JVM-104 .. 32

Purpose of this chapter

Contents

26 Jetter AG

4 Mounting and installation of the JVM-104

4.1 Interfaces

The HMI JVM-104 is equipped with the following interface:

 M12 male connector

The M12 connector has the following function:

 Power supply of the JVM-104
 CANopen® bus interface: CAN 1
 Recognition of the ignition

Topic Page
Example - Wiring ... 27
Connecting the power supply ... 28
CAN interface .. 30

Introduction

M12 male connector

Contents

Jetter AG 27

JVM-104 Mounting and installation of the JVM-104

Example - Wiring

The following examples shows how to connect a JVM-104.

The illustration shows an example of a wiring layout.

321

Number Description

1 Power supply (battery)

2 Ignition lock

3 CANopen® bus

Introduction

Example

28 Jetter AG

4 Mounting and installation of the JVM-104

Connecting the power supply

This connector is also used for the following peripheral devices:

 Power supply
 Recognition of the ignition

The diagram shows the pinout of the power supply and ignition connector
(viewing the cable side):

8 7

6
5

4

3

2 1

The pinout is as follows:

Pin Description Terminal number in vehicles

1 Power supply UB for logic circuits
Voltage: DC 12 V or DC 24 V
Power consumption: 2 A max.

Terminal # 30

3 Ignition (+) Terminal # 15

6 Reference potential (GND) Terminal # 31

Purpose of the
connector

Pinout of the power
supply connector

Jetter AG 29

JVM-104 Mounting and installation of the JVM-104

Parameter Description

Rated voltage DC 12 V or DC 24 V

Permissible voltage range UB DC 8 V ... DC 32 V, to ISO 7637

Permissible voltage range - Ignition DC 5 V ... DC 32 V

Maximum current 2 A

Load dump protection DC 70 V max.

Typical current consumption logic circuit
(UB)

170 mA at DC 12 V
90 mA at DC 24 V

Power consumption Approx. 2 W

Integrated protective functions Protection against polarity reversal,
overloading,
voltage surges

To start the JVM-104, pin 3 (IGNITION FEED) must be connected with pin 1
(STANDARD FEED). The ignition control signal is issued when the key is in
position Ignition ON.

When the JVM-104 is energized, the current consumption is temporarily
higher. To guarantee reliable power-up of the JVM-104, supply at least three
times as much power as would typically be needed.

The following jack is a mating part to the M12 connector:

Manufacturer e.g. BELDEN
Lumberg automation

Manufacturer's item no. RKCN 8/9

Wire size: 0.5 mm2 (AWG 20)

Technical specifications
- Power supply UB

Note on Ignition

Note on current
consumption

Mating part

30 Jetter AG

4 Mounting and installation of the JVM-104

CAN interface

The diagram shows the pinout of the connector for the CANopen® bus
(viewing the cable side): Pin 6 for the reference potential is also color-coded.

8 7

6
5

4

3

2 1

The pinout is as follows:

Pin Description

5 CAN_L

6 Reference potential (GND)

7 CAN_H

Parameter Description

Baud rate 250 kBaud ... 1 MBaud

Bus terminating resistor None

External bus termination 120 Ω

Connector specifications Twisted pair conductors, unshielded

The JVM-104 has not got an integrated bus terminating resistor.

The CAN_L and CAN_H cable pairs must be twisted.

Pinout of the CANopen®
bus

Technical specifications
- CAN interface

Bus terminating resistor

Twisting

Jetter AG 31

JVM-104 Mounting and installation of the JVM-104

Parameter Description

Core cross-sectional area 1000 kBaud: 0.25 … 0.34 mm2
500 kBaud: 0.34 … 0.50 mm2
250 kBaud: 0.34 … 0.60 mm2

Cable capacitance 60 pF/m max.

Resistivity 1000 kBaud: 70 Ω/km max.
500 kBaud: 60 Ω/km max.
250 kBaud: 60 Ω/km max.

Number of cores 2

Twisting CAN_L and CAN_H cables are twisted
pairwise

The maximum permitted cable length depends on the baud rate used and the
number of CANopen® devices connected.

Baud rate Cable length Stub length Total stub length

1000 kBaud 25 m max. 0.3 m max. 1.5 m

500 kBaud 100 m max. 5 m max. 30 m

250 kBaud 250 m max. 10 m max. 60 m

The following jack is a mating part to the M12 connector:

Manufacturer e.g. BELDEN
Lumberg automation

Manufacturer's item no. RKCN 8/9

Wire size: 0.5 mm2 (AWG 20)

Specification -
CAN bus cable

Cable lengths

Mating part

32 Jetter AG

4 Mounting and installation of the JVM-104

4.2 Installing the JVM-104

This chapter describes how to install the JVM-104.

Topic Page
Installation ... 33

Introduction

Contents

Jetter AG 33

JVM-104 Mounting and installation of the JVM-104

Installation

This chapter describes how the HMI JVM-104 is to be installed.

Select a suitable place for the device to be installed.
The place where the device is to be installed must meet the following
requirements:

 The installation surface must be level.
 The installation surface should be no more than 5 mm thick.
 The installation location must allow air to circulate.
 The installation location must be accessible for servicing.
 The installation location must be of sufficient size.

Do not install the device in locations that do not meet the a.m. requirements.
The following installation locations are unsuitable for mounting the HMI:

Unsuitable installation
location

Reason

Outdoor installation The HMI must not be exposed to rain or a jet of
water. Therefore, do not use a steam jet or other such
devices to clean the HMI.

Unventilated installation
location

The HMI could overheat as heat builds up.

Installation location close to
heat-sensitive materials

The materials could become warped or misshapen as
a result of heat produced by the HMI.

Uneven installation surfaces The installation surface could become misshapen
when fitting the HMI.
Fastening is unstable and precarious.

Consider ergonomic principles.
Select a user-friendly place for installation:

 The controls must be easy to reach.
 The HMI screen must be easy to read.

Avoid installation locations that are unsuitable from an ergonomic point of
view:

 Extreme angles, which could make it difficult to see the HMI
 Unsuitable lighting conditions with reflection and glare
 Concealed installation locations that are difficult for the user to access

The accessories are provided in the fastening kit. It includes a fastening
bracket, a sealing ring and the corresponding screws and nuts.

Item no. Quantity Description

60880138 1 Fastening kit

Introduction

Selecting a place for
installation

Avoiding unsuitable
installation locations

Ergonomic principles

Accessories

34 Jetter AG

4 Mounting and installation of the JVM-104

Make a fitting opening in the panel.
The illustration shows the shape of the opening and the dimensions in
millimeters:

42.5
105.2 + 0.3

26.6
31

.3
88

.8 12
0.

1
+

0.
3

21
.9

12
.2

r =
 9.

9
r = 9.9

r = 19.9

r =
 19

.9

r = 399.9r = 399.9

Preparing for installation

Jetter AG 35

JVM-104 Mounting and installation of the JVM-104

The illustration shows how to install the device.

54321

Number Description

1 JVM-104

2 Panel with opening for accommodating the HMI

3 Fastening bracket with opening for the connectors

4 4 x screw holes for screwing down the JVM-104

5 4 x self-tapping screw
Screw size: 4 x 9 + t
Tightening torque: 1.6 Nm ± 10 %
Maximum screw-in depth: 12 mm

Installing the HMI

36 Jetter AG

4 Mounting and installation of the JVM-104

Step Action

1 Insert the HMI into the front of the opening in the panel.

2 Hold the fastening bracket against the panel from the rear. To this end,
the connectors must be seen through the opening of the fastening
bracket.

3 Screw the HMI, together with the fastening bracket, onto the panel.
The stud torque should be 1.6 Nm ± 10 %.

The illustration shows the installed HMI JVM-104.

Jetter AG 37

JVM-104 Mounting and installation of the JVM-104

Install strain reliefs for the connecting cables.
Take care to leave enough space for the connectors.
Connectors must not be obstructed, so that they can be removed in the event
of a service requirement.

Installing the strain relief

Jetter AG 39

JVM-104 Initial commissioning

5 Initial commissioning

This chapter describes how to commission the JVM-104 and covers the
following topics:

 Initial commissioning in JetViewSoft
 Initial commissioning in JetSym

JetViewSoft is a SCADA system and JetSym is a programming tool. Both have
been developed by Jetter AG.
For more information refer to the Online Help in JetSym or JetViewSoft.

These instructions for initial commissioning apply to JetSym version 5.1.2 or
higher and JetViewSoft version 4.0.2 or higher.

Topic Page
Preparatory work and first insight into programming with JetSym STX 40
Configuring a project for the ER-STX-CE platform 44
ER-STX-CE platform - Programming ... 58

Purpose of this chapter

Minimum requirements

Contents

40 Jetter AG

5 Initial commissioning

5.1 Preparatory work and first insight into
programming with JetSym STX

This chapter covers the preparatory work for commissioning the JVM-104. It
also provides a first insight into the programming language JetSym STX.

Topic Page
Preparatory work for initial commissioning ... 41
Programming in the programming language JetSym STX 43

Introduction

Contents

Jetter AG 41

JVM-104 Initial commissioning

Preparatory work for initial commissioning

To be able to commission and program the JVM-104, complete the following
activities first:

 Wire up the power supply units, ignition and CAN interface
 Connecting an USB CAN adapter between the controller and the PC
 Installing the respective adapter driver software

In order to commission the JVM-104, you don't have to connect any peripheral
devices to it.

The default values of the JVM-104 are listed below:

 CAN baud rate: 250 kBaud
 CANopen® node ID: 0x7F

The device JVM-104 is not equipped with an internal (activatable) terminating
resistor for the CAN bus.
Make sure that there is a terminating resistor of 120 Ω at both ends of the
CAN bus.

The programming environment JetSym supports the following USB CAN
adapters:

 IXXAT Automation GmbH (http://www.ixxat.de http://www.ixxat.de):
For a list of currently supported hardware refer to the website of IXXAT
Automation GmbH.
The following driver versions are supported: VCI version 3.3, and VCI
version 2.18

 PEAK-System Technik GmbH (http://www.peak-system.com
http://www.peak-system.com): For a list of currently supported hardware
refer to the website of PEAK-System Technik GmbH.
The following driver versions are supported: Version 3.5.4.9547 or higher

Prerequisites:
Before installing the driver software of the USB CAN adapter, JetSym 4.3 or
higher must be installed on the PC to be used.
To install the adapter proceed as follows:

Step Action

1 Insert the USB CAN adapter into a USB port of your PC.

2 If the hardware installation assistant opens, terminate it.

3 Install the driver for the USB CAN adapter.

4 Install the corresponding JetSym driver depending on the USB CAN
adapter used.

Establishing a
CAN connection

Default values on the
CANopen® bus

Note

Supported USB CAN
adapters

Installing the USB CAN
adapter

http://www.ixxat.de/
http://www.peak-system.com/
http://www.peak-system.com
http://www.peak-system.com

42 Jetter AG

5 Initial commissioning

Step Action

 If then ...

 ... you use an adapter by
PEAK-Systems, ...

... proceed with step 5.

 ... you do not use an adapter by
PEAK-Systems, ...

... proceed with step 7.

5 Navigate in Windows Explorer to the folder PcanDrv located in the
JetSym installation. Default location:
C:\Programme\Jetter\JetSym\Tools\PcanDrv

6 Execute the file PcanDrv.exe. Follow the steps of the installation
routine.

7 Plug the Sub-D connector of the adapter into the IN_CAN port of the
JVM-104 (female Sub-D connector).

Result: In the case of an error-free installation the CANopen® connection
between PC and controller is established.

The JVM-104 only powers up if the supply voltage +UB is applied to the
ignition (+).

If, during power-up, you press the keys and OK simultaneously, you
prevent the application program from being launched.
It may happen that the device does not react after power-up. This condition,
however, lets you access the device using FTP or JetSym.

The default application program launched on the JVM-104 after power-up
displays the following input mask on the display.

The node ID displayed is the address of the CANopen® bus 1 set in the
JVM-104. This address can be set by the keys and .
Key increases the address in steps of 1.
Key decreases the address in steps of 1.
The IP address, MAC address and OS version are also displayed.

Requirement for
power-up

Skipping the application
program during
power-up

Default display

Jetter AG 43

JVM-104 Initial commissioning

Programming in the programming language JetSym STX

JetViewSoft lets you create visualization applications for use on the following
platforms:

 PC systems
 HMIs for industrial applications
 HMIs for mobile applications

JetSym STX lets you access visualization objects and control their
representation on the HMI. The programming language JetSym STX lets you
program the HMI as if it were a controller. The compiled programs can be
processed in the HMI without the need for an external controller. This is made
possible by the STX interpreter and the graphical runtime environment JVER
(JetView Embedded Runtime). Both form an integral part of the HMI's
operating system.

The program below just causes an internal variable within a loop to be
doubled to value 20. This example shows how JetSym STX can be used.

Task MiniExample AutoRun

Var

 i, j : Int;

End_Var;

 j := 1;

 // j is being run through within a loop up to value 1024
 For i := 1 To 10 Do

 j := j * 2;

 End_For;

End_Task;

When you load the compiled program to the HMI, JetSym creates in the
directory \App a folder and names it after the project. JetSym stores the
application program to this folder. The file name of the application program
comprises of the project name and the extension .es3. Path and file names
are always converted into lower case letters.
The file start.ini is automatically created on program download. It defines
which application program is to be loaded.

Introduction

JetSym STX program

Program location

44 Jetter AG

5 Initial commissioning

5.2 Configuring a project for the ER-STX-CE platform

This chapter describes how to create and configure in JetViewSoft and
JetSym a visualization project for the ER-STX-CE platform.

Topic Page
Initial commissioning in JetViewSoft ... 45
Creating and configuring a visualization project in JetSym 50

Introduction

Contents

Jetter AG 45

JVM-104 Initial commissioning

Initial commissioning in JetViewSoft

JetViewSoft lets you create visualization files for the JVM-104 and upload
them to the HMI. This topic covers the following:

 Creating a project in JetViewSoft
 Making project settings
 Creating visualization files and uploading them to the HMI

The following prerequisites must be fulfilled:

 JetViewSoft must be installed on the PC.
 JetViewSoft must be licensed (see Online Help in JetViewSoft).
 An active CAN connection between the PC and the HMI must be set up.

To create a new project for the HMI in JetViewSoft, proceed as follows:

Step Action

1 Start JetViewSoft

2 Open the File menu. Select menu item New Project.
Result:
The following dialog box opens:

3 Select in Selected display: the HMI used. To do so, click on the image of
the corresponding HMI.

4 In Display name, select a program-internal name for the HMI. You can
add one or more HMIs to a project.

5 If you have got the possibility to make a selection: Select Platform
JetView ER-STX(CE).

6 In Project name, enter the name of the project.

7 If necessary, change the project menu path under Location.
For better clarity, the path should end with \Visu.

8 Enter the name of the workspace into Workspace.

Introduction

Prerequisites

Creating a project

46 Jetter AG

5 Initial commissioning

Step Action

 The screenshot below shows an example of the completed dialog box:

Important note:
The names must not contain blanks. Otherwise, it will be difficult to delete
the visualization files at a later date.

9 Confirm your settings by clicking OK.
Result:
The dialog box closes and the Add New Mask dialog box opens.

10 Enter the name of the first data mask into the box Name. Leave all other
settings unchanged This mask is automatically the active mask when
launching the HMI.

11 Confirm the settings by clicking OK.

Result: Creation of the project is completed.

Jetter AG 47

JVM-104 Initial commissioning

In order to be able to transfer the visualization files created with JetViewSoft to
the HMI, the required deployment settings need to be made:

Step Action

1 Open the menu Project. Select menu item Properties.
Result:
The dialog box of the same name opens.

2 Open the Deployment pane from the navigation panel on the left-hand
side of the dialog box.

3 Under Deployment Target, select JetCAN.

4 Click on the + sign next to Target to expand the setting options. Or just
double-click Target.

5 Under Node-ID, enter the node ID of the HMI. The default node ID of a
JVM-104 is 0x7F.

6 Enter the baud rate into the box Baudrate.
The default baud rate is 250K.

7 Enter the project path \App\projectname into the box Local Path.
In this case, projectname is a placeholder representing the actual name
of the project (in lowercase letters).

8 Confirm your settings by clicking OK.

Result: The deployment settings have now been made and you can transfer
the files to the HMI.

Making the deployment
settings

48 Jetter AG

5 Initial commissioning

To create a JetViewSoft project and to transfer it to the HMI, proceed as
follows:

Step Action

1 Create a screen mask using the available objects (rectangles, ellipses,
etc.).
Once these objects have been transferred, they can be seen on the HMI.

2 Open the File menu. Select the menu item Save all.

3 Press the [F7] key to trigger the build process for this project.
Result:
JetViewSoft compiles the project files as long as no error occurs.

4 Open the menu Build. Select menu item Deploy. Or press the keyboard
shortcut [CTRL] + [F5].
Result:
JetViewSoft transfers the files to the HMI.

5 In order to make the HMI read in the visualization files, restart it.

Result: The files of your JetViewSoft project have been stored to the directory
\App\projectname on the HMI. The HMI shows the start screen.

If there is no visualization application on the device, the display shows the
following message:

The folder Data is empty. That is, there is no visualization application and no
JVER (JetView Embedded Runtime) on the device. If JVER is not running
(desktop background is visible), communication with JetSym is not possible.
Remedy: Use JetViewSoft to upload a visualization application to the device.

Transferring a project to
the HMI

Missing visualization
application

Jetter AG 49

JVM-104 Initial commissioning

In delivered condition, the HMI may already include a visualization application
with an *.iop file stored to the folder Data .
This is also the case, if the CAN bus node ID must be set.

Result: The HMI will not display your visualization application.

Remedy:

Step Action

1 If then ...

 ... the file \App\visual.iop or
\Data\visual.iop exists, ...

... delete or rename this file.

2 If then ...

 ... the file \App\JetViewERS.cfg
exists, ...

... delete or rename this file.

 The visualization application developed for the ER-STX-CE platform is
displayed.

 Initial commissioning in JetSym (see page 50)

IOP file as visualization
application on the HMI

Related topics

50 Jetter AG

5 Initial commissioning

Creating and configuring a visualization project in JetSym

The programming tool JetSym STX lets you create visualization applications
for the HMI JVM-104. This topic covers the following:

 Creating a project in JetSym STX
 Configuring the controller hardware
 Including the visualization library JVER-STX
 Creating a program that can be compiled and transferred to the HMI

The following requirements must be satisfied:

 JetSym has been installed on the PC used.
 JetSym has been licensed (see online help in JetSym).
 The controller has been connected to the same network as the PC.
 An active CAN connection between controller, HMI, and PC has been

established.
 Initial commissioning in JetViewSoft has been completed.

To create a new programming project in JetSym, proceed as follows:

Step Action

1 Launch JetSym.

2 Open the menu File. Select menu item New.
Result:
The dialog box New opens.

3 Select JetSym STX project as the project type.

4 Enter the project name.

Introduction

Prerequisites

Creating a project

Jetter AG 51

JVM-104 Initial commissioning

Step Action

5 Select the path. It is recommended to store project files within a
JetViewSoft project to the directory STX.
Example:
C:\Programs\Jetter\JetViewSoft_Projects\VehicleType_1000\Visu\
VehicleType_1000\VehicleType_1000_Dashboard\STX
Advantage:
The JetSym project files are located in the same directory as the file
VisualInterface.stxp created by JetViewSoft.

6 Confirm your settings by clicking OK.

Result: Creation of the project is completed.

To establish a connection between JetSym and the HMI, you need to
configure the hardware.

Step Action

1 Navigate to the tab Hardware and click it.

2 Fully expand the Hardware tree.

 3 If you wish to set JVM-C02 as HMI or set interface parameters,
double-click CPU.
Result:
The dialog box Configuration opens.

4 From Controller/Type, select JVM-C02.

5 Under Interface/Type select JetCAN.

Configuring the
hardware

52 Jetter AG

5 Initial commissioning

Step Action

6 Enter the node ID of the HMI into the box Interface/Node-ID.
If the node ID is unknown to you, it can be retrieved by the Scan
hardware function.

7 Under Interface/Baudrate select 250K.

8 Test the connection with JVER running by pressing the button Test. If the
test is unsuccessful, check the node ID, the baud rate and the CAN
connection with the JVM-104.

9 Save your settings using the shortcut [Ctrl] + [S].

Result: The hardware settings have been configured in JetSym.

In order for the description of the objects and masks included in the
visualization application to be available for programming, the file
Visualinterface.stxp must be included as follows:

Step Action

1 Switch to the view Files.

2 Expand the folder Program.

3 Click on the folder Include and open the shortcut menu (by pressing the
right mouse button).

4 Select the shortcut menu entry Add Files to Directory.
Result:
An Explorer window for selecting a file opens.

5 Navigate to the STX folder of the JetViewSoft project. The default location
for this is at [Project location]/ Name of the JetViewSoft project/STX.

6 Select here the file VisualInterface.stxp.

VisualInterface.stxp -
Include in the project

Jetter AG 53

JVM-104 Initial commissioning

Step Action

7 Click the button Open.

Result: The file VisualInterface.stxp is now included into the project.

For the library with its visualization functions to be available in JetSym, you
have to include it as follows:

Step Action

1 Open the menu Tools. Select menu item Library Manager.

 The dialog box of the same name opens.

2 Click the button Add.
Result:
An Explorer window opens in the Lib folder of the JetSym installation.

3 Select the file Visualisation_Library_1.0.0.3.libpackage or an up-to-date
version of this library.

4 Click the button Open.
Result:
The library file has now been integrated into the library manager. So, you
can now include the library into your JetSym project.

Including a library

54 Jetter AG

5 Initial commissioning

Step Action

5 Switch to the view Files.

6 Select the folder Library. Open the shortcut menu by pressing the right
mouse button.

7 Select menu item Add Libraries....
Result:
JetSym opens the Library Manager.

8 Select the visualization library and click the button Select.

Jetter AG 55

JVM-104 Initial commissioning

To create and compile an executable program, proceed as follows:

Step Action

1 Switch to the view Files.

2 Double-click the program file. The program file has the same name as the
project, plus the extension stxp.
Result:
The program file opens in the JetSym editor.

3 Enter the following program code.
Mind this when giving the Include instruction.
#Include "VisualInterface.stxp";

Function OnKeyDown(KeyCode:long, Flags:long)
End_Function;
Function OnKeyUp(KeyCode:long, Flags:long)
End_Function;

Task Main Autorun
End_Task;

4 Press the [F7] key to trigger the build process for this project.
Result:
The visualization functions and the VisualInterface header file are now
available for programming.

Result:
You can expand the program now. In IntelliSense (Ctrl + Space bar), the
visualization functions and the information from the VisualInterface header file
are now available. You can transfer the program to the HMI by the shortcut
[Strg] + [F5]. However, the program has no function as yet.

Creating a compilable
program

56 Jetter AG

5 Initial commissioning

The functions OnKeyDown and OnKeyUp let you trigger, for example,
visualization commands when a key is pressed or released. The operating
system returns a specific key code to the function depending on what key you
press.
The following key codes, for example, are assigned to the keys [UP],
[DOWN], [OK] and [ESC]:

Key Key code Constant

 0x26 KEY_UP

 0x28 KEY_DOWN

OK 0x0D KEY_RETURN

ESC 0x1B KEY_ESCAPE

The file VISU_Defines.stxp holds the key codes assigned to individual keys
as constants. This lets you use constants in the application program.

A sample STX program is listed below:

#include "VisualInterface.stxp"

Function OnKeyDown(KeyCode:LONG, Flags:Long)

Case KeyCode Of

KEY_UP: VisuCmdAttribute(Ellipse_4000,
ELLIPSE_ATTR_FILLATTRIBUTE, FillAttribute_26000);

Break;

KEY_DOWN: VisuCmdAttribute(Ellipse_4000,
ELLIPSE_ATTR_FILLATTRIBUTE, FillAttribute_26001);

Break;

KEY_RETURN: VisuCmdAttribute(Ellipse_4000,
ELLIPSE_ATTR_FILLATTRIBUTE, FillAttribute_26002);

Break;

KEY_ESC: VisuCmdAttribute(Ellipse_4000,
ELLIPSE_ATTR_FILLATTRIBUTE, FillAttribute_26003);

Break;

End_Case;

End_Function;

It is advisable to use for Ellipse_4000 and FillAttribute_26000 object names
that are more descriptive. This makes it easier to find these objects and to
assign them properly. Instead of FillAttribute_26000 you could name it, for
example, FillAttribute_White.
Blanks or special characters (ä, ö, ü, ß, -, ...) are not allowed for object names.
JetViewSoft lets you enter object names in the properties pane of the
corresponding object. JetViewSoft incorporates this object name and the
object ID into the file VisualInterface.stxp. Then, you can use the object
name and ID in the program.

Functions OnKeyDown
and OnKeyUp

Recommendations

Jetter AG 57

JVM-104 Initial commissioning

 Initial commissioning in JetViewSoft (see page 45)

Related topics

58 Jetter AG

5 Initial commissioning

5.3 ER-STX-CE platform - Programming

This chapter consists of the following two parts:

 Entering data via digipot on the HMI
 Making changes to visualization objects through visualization commands

(VisuCommands) from within the application program.

This description applies to the platform JetView ER-STX-CE/PC.

For more information refer to the JetSym and JetViewSoft online help.

Topic Page
Entering data via digipot ... 59
Using visualization commands to manipulate visualization objects.............. 63

Introduction

Prerequisites

Additional information

Contents

Jetter AG 59

JVM-104 Initial commissioning

Entering data via digipot

A few lines of program code enable you to enter data via digipot on the HMI.
These data are then available in a JetSym STX application program.

To enter data via digipot, proceed as follows:

Step Action

1 Declare the variables in the JetSym STX program using [export jde].

Task Visu_STX Autorun
Var
input_value: Int At %VL 1000000 [export jde];
End_Var;
End_Task;

2 In JetSym navigate to Project Settings and the tab TagDB. Here, tick the
checkbox Create file.

3 Open the Build menu. Select menu item Build.

Another way is to press the key [F7].

 During the build process JetSym will then create a TagDB file with the
extension *.jde. This file holds the declarations of all variables.
Storage location:
JetSym creates a folder named Release. JetSym stores the file to this
folder.

Introduction

Entering data via digipot

60 Jetter AG

5 Initial commissioning

Step Action

4 Embed the TagDB file into your JetViewSoft visualization project.
To this end, activate the shortcut menu in the workspace and click on Add
TagDB File... .

 JetViewSoft displays the variables declared in the TagDB file in the TagDB
window.

5 Use Drag&Drop to drag a variable into the window Variables.

Jetter AG 61

JVM-104 Initial commissioning

Step Action

 JetViewSoft creates a variable of the type Number Variable as an object.
This is how the window Variables looks like:

This is what the tab ObjectPool looks like:

If the TagDB file contains controller information, JetViewSoft creates a
controller and links it with the variables.

6 Use Drag&Drop to drag the variable from the window Variables or
ObjectPool to the visualization object Edit Numeric.
When the PLUS sign appears, release the mouse button.
Result:
A link between visualization object and variable has been created.

7 Select the corresponding dynamic feature, such as I/O.

Result:
JetViewSoft adds the variable and dynamic feature to the object
properties.

62 Jetter AG

5 Initial commissioning

Step Action

8 In JetSym and JetViewSoft, carry out the commands Build and Deploy.
Result:
The application is now available on the HMI.

9 Restart the HMI.

Result:
The HMI shows the start screen. Now, you can use the digipot to enter a value
in the object Edit Numeric.
If you enter in the JetSym setup pane register number R 1000000, JetSym
displays the set value.

Jetter AG 63

JVM-104 Initial commissioning

Using visualization commands to manipulate visualization objects

Visualization commands are functions included in the JetSym visualization
library. These function can be invoked in the JetSym STX program. Thus,
visualization commands let you manipulate visualization objects directly from
within the JetSym STX program. The description below shows how to change,
for example, the fill color of an ellipse using the corresponding visualization
command.

All available commands have been declared in the file VISU_Functions.stxp.
Predefined data types, such as the color as RGB value, attributes and key
codes have been declared in the file VISU_Defines.stxp. Both files form an
integral part of the visualization library.

For the compiler to compile the following program without errors, add the
program code listed below to the sample programs:

#Include "VisualInterface.stxp";

Function OnKeyDown (KeyCode:long, Flags:long)

End_Function;

Function OnKeyUp (KeyCode:long, Flags:long)

End_Function;

The application program is to control the color change of an ellipse through
the fill color attribute. After 5 seconds the fill color is to change from red to blue
and after another 5 seconds back from blue to red.

The application program invokes the function VisuCmdAttribute() at regular
intervals (cycles).

Var

 Flag: Bool At %MX 1;

End_Var;

Task Visu_STX Autorun

Flag := FALSE;

Loop

 If Flag = FALSE Then

 Flag := TRUE;

 ELSE

 Flag := FALSE;

 End_If;

Case Flag Of

 TRUE: VisuCmdAttribute (Ellipse_4000,
ELLIPSE_ATTR_FILLATTRIBUTE, FillAttribute_Blue);

 Break;

 FALSE: VisuCmdAttribute (Ellipse_4000,
ELLIPSE_ATTR_FILLATTRIBUTE, FillAttribute_Red);

 Break;

Introduction

Components of the
visualization library

Prerequisites

Task 1

Task 1 - Solution

Task 1 - JetSym STX
program

64 Jetter AG

5 Initial commissioning

End_Case;

Delay(T#5s);

End_Loop;

End_Task;

When a certain button is activated (Button_10000), the fill color of a rectangle
object is to change to red.
When a second button is activated (Button_10001), the fill color of the same
rectangle object is to change to blue. The digipot is used to activate the
buttons.

Assign in JetViewSoft the event OnButtonDown to both buttons. When this
event occurs, the macro function CallSTXFunctionEx() is invoked.

In the application program, a function has been declared which in turn
executes a visualization command. In the given case it is the function
VisuSTXFunction().
The SenderID holds the information which button has been pressed. A case
instruction is used to retrieve this information.

Function VisuSTXFunction (SenderID : long)

Case SenderID Of

 Button_10000: VisuCmdAttribute (Rectangle_3000;
RECTANGLE_ATTR_FILLATTRIBUTE, FillAttribute_Red);

 Break;

 Button_10001: VisuCmdAttribute (Rectangle_3000;
RECTANGLE_ATTR_FILLATTRIBUTE, FillAttribute_Blue);

 Break;

End_Case;

End_Function;

Task Visu_STX Autorun

End_Task;

Once you have selected the macro function CallSTXFunctionEX() in a macro
object, this function with its name is declared in the file VisualInterface.stxp
as forward.

Task 2

Task 2 - Solution

Task 2 - JetSym-STX
program

Note

Jetter AG 65

JVM-104 CANopen® STX API

6 CANopen® STX API

This chapter describes the STX functions of the CANopen® STX API.

CANopen® is an open standard for networking and communication, for
instance, in the automobile sector.
The CANopen® protocol has been further developed by the CiA e.V. (CAN in
Automation) and works on the physical layer with CAN Highspeed in
accordance with ISO 11898.

The CANopen® specifications can be obtained from the CiA e.V.
http://www.can-cia.org homepage. The key specification documents are:

 CiA DS 301 - This document is also known as the communication profile
and describes the fundamental services and protocols used under
CANopen®.

 CiA DS 302 - Framework for programmable devices (CANopen® Manager,
SDO Manager)

 CiA DR 303 - Information on cables and connectors
 CiA DS 4xx - These documents describe the behavior of a number of

device classes in, what are known as, device profiles.

These STX functions are used in communication between the JVM-104 and
other CANopen® nodes.

In this chapter we use the point of view from the higher-level controller,
whereas in the document CiA DS 301 the point of view from the devices is
used.
This is why you need, for example, a PDO-RX macro to invoke the function
CanOpenAddPDORx().

In this chapter, the following terms and abbreviations are used:

Term Description

Node ID Node identification number of the device:
This ID lets you address the device.

NMT Network management - Netzwerkmanagement

ro Read only access

rw Read/write access

Introduction

The CANopen® standard

Documentation

Application

Note: Take into account
the point of view!

Terms and abbreviations

http://www.can-cia.org/

66 Jetter AG

6 CANopen® STX API

Topic Page
STX function: CanOpenInit() ... 67
STX function: CanOpenSetCommand() ... 69
STX function: CanOpenUploadSDO() .. 71
STX function: CanOpenDownloadSDO() .. 76
STX function: CanOpenAddPDORx() ... 81
STX function: CanOpenAddPDOTx() ... 88
Heartbeat monitoring .. 94
CANopen® object dictionary for JVM-104 .. 98

Table of contents

Jetter AG 67

JVM-104 CANopen® STX API

STX function: CanOpenInit()

The function CanOpenInit() lets you initialize one of the CAN busses. The
JVM-104 then automatically sends the heartbeat message every second with
the following communication object identifier (COB-ID): Node ID + 0x700.

Function CanOpenInit(

 CANNo:Int,

 NodeID:Int,

 const ref SWVersion:String,

) :Int;

The function CanOpenInit() has got the following parameters.

Parameter Description Value

CANNo CAN bus number 0 ... CANMAX

NodeID Node ID of the given device 1 ... 127

SWVersion Reference to own software
version
This software version is entered
into the index 0x100A in the
object directory.

String up to 255
characters

This function transfers the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters

-3 Initialization has not worked

-4 The JX2 system bus driver is activated

This parameter specifies the number of the CAN interface. CANNo = 0 is
assigned to the first interface. The number of CAN interfaces depends on the
device. For information on the maximum number of CAN interfaces
(CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

Introduction

Function declaration

Function parameters

Return value

CANNo parameter

68 Jetter AG

6 CANopen® STX API

This function lets you initialize CAN bus 0. The JVM-104 has node ID 20
(0x14).

Result := CanOpenInit(0, 20, 'Version: 01.00.0.00');

During initialization, the JVM-104 processes the following process steps:

Step Description

1 First, the bootup message is sent as a heartbeat message.

2 As soon as the JVM-104 goes into pre-operational status, it sends the
heartbeat message pre-operational.

If the JVM-104 is in pre-operational state, it lets you access the object
directory using SDO.

After initialization, NMT messages can be sent and received. The own
heartbeat status can be changed with the function CanOpenSetCommand.

 STX function CanOpenSetCommand (see page 69)

How to use this function

Operating principle

Access to the object
directory

NMT messages

Related topics

Jetter AG 69

JVM-104 CANopen® STX API

STX function: CanOpenSetCommand()

The function CanOpenSetCommand() lets you change the heartbeat status of
the device itself and of all other devices (NMT slaves) on the CAN bus.

Function CanOpenSetCommand(

 CANNo:Int,

 iType:Int,

 Value:Int,

) :Int;

The function CanOpenSetCommand() has got the following parameters:

Parameter Description Value

CANNo CAN bus number 0 ... CANMAX

iType Command selection See table below.

iType Description: Value

CAN_CMD_HEARTBEAT Only the own heartbeat status is changed. Selecting
heartbeat states:
CAN_HEARTBEAT_STOPPED (0x04)
CAN_HEARTBEAT_OPERATIONAL (0x05)
CAN_HEARTBEAT_PREOPERATIONAL (0x7F)

CAN_CMD_NMT The heartbeat status is changed for all other devices or
for a specific device on the CAN bus. Selecting
heartbeat states (NMT master):
CAN_NMT_OPERATIONAL (0x01) or
CAN_NMT_START (0x01)
CAN_NMT_STOP (0x02)
CAN_NMT_PREOPERATIONAL (0x80)
CAN_NMT_RESET (0x81)
CAN_NMT_RESETCOMMUNICATION (0x82)

CAN_CMD_TIME_CONS
UMER

This command lets you set the device to
ready-to-receive state to allow time synchronization via
CAN bus (CAN ID 0x100). Refer to document by CiA
e.V. DS301 V402 Selecting Synchronization, page 59.
CAN_TIME_CONSUMER_DISABLE = 0
CAN_TIME_CONSUMER_ENABLE = 1

CAN_CMD_TIME_PROD
UCER

The time is published on the CAN bus. For more
information on the structure refer to document DS301
by CiA e.V., CAN ID 0x100:
CAN_TIME_PRODUCER_SEND = 1 (for sending
TIME_OF_DAY once)

Introduction

Function declaration

Function parameters

70 Jetter AG

6 CANopen® STX API

The macro function CAN_CMD_NMT_Value(NodeID, CAN_CMD_NMT) is
used to select the command CAN_CMD_NMT.
Values from 0 to 127 are permitted for the node ID parameter. 1 to 127 is the
node ID for a specific device. If the command is to be sent to all devices on
the CAN bus, use the parameter CAN_CMD_NMT_ALLNODES(0).

This parameter specifies the number of the CAN interface. CANNo = 0 is
assigned to the first interface. The number of CAN interfaces depends on the
device. For information on the maximum number of CAN interfaces
(CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

This function sends the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters
Command not known

Task: Set the own heartbeat status to operational.

Result := CanOpenSetCommand(0, CAN_CMD_HEARTBEAT,
CAN_HEARTBEAT_OPERATIONAL);

Task: Set the own heartbeat status and the status of all other devices on the
CAN bus to operational.

Result := CanOpenSetCommand(0, CAN_CMD_NMT,
CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES, CAN_NMT_OPERATIONAL));

Task: Set the heartbeat status of the device with the node ID 60 (0x3C) to
operational.

Result := CanOpenSetCommand(0, CAN_CMD_NMT, CAN_CMD_NMT_Value(60,
CAN_NMT_OPERATIONAL));

Task: Enable time synchronization via CAN bus (CAN ID 0x100).

Result := CanOpenSetCommand(0, CAN_CMD_TIME_CONSUMER,
CAN_TIME_CONSUMER_ENABLE);

Task: Publish the time on the CAN bus.

Result := CanOpenSetCommand(0, CAN_CMD_TIME_PRODUCER,
CAN_TIME_PRODUCER_SEND);

Note

CANNo parameter

Return value

How to use this function
(example 1)

How to use this function
(example 2)

How to use this function
(example 3)

How to use this function
(example 4)

How to use this function
(example 5)

Jetter AG 71

JVM-104 CANopen® STX API

STX function: CanOpenUploadSDO()

The function CanOpenUploadSDO() lets you access a particular object in the
object directory of the message recipient and read the value of the object.
Data is exchanged in accordance with the SDO upload protocol. Supported
transfer types are segmented (more than 4 data bytes) and expedited (up to
4 data bytes).

Function CanOpenUploadSDO(

 CANNo:Int, // Number of the bus line

 NodeID:Int, // Device ID

 wIndex:Word,

 SubIndex:Byte,

 DataType:Int, // Type of the data to be received

 // Data length for the global variable DataAddr
 DataLength:Int,

 // Global variable into which the received value is entered
 const ref DataAddr,

 ref Busy: Int, // Status of the SDO transmission

) :Int;

The CanOpenUploadSDO() function has got the following parameters:

Parameter Description Value

CANNo CAN bus number 0 ... CANMAX

NodeID Node ID of the message
recipient

1 ... 127

wIndex Index number of the object 0 ... 0xFFFF

SubIndex Subindex number of the object 0 ... 255

DataType Type of data to be received 2 ... 27

DataLength Data length of the global variable
DataAddr

DataAddr Global variable into which the
received value is to be entered

Busy Status of the SDO transmission

Introduction

Function declaration

Function parameters

72 Jetter AG

6 CANopen® STX API

This function sends the following return values to the higher-level program.

Return value

0 OK

-1 Error in checking parameters

-2 Device in Stop status

-3 DataType is greater than DataLength

-4 Insufficient memory

This parameter specifies the number of the CAN interface. CANNo = 0 is
assigned to the first interface. The number of CAN interfaces depends on the
device. For information on the maximum number of CAN interfaces
(CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

The following data types can be received.

Byte types CANopen® format Jetter format

1 CANOPEN_INTEGER8
CANOPEN_UNSIGNED8

Byte

2 CANOPEN_INTEGER16
CANOPEN_UNSIGNED16

Word

3 CANOPEN_INTEGER24
CANOPEN_UNSIGNED24

-

4 CANOPEN_INTEGER32
CANOPEN_UNSIGNED32
CANOPEN_REAL

Int

5 CANOPEN_INTEGER40
CANOPEN_UNSIGNED40

-

6 CANOPEN_INTEGER48
CANOPEN_UNSIGNED48
CANOPEN_TIME_OF_DAY
CANOPEN_TIME_DIFFERENCE

-

7 CANOPEN_INTEGER56
CANOPEN_UNSIGNED46

-

8 CANOPEN_INTEGER64
CANOPEN_UNSIGNED64
CANOPEN_REAL64

-

n CANOPEN_VISIBLE_STRING
CANOPEN_OCTET_STRING
CANOPEN_UNICODE_STRING
CANOPEN_DOMAIN

String

Return value

CANNo parameter

DataType parameter

Jetter AG 73

JVM-104 CANopen® STX API

After successfully calling up the function, the Busy parameter is set to
SDOACCESS_INUSE. With an error in transmission, Busy is set to
SDOACCESS_ERROR. With a successful transmission, the function returns
the number of bytes transmitted.

With an error in transmission, Busy returns an error code. The following error
codes are available:

SDOACCESS_STILLUSED
Another task is communicating with the same node ID.

SDOACCESS_TIMEOUT
The task has been timed out because the device with the specified node ID is
not responding.
If the specified node ID does not respond within 1 second, the timeout bit is
set.

SDOACCESS_ILLCMD
The response to the request is invalid.

SDOACCESS_ABORT
Access to the device with the specified node ID was aborted.

SDOACCESS_SYSERROR
General internal error

The following macros have been defined in connection with this function:

SDOACCESS_FINISHED (busy)
This macro checks whether communication has finished.

SDOACCESS_ERROR (busy)
This macro checks whether an error has occurred.

Busy parameter

Busy - Error codes

Macro definitions

74 Jetter AG

6 CANopen® STX API

Result := CanOpenUploadSDO(

 0, // CANNo

 66, // NodeID

 0x100A, // wIndex

 0, // SubIndex

 CANOPEN_STRING, // DataType

 sizeof(var_Versionstring), // DataLength

 var_Versionstring, // DataAddr

 busy); // Busy

In the following example, the manufacturer's software version is read from the
CANopen® Object Directory of the device with the addressed node ID.

Const

 CANNo = 0; // Number of the bus line

 NodeID_Node_0 = 10; // Device ID of node 1

 NodeID_Node_0 = 66; // Device ID of node 2

End_Const;

Var

 busy: Int;

 Versionstring: String;

 Objectindex: Word;

 Subindex: Byte;

 Result: Int;

End_Var;

Task Example_UploadSDO autorun

Var

 SW_Version: String;

End_Var;

SW_Version := 'v4.3.0.2004';

// Initializing CAN 0
CanOpenInit(CANNo, // Number of the bus line

 NodeID_Node_0, // Node ID

 SW_Version); // Manufacturer's software version

// All nodes on the CAN bus are in PREOPERATIONAL state

// Request manufacturer's software version per SDO
Objectindex := 0x100A;

Subindex := 0;

How to use this function

JetSym STX program

Jetter AG 75

JVM-104 CANopen® STX API

Result:= CanOpenUploadSDO(CANNo, // Number of the bus line

 NodeID_Node_1, // Node ID

 Objectindex, // wIndex

 Subindex, // SubIndex

 CANOPEN_STRING, // DataType

 sizeof(Versionstring), // DataLength

 Versionstring, // DataAddr

 busy); // Busy

// Checking the command for successful execution
If (Result == 0) Then

 // Waiting until communication is completed
 When SDOACCESS_FINISHED(busy) Continue;

 // Checking for errors
 If (SDOACCESS_ERROR(busy)) Then

 // Troubleshooting
 End_If;

End_If;

// ...
// ...
// ...

End_Task;

76 Jetter AG

6 CANopen® STX API

STX function: CanOpenDownloadSDO()

The function CanOpenDownloadSDO() lets you access a particular object in
the Object Directory of the message recipient and specify the value of the
object. Data is exchanged in accordance with the SDO upload protocol.
Supported transfer types are segmented or block (more than 4 data bytes)
and expedited (up to 4 data bytes).

Function CanOpenDownloadSDO(

 CANNo:Int, // Number of the bus line

 NodeID:Int, // Device ID

 wIndex:Word,

 SubIndex:Byte,

 DataType:Int, // Type of the data to be sent

 // Data length of the global variable DataAddr
 DataLength:Int,

 // Global variable holding the value to be sent
 const ref DataAddr,

 ref Busy: Int, // Status of the SDO transmission

) :Int;

The CanOpenDownloadSDO() function has got the following parameters:

Parameter Description Value

CANNo CAN bus number 0 ... CANMAX

NodeID Node ID of the message recipient 1 ... 127

wIndex Index number of the object 0 ... 0xFFFF

SubIndex Subindex number of the object 0 ... 255

DataType Type of data to be sent 2 ... 27

DataLength Data length of the global variable
DataAddr

DataAddr Global variable into which the value to
be sent is to be entered

Busy Status of the SDO transmission

This function sends the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters

-2 Device in Stop status (own heartbeat status)

-3 DataType is greater than DataLength

-4 Insufficient memory

Introduction

Function declaration

Function parameters

Return value

Jetter AG 77

JVM-104 CANopen® STX API

This parameter specifies the number of the CAN interface. CANNo = 0 is
assigned to the first interface. The number of CAN interfaces depends on the
device. For information on the maximum number of CAN interfaces
(CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

The following data types can be received.

Byte types CANopen® format Jetter format

1 CANOPEN_INTEGER8
CANOPEN_UNSIGNED8

Byte

2 CANOPEN_INTEGER16
CANOPEN_UNSIGNED16

Word

3 CANOPEN_INTEGER24
CANOPEN_UNSIGNED24

-

4 CANOPEN_INTEGER32
CANOPEN_UNSIGNED32
CANOPEN_REAL

Int

5 CANOPEN_INTEGER40
CANOPEN_UNSIGNED40

-

6 CANOPEN_INTEGER48
CANOPEN_UNSIGNED48
CANOPEN_TIME_OF_DAY
CANOPEN_TIME_DIFFERENCE

-

7 CANOPEN_INTEGER56
CANOPEN_UNSIGNED46

-

8 CANOPEN_INTEGER64
CANOPEN_UNSIGNED64
CANOPEN_REAL64

-

n CANOPEN_VISIBLE_STRING
CANOPEN_OCTET_STRING
CANOPEN_UNICODE_STRING
CANOPEN_DOMAIN

String

CANNo parameter

DataType parameter

78 Jetter AG

6 CANopen® STX API

After successfully calling up the function, the Busy parameter is set to
SDOACCESS_INUSE. With an error in transmission, Busy is set to
SDOACCESS_ERROR. With a successful transmission, the function returns
the number of bytes transmitted.

With an error in transmission, Busy returns an error code. The following error
codes are available:

SDOACCESS_STILLUSED
Another task is communicating with the same node ID.

SDOACCESS_TIMEOUT
The task has been timed out because the device with the given node ID is not
responding.
If the specified node ID does not respond within 1 second, the timeout bit is
set.

SDOACCESS_ILLCMD
The response to the request is invalid.

SDOACCESS_ABORT
Access to the device with the specified node ID was aborted.

SDOACCESS_BLKSIZEINV
Communication error with Block Download

SDOACCESS_SYSERROR
General internal error

The following macros have been defined in connection with this function:

SDOACCESS_FINISHED (busy)
This macro checks whether communication has finished.

SDOACCESS_ERROR (busy)
This macro checks whether an error has occurred.

Result := CanOpenDownloadSDO(

 0, // CANNo

 68, // NodeID

 0x1017, // wIndex

 0, // SubIndex

 CANOPEN_WORD, // DataType

 sizeof(var_Heartbeat_time), // DataLength

 var_Heartbeat_time, // DataAddr

 busy); // Busy

Busy parameter

"Busy" error codes

Macro definitions

How to use this function

Jetter AG 79

JVM-104 CANopen® STX API

In the following example, the heartbeat time is entered in the CANopen®
object directory of the device with the addressed node ID.

Const

 CANNo = 0; // Number of the bus line

 NodeID_Node_0 = 10; // Node ID of node 1

 NodeID_Node_0 = 68; // Node ID of node 2

End_Const;

Var

 busy: Int;

 Heartbeat_time: Int;

 Objectindex: Word;

 Subindex: Byte;

 Result: Int;

End_Var;

Task Example_DownloadSDO autorun

Var

 SW_Version: String;

End_Var;

SW_Version := 'v4.3.0.2004';

// Initializing CAN 0
CanOpenInit(CANNo, // Number of the bus line

 NodeID_Node_0, // Device ID of the node

 SW_Version); // Manufacturer's software version

// Setting the node with ID NodeID_Node_1 on the CAN bus to
// PREOPERATIONAL state
CanOpenSetCommand(CANNo, CAN_CMD_NMT_Value(NodeID_Node_1,
CAN_CMD_NMT), CAN_NMT_PREOPERATIONAL);

// Changing the heartbeat time of the addressed device via SDO
Objectindex := 0x1017;

Subindex := 0;

Result:= CanOpenDownloadSDO(CANNo, // Number of the bus line

 NodeID_Node_1, // Node ID

 Objectindex, // wIndex

 Subindex, // SubIndex

 CANOPEN_WORD, // DataType

 sizeof(Heartbeat_time), // DataLength

 Heartbeat_time, // DataAddr

 busy); // Busy

// Checking the command for successful execution
If (Result == 0) Then

JetSym STX program

80 Jetter AG

6 CANopen® STX API

 // Waiting until communication is completed
 When SDOACCESS_FINISHED(busy) Continue;

 // Checking for errors
 If (SDOACCESS_ERROR(busy)) Then

 // Troubleshooting
 End_If;

End_If;

// Resetting all devices on the CAN bus to OPERATIONAL status
CanOpenSetCommand(CANNo, CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES,
CAN_CMD_NMT), CAN_NMT_OPERATIONAL);

// ...
// ...
// ...

End_Task;

Jetter AG 81

JVM-104 CANopen® STX API

STX function: CanOpenAddPDORx()

The function CanOpenAddPDORx() lets you specify which process data, sent
by other CANopen® devices, must be received.
Process data can be received only when a CANopen® device is sending
them.

 Only if the CANopen® devices on the bus are in state operational, the
PDO telegram is transmitted.

 The smallest time unit for the event time is 1 ms.
 The smallest time unit for the inhibit time is 1 ms.

Function CanOpenAddPDORx(

 CANNo:Int, // Number of the bus line

 CANID:Int, // CAN identifier

 // Starting position of data to be received
 BytePos:Int,

 DataType:Int, // Data type of the data to be received

 // Data length of the global variable VarAddr
 DataLength:Int,

 // Global variable into which the received value is entered
 const ref VarAddr,

 // Cycle time for receiving a telegram
 // Event time
 EventTime: Int,

 // Minimum interval between two received messages
 // Inhibit time
 InhibitTime: Int,

 Paramset: Int, // Bit-coded parameter

) :Int;

The CanOpenAddPDORx() function has got the following parameters:

Parameter Description Value

CANNo CAN bus number 0 ... CANMAX

CANID CAN identifier 11-bit
CAN identifier 29-bit

0 ... 0x7FF
0 ... 0x1FFFFFFF

BytePos Starting position of data to be
received

0 ... 7

DataType Data type of data to be received 2 ... 13, 15 ... 27

DataLength Data length of the global variable
VarAddr

VarAddr Global variable into which the
received value is entered

EventTime Time lag between two telegrams
(> InhibitTime)

Introduction

Notes

Function declaration

Function parameters

82 Jetter AG

6 CANopen® STX API

Parameter Description Value

InhibitTime Minimum time lag between two
telegrams received
(< EventTime)

Paramset Bit-coded parameter

This function sends the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters

-3 DataType is greater than DataLength

-4 Insufficient memory

This parameter specifies the number of the CAN interface. CANNo = 0 is
assigned to the first interface. The number of CAN interfaces depends on the
device. For information on the maximum number of CAN interfaces
(CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

In this chapter we use the point of view from the higher-level controller,
whereas in the document CiA DS 301 the point of view from the devices is
used.
This is why you need a PDO-RX macro to invoke the function
CanOpenAddPDORx() from the controller.

Return value

CANNo parameter

Note: Take into account
the point of view!

Jetter AG 83

JVM-104 CANopen® STX API

The CANID parameter is used to transfer the CAN identifier. The CAN
identifier is generated with a macro. The CAN identifier depends on the node
ID of the other communicating user and on whether it is a PDO1, PDO2,
PDO3 or PDO4 message.

Macro definitions:
#Define CANOPEN_PDO1_RX (NodeID) ((NodeID) + 0x180)
#Define CANOPEN_PDO2_RX (NodeID) ((NodeID) + 0x280)
#Define CANOPEN_PDO3_RX (NodeID) ((NodeID) + 0x380)
#Define CANOPEN_PDO4_RX (NodeID) ((NodeID) + 0x480)

#Define CANOPEN_PDO1_TX (NodeID) ((NodeID) + 0x200)
#Define CANOPEN_PDO2_TX (NodeID) ((NodeID) + 0x300)
#Define CANOPEN_PDO3_TX (NodeID) ((NodeID) + 0x400)
#Define CANOPEN_PDO4_TX (NodeID) ((NodeID) + 0x500)

Example for calling up the macro:
CANOPEN_PDO2_RX (64)
 The resulting CAN identifier is: 2C0h = 40h + 280h

For CANopen® the following CAN identifier distribution is predefined. In this
case, the node number is embedded in the identifier.

11-bit identifier
(binary)

Identifier
(decimal)

Identifier
(hexadecimal)

Description

000000000000 0 0 Network management

000100000000 128 80h Synchronization

0001xxxxxxxx 129 - 255 81h - FFh Emergency

0011xxxxxxxx 385 - 511 181h - 1FFh PDO1 (tx)

0100xxxxxxxx 513 - 639 201h - 27Fh PDO1 (rx)

0101xxxxxxxx 641 - 767 281h - 2FFh PDO2 (tx)

0110xxxxxxxx 769 - 895 301h - 37Fh PDO2 (rx)

0111xxxxxxxx 897 - 1023 381h - 3FFh PDO3 (tx)

1000xxxxxxxx 1025 - 1151 401h -47Fh PDO3 (rx)

1001xxxxxxxx 1153 - 1279 481h - 4FFh PDO4 (tx)

1010xxxxxxxx 1281 - 1407 501h - 57Fh PDO4 (rx)

1011xxxxxxxx 1409 - 1535 581h - 5FFh Send SDO

1100xxxxxxxx 1537 - 1663 601h - 67Fh Receive SDO

1110xxxxxxxx 1793 - 1919 701h - 77Fh NMT error control

xxxxxxxx = Node number 1 - 127

CANID parameter

Default CAN identifier
distribution

84 Jetter AG

6 CANopen® STX API

The following data types can be received.

Byte types CANopen® format Jetter format

1 CANOPEN_INTEGER8
CANOPEN_UNSIGNED8

Byte

2 CANOPEN_INTEGER16
CANOPEN_UNSIGNED16

Word

3 CANOPEN_INTEGER24
CANOPEN_UNSIGNED24

-

4 CANOPEN_INTEGER32
CANOPEN_UNSIGNED32
CANOPEN_REAL

Int

5 CANOPEN_INTEGER40
CANOPEN_UNSIGNED40

-

6 CANOPEN_INTEGER48
CANOPEN_UNSIGNED48
CANOPEN_TIME_OF_DAY
CANOPEN_TIME_DIFFERENCE

-

7 CANOPEN_INTEGER56
CANOPEN_UNSIGNED46

-

8 CANOPEN_INTEGER64
CANOPEN_UNSIGNED64
CANOPEN_REAL64

-

n CANOPEN_VISIBLE_STRING
CANOPEN_OCTET_STRING
CANOPEN_UNICODE_STRING
CANOPEN_DOMAIN

String

The following parameters can be transferred to the function. Several
parameters can be linked together using the Or function.

CANOPEN_ASYNCPDORTRONLY
Receive asynchronous PDOs by sending an RTR frame to the sender (after
each expired EventTime). If there is no response to RTR frames, the request
time increases to five times the EventTime.

CANOPEN_ASYNCPDO
Receive asynchronous PDOs.

CANOPEN_PDOINVALID
PDO not received. Disk space is reserved.

CANOPEN_NORTR
PDO cannot be requested by RTR (Remote Request).
Only if CANOPEN_ASYNCPDORTROnly has been set, an RTR is sent.

CANOPEN_29BIT

DataType parameter

Paramset parameter

Jetter AG 85

JVM-104 CANopen® STX API

Use 29-bit identifier
Default: 11-bit identifier

Result := CanOpenAddPDORx(

 0, // CANNo

 662, // CANID

 0, // BytePos

 CANOPEN_DWORD, // DataType

 sizeof(var_Data_1_of_Node_1), // DataLength

 var_Data_1_of_Node_1, // VarAddr

 1000, // Event time

 10, // Inhibit time

 CANOPEN_ASYNCPDO | CANOPEN_NORTR); // Paramset

JVM-104 with node ID 10 wants to receive a PDO from two CANopen®
devices with node ID 64 and 102. The function CanOpenAddPDORx() is
invoked for this purpose. After running the program, the JVM-104 receives
cyclic PDO telegrams.

120 Ohm 120 Ohm

CAN 0

NodeID_Node_0 NodeID_Node_2 NodeID_Node_1

CAN bus

Controller/HMI Device/Module Device/Module

Const

 CANNo = 0; // Number of the bus line

 NodeID_Node_0 = 10; // Device ID of node 1

 NodeID_Node_1 = 64; // Device ID of node 2

 NodeID_Node_2 = 102; // Device ID of node 3

 Event_Time = 1000; // Event time in ms

 Inhibit_Time = 10; // Inhibit time in ms

End_Const;

How to use this function

JetSym STX program

86 Jetter AG

6 CANopen® STX API

Var

 Data_1_of_Node_1: Int;

 Data_2_of_Node_1: Int;

 Data_1_of_Node_2: Int;

End_Var;

Task main autorun

Var

 SW_Version: String;

End_Var;

SW_Version := 'v4.3.0.2004';

// Initializing CAN 0
CanOpenInit(CANNo, // Number of the bus line

 NodeID_Node_0, // Node ID

 SW_Version); // Manufacturer's software version

// Entering process data to be received
CanOpenAddPDORx(

 CANNo, // Number of the bus line

 CANOPEN_PDO2_RX(NodeID_Node_1), // CANID

 0, // BytePos

 CANOPEN_DWORD, // DataType

 sizeof(Data_1_of_Node_1), // DataLength

 Data_1_of_Node_1, // VarAddr

 Event_Time, // Event time

 Inhibit_Time, // Inhibit time

 CANOPEN_ASYNCPDORTRONLY); // Paramset

CanOpenAddPDORx(

 CANNo, // Number of the bus line

 CANOPEN_PDO2_RX(NodeID_Node_1), // CANID

 4, // BytePos

 CANOPEN_DWORD, // DataType

 sizeof(Data_2_of_Node_1), // DataLength

 Data_2_of_Node_1, // VarAddr

 Event_Time, // Event time

 Inhibit_Time, // Inhibit time

 CANOPEN_ASYNCPDORTRONLY); // Paramset

Jetter AG 87

JVM-104 CANopen® STX API

CanOpenAddPDORx(

 CANNo, // Number of the bus line

 CANOPEN_PDO3_RX(NodeID_Node_2), // CANID

 0, // BytePos

 CANOPEN_BYTE, // DataType

 sizeof(Data_1_of_Node_2), // DataLength

 Data_1_of_Node_2, // VarAddr

 Event_Time, // Event time

 Inhibit_Time, // Inhibit time

 CANOPEN_ASYNCPDO | CANOPEN_NORTR); // Paramset

// All nodes on the CAN bus are in PREOPERATIONAL state

// Setting all nodes on the CAN bus to OPERATIONAL state
CanOpenSetCommand(CANNo, CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES,
CAN_CMD_NMT), CAN_NMT_START);

// As of now, PDO telegrams are received/sent
// from the higher-level controller
// ...
// ...
// ...

End_Task;

88 Jetter AG

6 CANopen® STX API

STX function: CanOpenAddPDOTx()

By calling up the CanOpenAddPDOTx() function, process data can be
deposited on the bus.
However, that should not mean that other CANopen® devices on the bus can
also read this process data.

 Only if the CANopen® devices on the bus are in state operational, the
PDO telegram is transmitted.

 As soon as there are any changes to the process data, another PDO
telegram is transmitted immediately.

 The smallest time unit for the event time is 1 ms.
 The smallest time unit for the inhibit time is 1 ms.
 Any unused bytes of a telegram are sent as null.

Function CanOpenAddPDOTx(

 CANNo:Int, // Number of the bus line

 CANID:Int, // CAN identifier

 BytePos:Int, // Starting position of the data to be sent

 DataType:Int, // Data type of the data to be sent

 // Data length of the global variable VarAddr
 DataLength:Int,

 // Global variable holding the value to be sent
 const ref VarAddr,

 // Cycle time for sending a telegram
 // Event time
 EventTime: Int,

 // Minimum interval between two transmitted messages
 // Inhibit time
 InhibitTime: Int,

 Paramset: Int, // Bit-coded parameter

) :Int;

The CanOpenAddPDOTx() function has got the following parameters:

Parameter Description Value

CANNo CAN bus number 0 ... CANMAX

CANID CAN identifier 11-bit
CAN identifier 29-bit

0 ... 0x7FF
0 ... 0x1FFFFFFF

BytePos Starting position of data to be
sent

0 ... 7

DataType Data type of data to be sent 2 ... 13, 15 ... 27

DataLength Data length of the global variable
VarAddr

VarAddr Global variable into which the
value to be sent is entered

Introduction

Notes

Function declaration

Function parameters

Jetter AG 89

JVM-104 CANopen® STX API

Parameter Description Value

EventTime Time lag between two telegrams
(> InhibitTime)

InhibitTime Minimum time lag between two
telegrams to be sent
(< EventTime)

Paramset Bit-coded parameter

This function sends the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters

-3 DataType is greater than DataLength

-4 Insufficient memory

This parameter specifies the number of the CAN interface. CANNo = 0 is
assigned to the first interface. The number of CAN interfaces depends on the
device. For information on the maximum number of CAN interfaces
(CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

The CANID parameter is used to transfer the CAN identifier. The CAN
identifier is generated with a macro. The CAN identifier depends on the node
ID of the other communicating user and on whether it is a PDO1, PDO2,
PDO3 or PDO4 message.

Macro definitions:
#Define CANOPEN_PDO1_RX (NodeID) ((NodeID) + 0x180)
#Define CANOPEN_PDO2_RX (NodeID) ((NodeID) + 0x280)
#Define CANOPEN_PDO3_RX (NodeID) ((NodeID) + 0x380)
#Define CANOPEN_PDO4_RX (NodeID) ((NodeID) + 0x480)

#Define CANOPEN_PDO1_TX (NodeID) ((NodeID) + 0x200)
#Define CANOPEN_PDO2_TX (NodeID) ((NodeID) + 0x300)
#Define CANOPEN_PDO3_TX (NodeID) ((NodeID) + 0x400)
#Define CANOPEN_PDO4_TX (NodeID) ((NodeID) + 0x500)

Example for calling up the macro:
CANOPEN_PDO2_RX (64)
 The resulting CAN identifier is: 2C0h = 40h + 280h

For CANopen® the following CAN identifier distribution is predefined. In this
case, the node number is embedded in the identifier.

Return value

CANNo parameter

CANID parameter

Default CAN identifier
distribution

90 Jetter AG

6 CANopen® STX API

11-bit identifier
(binary)

Identifier
(decimal)

Identifier
(hexadecimal)

Description

000000000000 0 0 Network management

000100000000 128 80h Synchronization

0001xxxxxxxx 129 - 255 81h - FFh Emergency

0011xxxxxxxx 385 - 511 181h - 1FFh PDO1 (tx)

0100xxxxxxxx 513 - 639 201h - 27Fh PDO1 (rx)

0101xxxxxxxx 641 - 767 281h - 2FFh PDO2 (tx)

0110xxxxxxxx 769 - 895 301h - 37Fh PDO2 (rx)

0111xxxxxxxx 897 - 1023 381h - 3FFh PDO3 (tx)

1000xxxxxxxx 1025 - 1151 401h -47Fh PDO3 (rx)

1001xxxxxxxx 1153 - 1279 481h - 4FFh PDO4 (tx)

1010xxxxxxxx 1281 - 1407 501h - 57Fh PDO4 (rx)

1011xxxxxxxx 1409 - 1535 581h - 5FFh Send SDO

1100xxxxxxxx 1537 - 1663 601h - 67Fh Receive SDO

1110xxxxxxxx 1793 - 1919 701h - 77Fh NMT error control

xxxxxxxx = Node number 1 - 127

The following data types can be received.

Byte types CANopen® format Jetter format

1 CANOPEN_INTEGER8
CANOPEN_UNSIGNED8

Byte

2 CANOPEN_INTEGER16
CANOPEN_UNSIGNED16

Word

3 CANOPEN_INTEGER24
CANOPEN_UNSIGNED24

-

4 CANOPEN_INTEGER32
CANOPEN_UNSIGNED32
CANOPEN_REAL

Int

5 CANOPEN_INTEGER40
CANOPEN_UNSIGNED40

-

6 CANOPEN_INTEGER48
CANOPEN_UNSIGNED48
CANOPEN_TIME_OF_DAY
CANOPEN_TIME_DIFFERENCE

-

7 CANOPEN_INTEGER56
CANOPEN_UNSIGNED46

-

8 CANOPEN_INTEGER64
CANOPEN_UNSIGNED64
CANOPEN_REAL64

-

DataType parameter

Jetter AG 91

JVM-104 CANopen® STX API

Byte types CANopen® format Jetter format

n CANOPEN_VISIBLE_STRING
CANOPEN_OCTET_STRING
CANOPEN_UNICODE_STRING
CANOPEN_DOMAIN

String

The following parameters can be transferred to the function. Several
parameters can be linked together using the Or function.

CANOPEN_ASYNCPDORTRONLY
Send asynchronous PDOs by receiving an RTR frame.
This feature is not yet supported at the moment.

CANOPEN_ASYNCPDO
Send asynchronous PDO.

CANOPEN_PDOINVALID
PDO not sent. The required disk space is reserved.

CANOPEN_NORTR
PDO cannot be requested by RTR (Remote Request).

CANOPEN_29BIT
Use 29-bit identifier
Default: 11-bit identifier

Result := CanOpenAddPDOTx(

 0, // CANNo

 842, // CANID

 0, // BytePos

 CANOPEN_DWORD, // DataType

 sizeof(var_Data_1_of_Node_3), // DataLength

 var_Data_1_of_Node_3, // VarAddr

 1000, // Event time

 100, // Inhibit time

 CANOPEN_ASYNCPDO | CANOPEN_NORTR); // Paramset

JVM-104 sends process data to two CANopen® devices with the node ID 74
and 112. After running the program and in the case of changes, the JVM-104
sends cyclic PDO telegrams every 3,000 ms (event time). As a maximum, the
PDO telegram is sent every 10 ms (inhibit time).

Paramset parameter

How to use this function

JetSym STX program

92 Jetter AG

6 CANopen® STX API

120 Ohm 120 Ohm

CAN 0

NodeID_Node_0 NodeID_Node_2 NodeID_Node_1

CAN bus

Controller/HMI Device/Module Device/Module

Const

 CANNo = 0; // Number of the bus line

 NodeID_Node_0 = 10; // Device ID of node 1

 NodeID_Node_1 = 74; // Device ID of node 2

 NodeID_Node_2 = 112; // Device ID of node 3

 Event_Time = 3000; // Event time in ms

 Inhibit_Time = 100; // Inhibit time in ms

End_Const;

Var

 Data_1_of_Node_1: Int;

 Data_2_of_Node_1: Int;

 Data_1_of_Node_2: Byte;

End_Var;

Task main autorun

Var

 SW_Version: String;

End_Var;

SW_Version := 'v4.3.0.2004';

// Initializing CAN 0
CanOpenInit(CANNo, // Number of the bus line

 NodeID_Node_0, // Node ID

 SW_Version); // Manufacturer's software version

Jetter AG 93

JVM-104 CANopen® STX API

// Send data per PDO
CanOpenAddPDOTx(

 CANNo, // Number of the bus line

 CANOPEN_PDO2_TX(NodeID_Node_1), // CANID

 0, // BytePos

 CANOPEN_DWORD, // DataType

 sizeof(Data_1_of_Node_1), // DataLength

 Data_1_of_Node_1, // VarAddr

 Event_Time, // Event time

 Inhibit_Time, // Inhibit time

 CANOPEN_ASYNCPDORTRONLY); // Paramset

CanOpenAddPDOTx(

 CANNo, // Number of the bus line

 CANOPEN_PDO2_TX(NodeID_Node_1), // CANID

 4, // BytePos

 CANOPEN_DWORD, // DataType

 sizeof(Data_2_of_Node_1), // DataLength

 Data_2_of_Node_1, // VarAddr

 Event_Time, // Event time

 Inhibit_Time, // Inhibit time

 CANOPEN_ASYNCPDORTRONLY); // Paramset

CanOpenAddPDOTx(

 CANNo, // Number of the bus line

 CANOPEN_PDO3_TX(NodeID_Node_2), // CANID

 0, // BytePos

 CANOPEN_BYTE, // DataType

 sizeof(Data_1_of_Node_2), // DataLength

 Data_1_of_Node_2, // VarAddr

 Event_Time, // Event time

 Inhibit_Time, // Inhibit time

 CANOPEN_ASYNCPDO | CANOPEN_NORTR); // Paramset

// All nodes on the CAN bus are in PREOPERATIONAL state

// Setting all nodes on the CAN bus to OPERATIONAL state
CanOpenSetCommand(CANNo, CAN_CMD_NMT_Value(CAN_CMD_NMT_ALLNODES,
CAN_CMD_NMT), CAN_NMT_START);

// As of now, PDO telegrams will be transmitted from the devices with
node ID 74
// and 112.
// ...

End_Task;

94 Jetter AG

6 CANopen® STX API

Heartbeat monitoring

The heartbeat protocol is for monitoring the activity of communication
partners. If the inactivity exceeds the set interval (Heartbeat consumer time),
the status is set to offline.
The application program lets you define heartbeat functions, such as

 Displaying information to the user
 Rebooting the device
 Ignoring process data

Heartbeat monitoring is available only for specific devices and its availability
depends on the OS version.

Device OS version

FMC-01 1.18.1.00 or higher

JVM-C02 4.00.0.00 or higher

JCM-350 1.09.0.215 or higher

JCM-620 JVER bersion 3.2.2.645 and JetVM version 3.04.0.00
or higher

Heartbeat monitoring uses the following registers:

Register Description Data type Attributes

40x001 Own heartbeat status of the device;
Value range:
0 = Bootup
4 = Stopped
5 = Operational
127 = Preoperational
255 = Offline (default value)

Int ro (read
only)

40x100 The heartbeat status of all monitored
node IDs has changed. Value range:
0 = False
1 = True

Bool rw (read
and write)

40x101 ...
40x227

Heartbeat status of nodes with ID 1 ...
127; value range:
0 = Bootup
4 = Stopped
5 = Operational
127 = Preoperational
255 = Offline (default value)

Byte ro

40x229 ...
40x355

Heartbeat timeout of nodes with ID 1 ...
127; value range:
0 ... 65535 [ms]

Word rw

Introduction

Prerequisites

Registers for heartbeat
monitoring

Jetter AG 95

JVM-104 CANopen® STX API

In the register number, the letter x represents the number of the CAN bus line
used: x = 0 ... CANMAX.

To launch heartbeat monitoring, proceed as follows:

Step Action

1 Enable heartbeat monitoring:
Enter the timeout value into the corresponding register. This value
must range between 1 and 65535 [ms]. Example:
For CAN 0 and node ID 1: Enter a timeout value of 3000 [ms] into
register 400229.

2 Define in your application program how the device is to respond to
individual values in the heartbeat status register.
When the state in register 40x101 ... 40x227 changes, the value in
register 40x100 changes to 1 (true).

3 Reset the value in register 40x100 to zero (false).
This step ensures that subsequent changes in register 40x101 ...
40x227 can be displayed.

Heartbeat monitoring starts on receipt of the first heartbeat (including bootup
message). The DLC (Data Length Code) of the heartbeat message must be 1.

To terminate heartbeat monitoring, proceed as follows:

Step Action

1 Disable heartbeat monitoring:
Enter a timeout value of 0 [ms] into the timeout register.

When a heartbeat timeout is detected, an emergency message is sent
automatically.
On receipt of the next heartbeat message, the emergency message is reset.

Example:
The following emergency message is tripped:

Reference Value

Error code 0x8130

Error Register 0x81

Manufacturer error 0x00,NodeID,0x00,0x00,0x00

The message on the CAN bus looks as shown below:

 Own NodeID 5
 Monitored NodeID 1
 ID: 0x85 DLC = 8 Data: 0x30 0x81 0x81 0x00 0x01 0x00 0x00 0x00

Launching heartbeat
monitoring

Terminating heartbeat
monitoring

Emergency message

96 Jetter AG

6 CANopen® STX API

The declaration of the emergency message Rx consists of the following
elements:

CanOpenAddEmergencyRx(

 CANNo:Int, // Number of the bus line

 NodeID:Int, // Node ID

 // Status, number of valid messages
 ref stCanOpenEmergencyStat:CanOpenEmergencyStat,

 // Array holding the emergency messages
 ref CanOpenEmergencyMSG:CanOpenEmergencyArray,

):int

Example:
The above program lines must be included into the corresponding tasks of
your application program. The example below shows an emergency message
from a device with node ID 21.

...

// Initializing the CAN bus once.

...

// Defining global variables
Var

 stCanOpenEmergencyMsg : ARRAY[5] of CanOpenEmergencyMsg;

 stCanOpenEmergencyStat : CanOpenEmergencyStat;

End_Var;

stCanOpenEmergencyStat.lBuffer := sizeof(stCanOpenEmergencyMsg);

iRet:= CanOpenAddEmergencyRx(0, // CANNo.

 21, // NodeID

 stCanOpenEmergencyStat, // Status

 stCanOpenEmergencyMsg); // Array

...

The above program lines produce the following result:
When the device with node ID 21 receives an emergency message, the value
in register 400100 switches from 0 to 1 (true).
Reset this value always to 0 (false). In doing so, you make sure that new
emergency messages are displayed.

Emergency message Rx

Jetter AG 97

JVM-104 CANopen® STX API

The declaration of the emergency message Tx consists of the following
elements:

CanOpenAddEmergencyTx(

 // Number of the bus line
 CANNo:int,

 // For error code see CiA DS 301 V4.02 page 60
 // or CiA DS 4xx (device profile)
 ErrorCode:word,

 // Error register (object 0x1001)
 ErrorRegister:byte,

 // 5 bytes can be used at the user's discretion
 ManufacturerArray:ByteArray5,

 // True = An error has occurred
 // False = Error has been cleared (acknowledged)
 bSet:bool

):Int;

Emergency message Tx

98 Jetter AG

6 CANopen® STX API

CANopen® object dictionary for JVM-104

The operating system of JVM-104 supports the following objects:

Index
(hex)

Object
(code)

Object name Type Attribute
s

1000 VAR Device type Unsigned32 ro (read
only)

1001 VAR Error register Unsigned8 ro

1002 VAR Manufacturer status Unsigned32 ro

1003 ARRAY Pre-defined error field Unsigned32 ro

1008 VAR Manufacturer device name String const

1009 VAR Manufacturer hardware version String const

100A VAR Manufacturer software version String const

100B VAR Node ID Unsigned32 ro

1017 VAR Producer heartbeat time Unsigned16 rw (read &
write)

1018 RECORD Identity Identity ro

1200 RECORD Server 1 - SDO parameter SDO
parameter

ro

1201 RECORD Server 2 - SDO parameter SDO
parameter

rw

1203 RECORD Server 3 - SDO parameter SDO
parameter

rw

1203 RECORD Server 4 - SDO parameter SDO
parameter

rw

The structure of the Device Type object is shown in the following table.

Index Subindex Default Description

0x1000 0 0x0000012D Device type (read-only)

Supported objects

Device Type object
(index 0x1000)

Jetter AG 99

JVM-104 CANopen® STX API

The function CanOpenAddEmergencyTx() lets you set the bits in this
register.
The structure of the Error Register object is shown in the following table.

Index Subindex Default Description

0x1001 0 0 Error register (read-only)

This object implements the CANopen® error register functionality.
The following error messages may appear:

 Bit 0 = Generic error
 Bit 1 = Current error
 Bit 2 = Voltage error
 Bit 3 = Temperature error
 Bit 4 = Communication error (overrun, error state)
 Bit 5 = Specific device profile error
 Bit 6 = Reserved (always 0)
 Bit 7 = Manufacturer-specific error

The structure of the Pre-defined Error Field object is shown in the following
table.

Index Subindex Default Description

0x1003 0 0 Number of errors entered in the array's
standard error field

 1 0 Most recent error
0 indicates no error

 2 ... 254 - Earlier errors

This object shows a history list of errors that have been detected by the
JVM-104. The maximum length of the list is 254 errors. The list content is
deleted on restart.

Composition of standard error field
2-byte LSB: Error code
2-byte MSB: Additional information

The structure of the Manufacturer Device Name object is shown in the
following table.

Index Subindex Default Description

0x1008 0 JVM-104 Hardware name

Error Register object
(index 0x1001)

Pre-defined Error Field
object (index 0x1003)

Manufacturer Device
Name object (index
0x1008)

100 Jetter AG

6 CANopen® STX API

The structure of the Manufacturer Hardware Version object is shown in the
following table.

Index Subindex Default Description

0x1009 0 OS version of the device

The structure of the Manufacturer Software Version object is shown in the
following table.

Index Subindex Default Description

0x100A 0 Software version of the application
program that runs on the JVM-104

The entry in this index is made via the parameter SWVersion of the STX
function CanOpenInit().

The structure of the Node ID object is shown in the following table.

Index Subindex Default Description

0x100B 0 Node ID of the given device

The structure of the Producer Heartbeat Time object is shown in the
following table.

Index Subindex Default Description

0x1017 0 1,000 [ms] Heartbeat time

The table below lists the JVM-104 registers associated with the CANopen®
Object Dictionary.
The letter x in the register number represents the CAN bus number ranging
from 0 ... CANMAX.

Register
number

Description Value range Attributes Data type

40x000 Own node ID 1 ... 127 rw (read &
write)

Int

40x001 Own heartbeat
status

0 = Bootup
4 = Stopped
5 = Operational
127 =
Preoperational
255 = Offline

ro (read
only)

Int

40x002 Refer to object
0x1001

ro Int

40x019 ro Int (IP
format)

Manufacturer Hardware
Version object (index
0x1009)

Manufacturer Software
Version object (index
0x100A)

Node ID object (index
0x100B)

Producer Heartbeat Time
object (index 0x1017)

CANopen® registers -
JVM-104

Jetter AG 101

JVM-104 CANopen® STX API

Register
number

Description Value range Attributes Data type

40x020 rw Int

40x021 rw Int

40x022 rw Int

40x023 rw Int

40x030 rw Int

40x100 rw bool

40x400 rw bool

40x101 ...
40x227

Node ID 1 ... 127
Status

0 = Bootup
4 = Stopped
5 = Operational
127 =
Preoperational
255 = Offline
(default)

ro byte

40x229 ...
40x355

Node ID 1 ... 127
timeout

0 ... 65535 ms rw word

Jetter AG 103

JVM-104 SAE J1939 STX API

7 SAE J1939 STX API

This chapter describes the STX functions of the SAE J1939 STX API.

SAE J1939 is an open standard for networking and communication in the
commercial vehicle sector. The focal point of the application is the networking
of the power train and chassis. The J1939 protocol originates from the
international Society of Automotive Engineers (SAE) and works on the
physical layer with CAN high-speed according to ISO 11898.

These STX functions are used in communication between the controller
JVM-104 and other ECUs in the vehicle. As a rule, engine data, such as RPM,
speed or coolant temperature are read and displayed.

The key SAE J1939 specifications are:

 J1939-11 - Information on the physical layer
 J1939-21 - Information on the data link layer
 J1939-71 - Information on the application layer vehicles
 J1939-73 - Information on the application layer range analysis
 J1939-81 - Network management

Topic Page
Content of a J1939 message .. 104
STX Function SAEJ1939Init() ... 106
STX function SAEJ1939SetSA() .. 107
STX function SAEJ1939GetSA() .. 108
STX function SAEJ1939AddRx() .. 109
STX function SAEJ1939AddTx() ... 112
STX function SAEJ1939RequestPGN() .. 115
STX function SAEJ1939GetDM1() .. 118
STX function SAEJ1939GetDM2() ... 121
STX function SAEJ1939SetSPNConversion() ... 124
STX Function SAEJ1939GetSPNConversion() .. 125

Introduction

The SAE J1939 Standard

Application

Documentation

Contents

104 Jetter AG

7 SAE J1939 STX API

Content of a J1939 message

The following diagram shows the structure of a J1939 message:

Abbreviation Description

DA Destination Address

GE Group Extensions

PDU Protocol Data Unit

PGN Parameter Group Number

SA Source Address

The PGN is a number defined in the SAE J1939 standard that groups together
several SPNs into a meaningful group. The PGN is part of the CAN identifier.
The 8-byte data (PDU) contain the values of individual SPNs.
The example below shows a PGN 65262 (0xFEEE):

PGN 65262 Engine Temperature 1
- ET1

Part of the PGN Value Comment

Transmission Repetition Rate 1 s

Data Length 8

Extended Data Page 0

Data Page 0

PDU Format 254

PDU Specific 238 PGN supporting information

Default Priority 6

Parameter Group Number 65262 in hex: 0xFEEE

Content of a J1939
message

Meaning of the
Parameter Group
Number (PGN)

Jetter AG 105

JVM-104 SAE J1939 STX API

Start position Length Parameter name SPN

1 1 byte Engine Coolant Temperature 110

2 1 byte Engine Fuel Temperature 1 174

3 - 4 2 bytes Engine Oil Temperature 1 175

5 - 6 2 bytes Engine Turbocharger Oil Temperature 176

7 1 byte Engine Intercooler Temperature 52

8 1 byte Engine Intercooler Thermostat Opening 1134

106 Jetter AG

7 SAE J1939 STX API

STX Function SAEJ1939Init()

Calling up the SAEJ1939Init() function initializes one of the CAN busses
(not CAN 0 as this is reserved for CANopen®) for use with the J1939 protocol.
From then on, the JVM-104 has got the SA (Source Address) assigned by the
function parameter mySA. Thus, it has got its own device address on the bus.

Function SAEJ1939Init(

 CANNo:Int,

 mySA:Byte,

) :Int;

The SAEJ1939Init() function comprises the following parameters:

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

mySA Own source address 0 ... 253

This function transfers the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters

-3 Insufficient memory for SAE J1939

This parameter specifies the number of the SAEJ1939 interface. CANNo = 1
is assigned to the first interface. The number of SAEJ1939 interfaces depends
on the device. For information on the maximum number of SAEJ1939
interfaces (CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

Initializing CAN bus 1. The JVM-104 has got Node SA 20 (0x14). The
JVM-104 can now send messages with the set SA (and only these
messages).

Result := SAEJ1939Init(1, 20);

Address Claiming has not been implemented.

Introduction

Function declaration

Function parameters

Return value

CANNo parameter

How to use this function

Address Claiming

Jetter AG 107

JVM-104 SAE J1939 STX API

STX function SAEJ1939SetSA()

The function SAEJ1939SetSA() lets you change the own SA (Source
Address) during runtime.

Function SAEJ1939SetSA(

 CANNo:Int,

 mySA:Byte,

) :Int;

The function SAEJ1939SetSA() comprises the following parameters:

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

mySA New SA 0 ... 253

This function transfers the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters

This parameter specifies the number of the SAEJ1939 interface. CANNo = 1
is assigned to the first interface. The number of SAEJ1939 interfaces depends
on the device. For information on the maximum number of SAEJ1939
interfaces (CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

Changing the SA during runtime.

Result := SAEJ1939SetSA(1, 20);

Messages are immediately sent/received using the new SA.

Introduction

Function declaration

Function parameters

Return value

CANNo parameter

How to use this function

Important note!

108 Jetter AG

7 SAE J1939 STX API

STX function SAEJ1939GetSA()

The function SAEJ1939GetSA() lets you determine your own SA (Source
Address).

Function SAEJ1939GetSA(

 CANNo:Int,

 ref mySA:Byte,

) :Int;

The function SAEJ1939GetSA() comprises the following parameters:

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

mySA SA currently set 0 ... 253

This function transfers the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters

This parameter specifies the number of the SAEJ1939 interface. CANNo = 1
is assigned to the first interface. The number of SAEJ1939 interfaces depends
on the device. For information on the maximum number of SAEJ1939
interfaces (CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

This function returns the currently set SA.

Result := SAEJ1939SetSA(1, actual_SA);

Introduction

Function declaration

Function parameters

Return value

CANNo parameter

How to use this function

Jetter AG 109

JVM-104 SAE J1939 STX API

STX function SAEJ1939AddRx()

Calling up the function SAEJ1939AddRx() prompts the JVM-104 to receive a
specific message. This message is sent from another bus node. The address
of this bus node is transferred to this function as a bySA parameter. If the
message is not sent, the value received last remains valid. Cyclical reading
continues until the function SAEJ1939Init() is called up again.

Function SAEJ1939AddRx(

 CANNo:Int,

 IPGN:Long,

 bySA:Byte,

 BytePos:Int,

 BitPos:Int,

 DataType:Int,

 DataLength:Int,

 const ref VarAddr,

 ref stJ1939:TJ1939Rx

 EventTime: Int,

 InhibitTime: Int,

) :Int;

The function SAEJ1939AddRx() comprises the following parameters:

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

IPGN PGN
Parameter Group Number

0 ... 0x3FFFF

bySA Source Address of message
sender

0 ... 253

BytePos Starting position of bytes of data
to be received

1 ... n

BitPos Starting position of bits of data to
be received

1 ... 8

DataType Data type of data to be received 1 ... 3, 10 ... 16

DataLength Volume of data for the global
variable VarAddr

VarAddr Global variable into which the
received value is entered

TJ1939Rx Control structure

EventTime Time lag between two telegrams
(> InhibitTime)

Default value: 1,000 ms

InhibitTime Minimum time lag between two
telegrams received
(< EventTime)

Default value: 100 ms

Introduction

Function declaration

Function parameters

110 Jetter AG

7 SAE J1939 STX API

This function transfers the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters

This parameter specifies the number of the SAEJ1939 interface. CANNo = 1
is assigned to the first interface. The number of SAEJ1939 interfaces depends
on the device. For information on the maximum number of SAEJ1939
interfaces (CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

All allowed data types are listed below:

Byte types Bit types

1 - SAEJ1939_UNSIGNED8
SAEJ1939_BYTE

2 - SAEJ1939_UNSIGNED16
SAEJ1939_WORD

4 - SAEJ1939_UNSIGNED32
SAEJ1939_DWORD

n - SAEJ1939_STRING

- 1 SAEJ1939_1BIT

- 2 SAEJ1939_2BIT

- 3 SAEJ1939_3BIT

- 4 SAEJ1939_4BIT

- 5 SAEJ1939_5BIT

- 6 SAEJ1939_6BIT

- 7 SAEJ1939_7BIT

TJ1939Rx: Struct

// Status of received message
 byStatus : Byte;

// Priority of received message
 byPriority : Byte;

 End_Struct;

Return value

CANNo parameter

DataType parameter

Control structure
TJ1939Rx

Jetter AG 111

JVM-104 SAE J1939 STX API

Result := SAEJ1939AddRx (

 1,

 0xFEEE,

 0x00,

 2

 0

 SAEJ1939_BYTE,

 sizeof(var_Fueltemp),

 var_Fueltemp,

 struct_TJ1939Rx_EngineTemperatureTbl,

 1500,

 120);

The device JVM-104 with the own SA of 20 wants to receive and display the
current fuel temperature. The parameters InhibitTime and EventTime are not
explicitly specified when calling up the function. In this case, the default values
are used. The controller for capturing the fuel temperature has got SA 0. In
practice, the address of the controller can be found in the engine
manufacturer's documentation.
The fuel temperature has the SPN 174 and is a component (byte 2) of the
PGN 65262 Engine Temperature 1.

#Include "SAEJ1939.stxp"

Var

 bySAEJ1939Channel : Byte;

 own_Source_Address : Byte;

// PGN 65262 Engine Temperature 1
 Fueltemp : Byte;

 EngineTemperatureTbl : TJ1939Rx;

End_Var;

Task main autorun

// Initializing CAN 1
bySAEJ1939Channel := 1;

own_Source_Address := 20;

SAEJ1939Init (bySAEJ1939Channel, own_Source_Address);

// Receiving the fuel temperature value
SAEJ1939AddRx (bySAEJ1939Channel, 65262, 0x00, 2, 1, SAEJ1939_BYTE,
sizeof(Fueltemp), Fueltemp, EngineTemperatureTbl);

End_Task;

For information on the data (priority, PGN, SA and data byte structure) refer to
the manual provided by the engine manufacturer.

How to use this function

JetSym STX program

Engine manufacturer's
manual

112 Jetter AG

7 SAE J1939 STX API

STX function SAEJ1939AddTx()

Calling up the function SAEJ1939AddTx() prompts the JVM-104 to cyclically
send a specific message via the bus.
Cyclical sending continues until the function SAEJ1939Init() is called up
again.
Date are sent once the event time has elapsed or the given variables have
changed and inhibit time has elapsed.

Function SAEJ1939AddTx(

 CANNo:Int,

 IPGN:Long,

 BytePos:Int,

 BitPos:Int,

 dataType:Int,

 DataLength:Int,

 const ref VarAddr,

 ref stJ1939:TJ1939Tx

 EventTime: Int,

 InhibitTime: Int,

) :Int;

The function SAEJ1939AddTx() comprises the following parameters:

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

IPGN PGN
Parameter Group Number

0 ... 0x3FFFF

BytePos Starting position of the byte of
data to be sent

1 ... n

BitPos Starting position of the bit of data
to be sent

1 ... 8

dataType Data type of data to be sent 1 ... 3, 10 ... 16

DataLength Volume of data for the global
variable VarAddr

VarAddr Global variable into which the
value to be sent is entered

TJ1939Tx Control structure

EventTime Time lag between two telegrams
(> InhibitTime)

Default value: 1,000 ms

InhibitTime Minimum time lag between two
telegrams received
(< EventTime)

Default value: 100 ms

Introduction

Function declaration

Function parameters

Jetter AG 113

JVM-104 SAE J1939 STX API

This function transfers the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters

This parameter specifies the number of the SAEJ1939 interface. CANNo = 1
is assigned to the first interface. The number of SAEJ1939 interfaces depends
on the device. For information on the maximum number of SAEJ1939
interfaces (CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

All allowed data types are listed below:

Byte types Bit types

1 - SAEJ1939_UNSIGNED8
SAEJ1939_BYTE

2 - SAEJ1939_UNSIGNED16
SAEJ1939_WORD

4 - SAEJ1939_UNSIGNED32
SAEJ1939_DWORD

n - SAEJ1939_STRING

- 1 SAEJ1939_1BIT

- 2 SAEJ1939_2BIT

- 3 SAEJ1939_3BIT

- 4 SAEJ1939_4BIT

- 5 SAEJ1939_5BIT

- 6 SAEJ1939_6BIT

- 7 SAEJ1939_7BIT

TJ1939Tx : Struct

// Status of sent message
 byStatus : Byte;

// Priority of sent message
 byPriority : Byte;

 End_Struct;

Result := SAEJ1939AddTx (

 1,

 0xFEEE,

 0x00,

 2

 0

 SAEJ1939_BYTE,

 sizeof(var_Fueltemp),

Return value

CANNo parameter

DataType parameter

Control Structure
TJ1939Tx

How to use this function

114 Jetter AG

7 SAE J1939 STX API

 var_Fueltemp,

 struct_TJ1939Tx_EngineTemperatureTbl,

 1500,

 120);

Redefining the priority.
Priority value 0 has the highest priority, priority value 7 has the lowest priority.
A message with priority 6 can be superseded by a message with priority 4 (if
the messages are sent at the same time). The parameters InhibitTime and
EventTime are not explicitly specified when calling up the function. In this
case, the default values are used.

#Include "SAEJ1939.stxp"

Var

 bySAEJ1939Channel : Byte;

 own_Source_Address : Byte;

// PGN 65262 Engine Temperature 1
 Fueltemp : Byte;

 EngineTemperatureTbl : TJ1939Tx;

End_Var;

Task main autorun

// Initializing CAN 1
bySAEJ1939Channel := 1;

own_Source_Address := 20;

SAEJ1939Init (bySAEJ1939Channel, own_Source_Address);

// PGN 65262 Engine Temperature
// Setting a new priority
EngineTemperatureTbl.byPriority := 6;

SAEJ1939AddTx (bySAEJ1939Channel, 65262, 0x00, 2, 1, SAEJ1939_BYTE,
sizeof(Fueltemp), Fueltemp, EngineTemperatureTbl);

End_Task;

For information on the data (priority, PGN, SA and data byte structure) refer to
the manual provided by the engine manufacturer.

JetSym STX program

Engine manufacturer's
manual

Jetter AG 115

JVM-104 SAE J1939 STX API

STX function SAEJ1939RequestPGN()

Calling up the function SAEJ1939RequestPGN() sends a request to the DA
(Destination Address) following a PGN.
This function is terminated only if a valid value has been received or the
timeout of 1,250 ms has elapsed.
To obtain the value of the requested message its receipt must be scheduled
using the function SAEJ1939AddRx ().
This function must constantly be recalled in cycles.

Function SAEJ1939RequestPGN(

 CANNo:Int,

 byDA:Byte,

 ulPGN:Long,

 byPriority:Byte,

) :Int;

The function SAEJ1939RequestPGN() comprises the following parameters:

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

byDA Destination Address
Address from which the message
is requested

0 ... 253
The own SA cannot be
used

uIPGN PGN
Parameter Group Number

0 ... 0x3FFFF

byPriority Priority 0 ... 7
Default value 6

This function transfers the following return values to the higher-level program.

Return value

0 Message has been received

-1 Timeout, as no reply has been received

This parameter specifies the number of the SAEJ1939 interface. CANNo = 1
is assigned to the first interface. The number of SAEJ1939 interfaces depends
on the device. For information on the maximum number of SAEJ1939
interfaces (CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

Introduction

Function declaration

Function parameters

Return value

CANNo parameter

116 Jetter AG

7 SAE J1939 STX API

All allowed data types are listed below:

Byte types Bit types

1 - SAEJ1939_UNSIGNED8
SAEJ1939_BYTE

2 - SAEJ1939_UNSIGNED16
SAEJ1939_WORD

4 - SAEJ1939_UNSIGNED32
SAEJ1939_DWORD

n - SAEJ1939_STRING

- 1 SAEJ1939_1BIT

- 2 SAEJ1939_2BIT

- 3 SAEJ1939_3BIT

- 4 SAEJ1939_4BIT

- 5 SAEJ1939_5BIT

- 6 SAEJ1939_6BIT

- 7 SAEJ1939_7BIT

Result := SAEJ1939RequestPGN (

 1,

 0x00,

 0xFEE5,

 5);

JVM-104 with own SA of 20 wants to request the PGN 65253 Engine Hours
from an engine control unit with the SA 0. The SPN 247 Engine Total Hours of
Operation should be read from this PGN. It is therefore necessary to register
receipt of the SPN 247 by calling up the function SAEJ1939AddRx().
The parameter byPriority is not explicitly specified when calling up the
function. In this case, the default value is used.

#Include "SAEJ1939.stxp"

Var

 bySAEJ1939Channel : Byte;

 own_Source_Address : Byte;

// PGN 65253 Engine Hours, Revolutions
 EngineTotalHours : Int;

 EngineHoursTbl : TJ1939Rx;

End_Var;

DataType parameter

How to use this function

JetSym STX program

Jetter AG 117

JVM-104 SAE J1939 STX API

Task main autorun

// Initializing CAN 1
bySAEJ1939Channel := 1;

own_Source_Address := 20;

SAEJ1939Init (bySAEJ1939Channel, own_Source_Address);

// Engine Hours, Revolutions -- on Request
SAEJ1939AddRx (bySAEJ1939Channel, 65253, 0x00, 1, 0,
SAEJ1939_DWORD, sizeof(EngineTotalHours), EngineTotalHours,
EngineHoursTbl, 5000, 150);

// Required for a cyclical task
TaskAllEnableCycle ();

EnableEvents;

End_Task;

Task t_RequestPGN_5000 cycle 5000

Var

 Return_value : Int;

End_Var;

// Requesting total machine operating hours
Return_value := SAEJ1939RequestPGN (bySAEJ1939Channel, 0x00,
65253);

If Return_value Then

 Trace ('PGN Request failed');

End_If;

End_Task;

118 Jetter AG

7 SAE J1939 STX API

STX function SAEJ1939GetDM1()

Calling up the function SAEJ1939GetDM1() requests the current diagnostics
error codes (also see SAE J1939-73 No. 5.7.1). The corresponding PGN
number is 65226. This function must constantly be recalled in cycles.

Function SAEJ1939GetDM1(

 CANNo:Int,

 bySA:Byte,

 ref stJ1939DM1stat:TJ1939DM1STAT

 ref stJ1939DM1msg:TJ1939DM1MSG

) :Int;

The function SAEJ1939GetDM1() comprises the following parameters:

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

bySA Source Address of message
sender

0 ... 253
The own SA cannot be
used

stJ1939DM1stat lStatus
lMsgCnt

lBuffer

Lamp status
Number of received
messages
Size of variable
stJ1939DM1msg

stJ1939DM1msg lSPN
byOC
byFMI

Error code
Error counter
Error type

This function transfers the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters

This parameter specifies the number of the SAEJ1939 interface. CANNo = 1
is assigned to the first interface. The number of SAEJ1939 interfaces depends
on the device. For information on the maximum number of SAEJ1939
interfaces (CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

Introduction

Function declaration

Function parameters

Return value

CANNo parameter

Jetter AG 119

JVM-104 SAE J1939 STX API

Default: 0xFF00

Type Byte Bit group Description

Status 1 8 - 7 Malfunction Indicator Lamp Status

 6 - 5 Red Stop Lamp Status

 4 - 3 Amber Warning Lamp Status

 2 - 1 Protect Lamp Status

Flash 2 8 - 7 Flash Malfunction Indicator Lamp

 6 - 5 Flash Red Stop Lamp

 4 - 3 Flash Amber Warning Lamp

 2 - 1 Flash Protect Lamp

Type Byte Bit group
Value

Description

Status 1 00 Lamps off

 01 Lamps on

Flash 2 00 Slow Flash (1 Hz, 50 % duty cycle)

 01 Fast Flash (2 Hz or faster, 50 % duty cycle)

 10 Reserved

 11 Unavailable / Do Not Flash

Default value:
ISPN = 0
byOC = 0
byFMI = 0
For older controllers (grandfathered setting):
ISPN = 524287 (0x7FFFF)
byOC = 31 (0x1F)
byFMI = 127 (0x7F)

Result := SAEJ1939GetDM1(

 1,

 0x00,

 stdm1stat_pow,

 stdm1msg_pow,);

stJ1939DM1stat.lStatus

stJ1939DM1msg

How to use this function

120 Jetter AG

7 SAE J1939 STX API

By calling up the function SAEJ1939GetDM1(), the JVM-104 requests the
current diagnostics error code (PGN 65226).

#Include "SAEJ1939.stxp"

Var

 bySAEJ1939Channel : Byte;

 own_Source_Address : Byte;

 stdm1stat_pow : TJ1939DM1STAT;

 stdm1msg_pow : Array[10] of STJ1939DM1MSG;

 MyTimer : TTimer;

End_Var;

Task main autorun

// Initializing CAN 1
bySAEJ1939Channel := 1;

own_Source_Address := 20;

SAEJ1939Init (bySAEJ1939Channel, own_Source_Address);

TimerStart (MyTimer, T#2s);

Loop

When (TimerEnd (MyTimer)) Continue;

// Requesting diagnostics error codes DM1 POW
stdm1stat_pow.lBuffer := sizeof (stdm1msg_pow);

SAEJ1939GetDM1 (bySAEJ1939Channel, 0x00, stdm1stat_pow,
stdm1msg_pow);

TimerStart (MyTimer, T#2s);

End_Loop;

End_Task;

JetSym STX program

Jetter AG 121

JVM-104 SAE J1939 STX API

STX function SAEJ1939GetDM2()

Calling up the function SAEJ1939GetDM2() requests the diagnostics error
codes that preceded the current ones (also see SAE J1939-73 No. 5.7.2). The
corresponding PGN number is 65227.

Function SAEJ1939GetDM2(

 CANNo:Int,

 bySA:Byte,

 ref stJ1939DM2stat:TJ1939DM2STAT

 ref stJ1939DM2msg:TJ1939DM2MSG

) :Int;

The function SAEJ1939GetDM2() comprises the following parameters:

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

bySA Source Address of message
sender

0 ... 253
The own SA cannot be
used

stJ1939DM2stat lStatus
lMsgCnt

lBuffer

Lamp status
Number of received
messages
Size of variable
stJ1939DM2msg

stJ1939DM2msg lSPN
byOC
byFMI

Error code
Error counter
Error type

This function transfers the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters

This parameter specifies the number of the SAEJ1939 interface. CANNo = 1
is assigned to the first interface. The number of SAEJ1939 interfaces depends
on the device. For information on the maximum number of SAEJ1939
interfaces (CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

Introduction

Function declaration

Function parameters

Return value

CANNo parameter

122 Jetter AG

7 SAE J1939 STX API

Default: 0xFF00

Type Byte Bit group Description

Status 1 8 - 7 Malfunction Indicator Lamp Status

 6 - 5 Red Stop Lamp Status

 4 - 3 Amber Warning Lamp Status

 2 - 1 Protect Lamp Status

Flash 2 8 - 7 Flash Malfunction Indicator Lamp

 6 - 5 Flash Red Stop Lamp

 4 - 3 Flash Amber Warning Lamp

 2 - 1 Flash Protect Lamp

Type Byte Bit group
Value

Description

Status 1 00 Lamps off

 01 Lamps on

Flash 2 00 Slow Flash (1 Hz, 50 % duty cycle)

 01 Fast Flash (2 Hz or faster, 50 % duty cycle)

 10 Reserved

 11 Unavailable / Do Not Flash

Default value:
ISPN = 0
byOC = 0
byFMI = 0
For older controllers (grandfathered setting):
ISPN = 524287 (0x7FFFF)
byOC = 31 (0x1F)
byFMI = 127 (0x7F)

Result := SAEJ1939GetDM2(

 1,

 0x00,

 stdm2stat_pow,

 stdm2msg_pow,);

stJ1939DM2stat.lStatus

stJ1939DM2msg

How to use this function

Jetter AG 123

JVM-104 SAE J1939 STX API

By calling up the function SAEJ1939GetDM2(), the JVM-104 requests the
current diagnostics error codes (PGN 65227).

#Include "SAEJ1939.stxp"

Var

 bySAEJ1939Channel : Byte;

 own_Source_Address : Byte;

 stdm2stat_pow : TJ1939DM2STAT;

 stdm2msg_pow : Array[10] of STJ1939DM2MSG;

End_Var;

Task main autorun

// Initializing CAN 1
bySAEJ1939Channel := 1;

own_Source_Address := 20;

SAEJ1939Init (bySAEJ1939Channel, own_Source_Address);

// Required for a cyclical task
TaskAllEnableCycle ();

EnableEvents;

End_Task;

Task t_RequestPGN_5000 cycle 5000

Var

 Int;

End_Var;

// Requesting diagnostics error codes DM2 POW
stdm2stat_pow.lBuffer := sizeof (stdm2msg_pow);

Return_value := SAEJ1939GetDM2 (bySAEJ1939Channel, 0x00,
stdm2stat_pow, stdm2msg_pow);

If Return_value Then

 Trace ('DM2 Request failed');

End_If;

End_Task;

JetSym STX program

124 Jetter AG

7 SAE J1939 STX API

STX function SAEJ1939SetSPNConversion()

Calling up the function SAEJ1939SetSPNConversion() determines the
configuration of bytes in the message, which is requested using function
SAEJ1939GetDM1() or SAEJ1939GetDM2(). In other words, this function
lets you specify the conversion method.

Function SAEJ1939SetSPNConversion(

 CANNo:Int,

 bySA:Byte,

 iConversionMethod:Int,

) :Int;

The function SAEJ1939SetSPNConversion() comprises the following
parameters:

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

bySA Source Address of message
sender

0 ... 253

iConversionMethod Conversion method 1 ... 4
4: Automatic detection
2: Default

This function transfers the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters

This parameter specifies the number of the SAEJ1939 interface. CANNo = 1
is assigned to the first interface. The number of SAEJ1939 interfaces depends
on the device. For information on the maximum number of SAEJ1939
interfaces (CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

Result := SAEJ1939SetSPNConversion(

 1,

 0xAE,

 4);

Introduction

Function declaration

Function parameters

Return value

CANNo parameter

How to use this function

Jetter AG 125

JVM-104 SAE J1939 STX API

STX Function SAEJ1939GetSPNConversion()

Calling up the function SAEJ1939GetSPNConversion() ascertains the
currently set conversion method.

Function SAEJ1939SetSPNConversion(

 CANNo:Int,

 bySA:Byte,

 iConversionMethod:Int,

) :Int;

The function SAEJ1939GetSPNConversion() comprises the following
parameters:

Parameter Description Value

CANNo CAN channel number 1 ... CANMAX

bySA Source address of message
sender

0 ... 253

iConversionMethod Conversion method 1 ... 4
4: Automatic detection
2: Default

This function transfers the following return values to the higher-level program.

Return value

0 OK

-1 Error when checking parameters

This parameter specifies the number of the SAEJ1939 interface. CANNo = 1
is assigned to the first interface. The number of SAEJ1939 interfaces depends
on the device. For information on the maximum number of SAEJ1939
interfaces (CANMAX) refer to the chapters Technical Specifications and Quick
Reference in the corresponding manual.

Result := SAEJ1939GetSPNConversion(

 1,

 0xAE,

 actual_conversion_method);

Introduction

Function declaration

Function parameters

Return value

CANNo parameter

How to use this function

Jetter AG 127

JVM-104 File system

8 File system

This chapter describes the file system of the JVM-104. The file system lets
you access files located on the internal flash disk.
When problems occur, a good understanding of the file system is very helpful.

Exercise extreme caution when dealing with the file system, at least with
system files. Failure to do so may render your device inoperative. It may even
refuse to boot.
Some files may be protected against read/write access or deletion. This is
normal behavior. Some of these files are virtual files, such as firmware
images, or protected files, such as EDS files.

The files of the file system are categorized as follows:

 System directories or system files used by the operating system
 Files which are at the user's disposal

Topic Page
Directories ... 128
Properties ... 132

Introduction

Note

File categories

Contents

128 Jetter AG

8 File system

8.1 Directories

The system directories cannot be deleted. System directories even survive
formatting.

Directory Description

\System System configuration
 System information
 Splash screen (boot image)
 Screenshot

\App Directory for applications

\Data Directory for data

\Windows Windows CE system directory

\ RAM disk drive

Topic Page
Directories ... 129

System directories

Contents

Jetter AG 129

JVM-104 File system

Directories

\App

This directory holds application and visualization data. In this example, the
STX application is stored in the folder jxmioe2test.

The data is based on the new CE platform. This platform does not use *.iop
files. JetViewSoft creates several visualization files instead.

Note:
Copy all application and visualization files to the folder App and not to the
folder Data. Failure to do so will slow down the boot process, see directory
\Data.

start.ini

This text file defines which application will be started.

\App\sys\

This directory holds the interpreter of the STX programming language and of
the visualization software. Do not make any changes here!

autostart.xxx

This application lets you update the operating system. Do not make any
changes here!

Directory \App

130 Jetter AG

8 File system

updatelog.txt

This is a log file which is created during an OS update.

\Data

This directory holds the HMI's bulk data. The HMI lets you store parameter or
configuration files to this directory.

Important Note!
Larger amounts of data can be stored to this data partition. To speed up
system launch, this partition will be mounted a short instance, if needed, after
launching the STX application. Therefore, the STX application must not be
stored to this partition.

\System

This directory holds system-relevant files, such as the kernel, co-processor
firmware, configuration data, EDS, etc.

Directory \Data

Directory \System

Jetter AG 131

JVM-104 File system

bootupscreen.bmp

This file is a 16-bit bmp file (r5, g6, b5) which is displayed while the device is
booting.
You may create an image of your own and replace this file.

co-processor1

This virtual file holds the firmware of a hidden co-processor controlling most of
the interactions with the user (buttons, buzzer, background lighting, etc.).

reset.exe

If you delete this file, the HMI reboots immediately. You can use this function in
batch files, for example, which, after complete processing, require automatic
rebooting.

\Windows

This subdirectory holds the Windows CE files. Do not make any changes
here!

Directory \Windows

132 Jetter AG

8 File system

8.2 Properties

This chapter describes the properties of the file system on the internal flash
disk.

The following conventions apply to the internal flash disk:

 8 files max. to be opened simultaneously
 When the HMI creates a file, it assigns its date and time.
 Date, time, and file size are not available for all system files.

Topic Page
Flash disk - Properties .. 133

Introduction

General properties

Contents

Jetter AG 133

JVM-104 File system

Flash disk - Properties

The following disk space is available to the user:

Parameter Value

Flash disk capacity 512 MBytes

Size of folder App (of the a.m. capacity) 64 MBytes

Size of folder Data (of the a.m. capacity) 368 MBytes

The internal flash disk drive has got the following further properties:

 Up to 7 directory levels and 1 file level are allowed.
 Upper- and lower-case are not distinguished.
 Directory and file names are permitted to have a total length of

63 characters.
 All characters except "/" and ".." are permitted for directory and file names
 The location of the folders App and Data is on the flash disk drive.

Capacity

Properties

Jetter AG 135

JVM-104 Programming

9 Programming

This chapter is for supporting you in programming the HMI JVM-104 in the
following fields of activity:

 Programming additional functions

To be able to program the HMI JVM-104 the following prerequisites must be
fulfilled:

 The HMI is connected to a PC.
 On the PC, the JetSym programming software has been installed.

Topic Page
Abbreviations, module register properties and formats 136
Memories - Overview .. 137
Controls and ignition ... 148
Runtime registers.. 155

Purpose of this chapter

Prerequisites

Contents

136 Jetter AG

9 Programming

Abbreviations, module register properties and formats

The abbreviations used in this document are listed in the table below:

Abbreviation Description

R 100 Register 100

MR 150 Module register 150

Each module register is characterized by certain properties. Most properties
are identical for many module registers - the value after reset is always zero,
for example. In the following description, module register properties are
mentioned only if a property deviates from the following default properties.

Module register properties Default property for most module registers

Access Read/write

Value after reset 0 or undefined (e.g. release number)

Takes effect Immediately

Write access Always

Data type Integer

The numerical formats used in this document are listed in the table below:

Notation Numerical format

100 Decimal

0x100 Hexadecimal

0b100 Binary

The notation for sample programs used in this document is listed in the table
below:

Notation Description
Var, When, Task Keyword
BitClear(); Commands
100 0x100 0b100 Constant numerical values

// This is a comment Comment

// ... Further program processing

Abbreviations

Module register
properties

Numerical formats

JetSym sample
programs

Jetter AG 137

JVM-104 Programming

9.1 Memories - Overview

The JVM-104 features several types of program and data memories. There is,
for example, volatile memory. Volatile memory loses its content at switching
off. Non-volatile memory keeps its content even when the power supply is off.
This chapter gives an overview of the available memory.

Topic Page
Operating system memory ... 138
File system memory ... 139
Application program memory .. 140
Memory for volatile application program variables 141
Memory for non-volatile application program registers 142
Memory for non-volatile application program variables 143
Special registers ... 145
Flags ... 146

Introduction

Contents

138 Jetter AG

9 Programming

Operating system memory

The OS is stored to a non-volatile flash memory in the CPU. Therefore, the
OS can be executed immediately after the device is powered up.

 Internal flash memory for storing OS data
 Internal volatile RAM for storing OS data

 The user is not allowed to directly access the OS memory.
 To modify the OS, it must be updated.

 OS update (see page 162)

Introduction

Properties

Memory access

Related topics

Jetter AG 139

JVM-104 Programming

File system memory

The file system memory is for storing data and program files.

 Non-volatile
 Internal flash disk size: 368 MBytes

 By operating system
 By JetSym
 By means of file commands from within the application program

Introduction

Properties

Memory access

140 Jetter AG

9 Programming

Application program memory

By default, the application program (STX script) is uploaded from JetSym to
the HMI and is stored to it.

 Stored as file within the file system
 Default directory "\app\program name"
 Files may also be stored to other directories

 By operating system
 By JetSym
 By means of file commands from within the application program

 Application program (see page 165)

Introduction

Properties

Memory access

Related topics

Jetter AG 141

JVM-104 Programming

Memory for volatile application program variables

Volatile variables are used to store data which need not be maintained when
the JVM-104 is de-energized.

 Global variables which are not assigned to permanent addresses (not %VL
or %RL)

 Local variables
 Variables are stored in a compact way.
 Variables are initialized with value 0 when they are created.

 By JetSym
 From the application program

The following program increments the content of a global variable by one
every 2 s.

Var

 Count: Int;

End_Var;

Task Inkrement Autorun

 Loop

 Inc(Count);

 Delay(T#2s);

 End_Loop;

End_Task;

The JetSym setup pane displays the content of the variable.

Number Description Function

1 Present content of the
variable

The content of the variable is incremented by
one every two seconds.

Introduction

Properties

Memory access

JetSym STX program

Setup pane

142 Jetter AG

9 Programming

Memory for non-volatile application program registers

Non-volatile registers are used to store data which must be maintained when
the JVM-104 is de-energized.

 Global variables which are assigned to permanent addresses (%VL)
 Register variables always occupy 4 bytes.
 Register variables are not initialized by the operating system.
 Number of register variables: 30,000
 Register numbers: 1000000 ... 1029999

 By JetSym
 From HMIs
 From the application program
 From other controllers

The following program increments the content of a register variable every time
the application program is started. This way, the number of program starts is
counted.

Var

 ProgramStartCounter: Int At %VL 1000000;

End_Var;

Task Work Autorun

 ProgramStartCounter := ProgramStartCounter + 1;

 Loop

 // ...
 End_Loop;

End_Task;

The JetSym setup pane displays the content of the register variable.

Number Description Function

1 Present content of the
register variable

The content of the register variable is
incremented by one every time the program
is started.

Introduction

Properties

Memory access

JetSym STX program

Setup pane

Jetter AG 143

JVM-104 Programming

Memory for non-volatile application program variables

Non-volatile variables are used to store data which must be maintained when
the JVM-104 is de-energized.

 Global variables which are assigned to permanent registers (%RL)
 Variables are stored in a compact way.
 Size: 120,000 bytes
 Register numbers: 1000000 ... 1029999

 By JetSym
 From HMIs
 From the application program

The following program increments the content of four non-volatile variables
every second.
The working range of the counters is between 0 and 255 (variable type: byte).
For these four variables the four bytes of register 1000010 are used.

Var

 Cnt1, Cnt2, Cnt3, Cnt4: Byte At %RL 1000010;

End_Var;

Task Count4 Autorun

 Loop

 Inc(Cnt1);

 Inc(Cnt2, 2);

 Inc(Cnt3, 5);

 Inc(Cnt4, 10);

 Delay(T#1s);

 End_Loop;

End_Task;

The JetSym setup pane displays the content of the variable. As the type of the
four counters is byte, this will result in counter overflow after a relatively short
time:

Introduction

Properties

Memory access

JetSym STX program

Setup pane

144 Jetter AG

9 Programming

Number Description Function

1 Current content of the
variable Cnt1

The content of the variable is incremented by
one every second.

2 Current content of the
variable Cnt2

The content of the variable is incremented by
two every second.

3 Current content of the
variable Cnt3

The content of the variable is incremented by
five every second.

4 Current content of the
variable Cnt4

The content of the variable is incremented by
ten every second.

Jetter AG 145

JVM-104 Programming

Special registers

Special registers let you control OS functions and retrieve status information.

 Global variables which are assigned to permanent addresses (%VL)
 When the operating system is launched, special registers are initialized

using default values.
 Register numbers: 100000 ... 999999

 By JetSym
 By browser (via HTTP server)
 From HMIs
 From the application program
 From other controllers

The following program uses the special register to store the digipot value. In
this program, the background lighting for the JVM-104 is dimmed by using the
digipot. An upper and lower limit for the digipot is specified for this purpose. If
you press the pushbutton, full background lighting is activated.

Var

 Digipot_Count : Int At %VL 363000;

 Digipot_Limit_min: Int At %VL 363002;

 Digipot_Limit_max: Int At %VL 363003;

 Digipot_Button : Int At %VL 363001;

 BackgroundLighting: Int At %VL 364000;

End_Var;

Task Main Autorun

 Digipot_Count := 0;

 Digipot_Limit_max := 17;

 Digipot_Limit_min := 0;

 Loop

 If Digipot_Button Then

 BackgroundLighting := 255;

 Else BackgroundLighting := Digipot_Count * 15;

 End_If

 End_Loop

End_Task;

Introduction

Properties

Memory access

JetSym STX program

146 Jetter AG

9 Programming

Flags

Flags are one-bit operands. This means they can either have the value TRUE
or FALSE.

 Global variables which are assigned to permanent addresses (%MX)
 Non-volatile
 Quantity: 256
 Flag numbers: 0 ... 255

 Global variables which are assigned to permanent addresses (%MX)
 Non-volatile
 Overlaid by registers 1000000 through 1000055
 Quantity: 1,792
 Flag numbers: 256 ... 2047

 Global variables which are assigned to permanent addresses (%MX)
 When the operating system is launched, special flags are initialized using

their default values.
 Quantity: 256
 Flag numbers: 2048 ... 2303

 By JetSym
 From HMIs
 From the application program

In the program listed below, a flag is set when the user presses KEY_UP. If
KEY_DOWN is pressed, the flag is reset. As long as this flag is set, special
register 364000 (background lighting) is incremented. Incrementing of the
special register continues until the flag is reset.

Var

 Flag1: Bool At %MX 1;

 Key_Up: Bit At %XL 361000.3;

 Key_Down: Bit At %XL 361000.2;

 Background_Light: Int At %VL 364000;

End_Var;

Task Main Autorun

 Flag1:= False;

 Loop

 If Key_Up Then

 Flag1 := True;

 ElseIf Key_Down Then

 Flag1 := False;

 End_IF;

Introduction

Properties of user flags

Properties of overlaid
user flags

Properties of
special flags

Memory access

JetSym STX program

Jetter AG 147

JVM-104 Programming

 If Flag1 Then

 Inc(Background_Light);

 Delay(T#100ms);

 End_If;

 End_Loop;

End_Task;

148 Jetter AG

9 Programming

9.2 Controls and ignition

This chapter covers the programming of controls, ignition and switching off
delay for the JVM-104.

Topic Page
Input keys .. 149
Digipot ... 151
Ignition and shutdown delay ... 153

Introduction

Contents

Jetter AG 149

JVM-104 Programming

Input keys

The HMI JVM-104 has got four input keys: [UP], [DOWN], [OK] and [ESC].
These input keys are user-programmable.

In register 361000 of the JVM-104, there is a bit-coded map of the input keys
which can be used for programming them.
The following registers are available for programming these input keys:

Register Description

361000 Bit-coded map of the input keys

361000.0 Input key [OK]
Bit 0 = 1: Key [OK] is pressed.

361000.1 Input key [ESC]
Bit 1 = 1: Key [ESC] is pressed.

361000.2 Input key [DOWN]
Bit 2 = 1: Key [DOWN] is pressed.

361000.3 Input key [UP]
Bit 3 = 1: Key [UP] is pressed.

The sample program has been tested for compliance with the following
software versions:

 JetSym version 5.2
 HMI JVM-104, OS version 4.01

For more information on programming by STX, please turn to the online help
in JetSym.

Description:
In the following sample program, the input keys are continuously retrieved in
one task. Pressing one or more keys changes the background lighting of the
display or the night lighting of the keys.

Var

 btnKey_Ok: Bit At %XL 361000.0;

 btnKey_Esc: Bit At %XL 361000.1;

 btnKey_Dwn: Bit At %XL 361000.2;

 btnKey_Up: Bit At %XL 361000.3;

 dispBackLed : Int At %VL 364000;

 dispButtonBackLed : Int At %VL 364001;

End_Var;

Introduction

Special registers

Software versions

JetSym STX program

150 Jetter AG

9 Programming

Task Main Autorun

 Loop

 If btnKey_Up Then

 // Half brightness of background lighting
 dispBackLed := 127;

 End_If;

 If btnKey_Dwn Then

 // Full brightness of background lighting
 dispBackLed := 255;

 End_If;

 If btnKey_Esc Then

 // Full brightness of night key lighting
 dispButtonBackLed := 255;

 End_If;

 If btnKey_Ok Then

 // Turn off night lighting of the keys
 dispButtonBackLed := 0;

 End_If;

 Delay(T#100ms);

 End_Loop;

End_Task;

Jetter AG 151

JVM-104 Programming

Digipot

The JVM-104 has a digipot with pushbutton feature, which offers a convenient
input option. The following provides details of the digipot's special registers
with a corresponding sample program.

The following special registers exist for the digipot:

Register Description

363000 This register holds the current count value. If you turn the digipot, the
count value increments or decrements. The following rule applies:

 Turning the digipot clockwise = incrementing the register
 Turning the digipot counter-clockwise = decrementing the register

363001 Bit 0: 0 = Pusbutton not pressed
Bit 0: 1 = Pusbutton pressed

363002 This register lets you specify the lower limit for the digipot reading. If you
continue turning the digipot counter-clockwise, register 363000 remains at
this minimum value.

363003 This register lets you specify the upper limit for the digipot reading. If you
continue turning the digipot clockwise, register 363000 remains at this
maximum value.

The sample program has been tested for compliance with the following
software versions:

 JetSym version 5.2
 HMI JVM-104, OS version 4.01

For more information on programming by STX, please turn to the online help
in JetSym.

In the following sample program, the background lighting for the JVM-104 is
dimmed using the digipot. An upper and lower limit for the digipot is specified
for this purpose. If you press the pushbutton, full background lighting is
activated.

Var

 Digipot_Count : Int At %VL 363000;

 Digipot_Limit_min: Int At %VL 363002;

 Digipot_Limit_max: Int At %VL 363003;

 Digipot_Button : Int At %VL 363001;

 BackgroundLighting: Int At %VL 364000;

End_Var;

Task Main Autorun

 Digipot_Count := 0;

 Digipot_Limit_max := 17;

 Digipot_Limit_min := 0;

Introduction

Digipot registers

Software versions

JetSym STX program

152 Jetter AG

9 Programming

 Loop

 If Digipot_Button Then

 BackgroundLighting := 255;

 Else BackgroundLighting := Digipot_Count * 15;

 End_If

 End_Loop

End_Task;

Jetter AG 153

JVM-104 Programming

Ignition and shutdown delay

This chapter covers the ignition and the function Shutdown().

The special register 361100 of the JVM-104 is responsible for prompting
ignition. Here, the following applies:

If then ...

Bit 0 = 0: ... ignition is ON and voltage is applied to
terminal 15 IGNITION (+).

Bit 0 = 1: ... ignition is OFF. Ignition is switched off
and no voltage is applied to terminal 15
IGNITION (+).

The HMI has the following default settings in connection with ignition:

If and then ...

... voltage is applied to the
HMI, ...

... the ignition is off, the HMI does not boot up.

... voltage is applied to the
HMI, ...

... the ignition is on, the HMI boots up.

... the HMI is powered on,

...
... the ignition is switched
off (not the power
supply), ...

... the HMI remains
switched on.

Notwithstanding the default ignition function, the Shutdown() function
provides the following options:

 The HMI can be explicitly shut down.
 The HMI can be restarted.

Function Shutdown(Reboot:Bool) :Bool;

The Shutdown() function has the following parameters:

Parameter Description Value

Reboot System restart:
System shutdown:

True
False

Introduction

Special registers

Default ignition function

Shutdown() function -
Options

Function declaration

Function parameters

154 Jetter AG

9 Programming

This function transmits the following return values to the higher-level program.

Return value

0 OK

-1 Ignition is still switched on

If the ignition is still switched on, the device will not be switched off. However,
the HMI can be restarted. Such a restart is carried out irrespective of the fact
that the ignition is on.

The sample program has been tested for compliance with the following
software versions:

 JetSym version 5.2
 HMI JVM-104, OS version 4.01

For more information on programming by STX, please turn to the online help
in JetSym.

If you switch off the vehicle's ignition, in the sample program the function
Shutdown() is carried out after a delay of 3 seconds. The Reboot parameter
for the Shutdown() function has the value false. This means that the device
will switch off.

Var

 Ignition: Int At %VL 361100;

End_Var;

Task Ign Autorun

 Loop

 When Ignition Continue;

 Delay(3000);

 Shutdown(False);

 End_Loop;

End_Task;

Return value

Note

Software versions

JetSym STX program

Jetter AG 155

JVM-104 Programming

9.3 Runtime registers

The JVM-104 provides several registers which are incremented by the
operating system at regular intervals.

These registers can be used to easily carry out time measurements in the
application program.

Topic Page
Description of the runtime registers .. 156
Sample program - Runtime registers.. 158

Introduction

Application

Contents

156 Jetter AG

9 Programming

Description of the runtime registers

The device is equipped with the following runtime registers:

Register Description

R 201000 Application time base in milliseconds

R 201001 Application time base in seconds

R 201002 Application time base in R 201003 * 10 ms

R 201003 Application time base units for R 201002

R 201004 System time base in milliseconds

R 201005 System time base in microseconds

Application time base in milliseconds

Every millisecond this register is incremented by one.

Register properties

Values -2,147,483,648 ... 2,147,483,647 (overflowing)

Application time base in seconds

Every second this register is incremented by one.

Register properties

Values -2,147,483,648 ... 2,147,483,647 (overflowing)

Application time base in application time base units

Every [R 201003] * 10 ms this register value is incremented by one. Using the
reset value 10 in register 201003, this register is incremented every 100 ms.

Register properties

Values -2,147,483,648 ... 2,147,483,647 (overflowing)

Register overview

R 201000

R 201001

R 201002

Jetter AG 157

JVM-104 Programming

Application time base units for R 201002

This register contains the multiplier for runtime register R 201002.

Register properties

Values 1 ... 2,147,483,647 (* 10 ms)

Value after reset 10 (--> 100 ms)

Enabling conditions After at least 10 ms

System time base in milliseconds

Every millisecond this register value is incremented by one.

Register properties

Values -2,147,483,648 ... 2,147,483,647 (overflowing)

Type of access Read

System time base in microseconds

Every microsecond this register value is incremented by one.

Register properties

Values -2,147,483,648 ... 2,147,483,647 (overflowing)

Type of access Read

R 201003

R 201004

R 201005

158 Jetter AG

9 Programming

Sample program - Runtime registers

Measure how much time it takes to store variable values to a file.

Before storing the values, set register 201000 to 0.
Once the values have been stored, you can see from this register how much
time it took to store the values [in milliseconds].

The sample program has been tested for compliance with the following
software versions:

 JetSym version 5.2
 HMI JVM-104, OS version 4.01

For more information on programming by STX, please turn to the online help
in JetSym.

Var

 DataArray: Array[2000] Of Int;

 File1: File;

 WriteTime: Int;

 WriteIt: Bool;

 MilliSec: Int At %VL 201000;

End_Var;

Task WriteToFile Autorun

 Loop

 // Resetting the start flag
 WriteIt := False;

 // Waiting for user to set start flag
 When WriteIt Continue;

 // Opening the file in write mode
 // If there is no file available, a new file
 // is created
 If FileOpen(File1, 'Test.dat', fWrite) Then

 // Setting the application time base register to zero
 MilliSec := 0;

 // Writing the data array into the file
 FileWrite(File1, DataArray, SizeOf(DataArray));

 // Registering the run time
 WriteTime := MilliSec;

 FileClose(File1);

 // Displaying the run time
 Trace(StrFormat('Time : %d [ms]$n', WriteTime));

Task

Solution

Software versions

JetSym STX program

Jetter AG 159

JVM-104 Programming

 Else

 // Displaying the error message
 Trace('Unable to open file!$n');

 End_If;

 End_Loop;

End_Task;

Jetter AG 161

JVM-104 Operating system update

10 Operating system update

Jetter AG are continuously striving to enhance the operating systems for their
HMIs. Enhancing means adding new features, upgrading existing functions
and fixing bugs.
This chapter describes how to carry out operating system updates.

You can download operating systems from the Jetter AG homepage
http://www.jetter.de. You get to the OS files for download at Mobile
Automation - Support - Downloads or by clicking on the quick link Operating
System Download on the website of the corresponding HMI.

Topic Page
Updating the operating system of an HMI .. 162

Introduction

Downloading an
operating system

Contents

http://www.jetter.de/

162 Jetter AG

10 Operating system update

10.1 Updating the operating system of an HMI

This chapter describes how to update the OS of the JVM-104. There are
several options to transfer the OS file to the device:

 From within the programming tool JetSym
 From the directory \App

Topic Page
OS update by means of JetSym ... 163
Operating system update via \App .. 164

Introduction

Contents

Jetter AG 163

JVM-104 Operating system update

OS update by means of JetSym

The programming tool JetSym offers an easy way to transfer an OS file to the
JVM-104.

 An OS file for the JVM-104 is available.
 The device is connected to the PC via CAN.
 The following parameters have been set in JetSym:

• Type of device
• Type of interface
• Node ID
• CAN baud rate

 The controller must not be de-energized during the OS update process.

To update the OS, proceed as follows:

Step Action

1 Select in the JetSym menu Build the menu item Update OS.
Result: The file selection dialog opens.

2 Select the new OS file here.
Result: In JetSym, a confirmation dialog opens.

3 Launch the OS upload by clicking the button Yes.

4 Wait until the update process is completed.

5 To activate the newly installed OS, re-boot the device.

Introduction

Prerequisites

Updating the OS

164 Jetter AG

10 Operating system update

Operating system update via \App

Copying update files into the directory \App lets you easily update the
operating system. To update the OS, proceed as follows:

Step Action

1 Enter the name of the file collection into the file update.ini. Otherwise the
update will not work.

2 Copy the file collection or OS and the file update.ini into the directory
\App.

3 Restart the device.

 Autostart.exe detects the update during the boot process, installs the files
and restarts the device.
Important! Do not interrupt this process.

4 Open the file updatelog.txt to make sure that the update has completed
without errors.

Procedure

Jetter AG 165

JVM-104 Application program

11 Application program

This chapter describes how to store the application program in JVM-104. The
user determines the program that is to be executed.

This chapter requires knowledge on how to create application programs in
JetSym and how to transmit them via the file system of the JVM-104.

Topic Page
Application program - Default path ... 166
Loading an application program ... 167

Introduction

Required programmer's
skills

Contents

166 Jetter AG

11 Application program

Application program - Default path

When uploading the application program from JetSym to the controller, this
program is stored as a file to the internal flash disk. The device enters the path
and file name into the file \App\start.ini.

In the directory \App, JetSym, by default, creates a subdirectory and assigns
the project name to it. Then, JetSym stores the application program to this
subdirectory assigning the extension .es3 to it. Path and file names are
always converted into lower case letters.

This file is a text file with one section holding two entries:

Element Description

[Startup] Section name

Project Path to the application program file, relative to \App

Program Name of the application program file

Example:

[Startup]

Project = test_program

Program = test_program.es3

Result: The application program is loaded from the file
\App\test_program\test_program.es3.

Introduction

Path and file name

\App\start.ini - Structure

Jetter AG 167

JVM-104 Application program

Loading an application program

At reboot of the application program via JetSym or booting the JVM-104, the
application program is loaded and executed via the file system.

The application program is loaded by the JVM-104's OS as follows:

Step Description

1 The OS reads the file /App/start.ini from the internal flash disk.

2 The OS evaluates the Project entry. It contains the path leading to the
application program file.

3 The OS evaluates the Program entry. It contains the program name.

4 The OS loads the application program from the file
<Project>\<Program>.

Introduction

Loading process

Jetter AG 169

JVM-104 Quick reference JVM-104

12 Quick reference
JVM-104

Corresponding OS version

This quick reference summarizes in brief the registers and flags of the HMI
JVM-104 running OS version 4.01.

Default address on the CANopen® bus

Default address of the JVM-104:
Node ID: 127 (0x7F)

Maximum number of CANopen® interfaces

Maximum number of CAN interfaces: 1
CANMAX: 0

Maximum number of SAE J1939 interfaces

Maximum number of CAN interfaces: 0
CANMAX: 0

Registers - General overview

100000 ... 100999 Electronic Data Sheet (EDS)
101000 … 101999 Configuration
104000 ... 104999 Ethernet
106000 ... 106999 CAN

108000 ... 108999 CPU/backplane

200000 ... 209999 General system registers
210000 ... 219999 Application program
230000 ... 239999 Networking via JetIP
260000 ... 269999 RemoteScan
270000 ... 279999 Modbus/TCP
290000 ... 299999 E-mail
310000 ... 319999 File system/data files
350000 ... 359999 User-programmable IP interface
360000 ... 369999 Display

1000000 ... 1029999 Application registers (remanent)

I/Os - General overview

Input keys
361000 ... 361007 Bit-coded map of input keys

Flags - General overview

0 ... 255 Application flags (remanent)
256 ... 2047 Overlaid by registers R 1000000 through 1000055
2048 ... 2303 Special flags

Electronic Data Sheet (EDS)

100500 Interface (0 = CPU, 4 = Base board)

100600 Internal version number
100601 Module ID
100602 ...
100612

Module name (register string)

100613 PCB revision
100614 PCB options

Production
100700 Internal version number
100701 ...
100707

Serial number (register string)

100708 Day
100709 Month
100710 Year
100711 TestNum.
100712 TestRev.

Features
100800 Internal version number
100801 MAC Address (Jetter)
100802 MAC address (device)

Electronic name plate (device as a whole)

Production
100900 Internal version number
100901 ...
100907

Serial number (register string)

100708 Day
100709 Month
100710 Year

100950 Internal version number
100951 Module ID
100952 ...
100962

Module name (register string)

100965 Config ID
100966 Vendor ID
100967 Variant ID
100968 Type ID
100992 Navision ID
100993 FBG version

Configuration

 From system configuration

101100 IP address (rw - remanent)
101101 Subnet mask (rw - remanent)
101102 Default gateway (rw - remanent)

 Used by the system

101200 IP address
101201 Subnet mask
101202 Default gateway

Ethernet

 IP

104531 Current IP address (rw - temporary)
104532 Current subnet mask (rw - temporary)
104533 Current default gateway (rw - temporary)

CAN

106000 Baud rate CAN 1
106001 Node ID CAN 1

Flash memory

107501 30: Read present flash disk statistics
 99: Clear flash disk statistics

107510 Available sectors
107511 Used sectors
107512 Blocked sectors
107513 Free sectors
107520 Size of the flash disk in bytes

170 Jetter AG

12 Quick reference JVM-104

107521 Used memory in bytes
107522 Blocked memory in bytes
107523 Free memory in bytes

CPU hardware

108015 Voltage of backup battery (e.g. for clock)
 0 = Data not valid

 1 = Supply voltage is OK

 Once the power supply has been restored, enter 1 into
this register.

System information

108500 ...
108509

JetVM-DII version string

108510 ...
108519

Version string of the host application

108520 ...
108529

File name of the host application

108530 ...
108539

OS version (string)

108570 CPU type
108571 Number of CPUs
108573 Physical RAM
108574 Free physical RAM
108575 Memory utilization (in %)
108581 Screen width (in pixels)
108582 Screen height (in pixels)
108590 HID version

USB flash drive

109000 Bit 0 = 1: Data medium is available
 Bit 1 = 1: Data medium is ready

109001 1 = Data medium is write-protected
(only valid if R 109000 = 3)

109002 Size in MBytes

General system registers

200000 OS version (major * 100 + minor)
200001 Application program is running (bit 0 = 1)
200008 Error register (identical with 210004)
 Bit 8: Illegal jump

 Bit 9: Illegal call

 Bit 10: Illegal index

 Bit 11: Illegal opcode

 Bit 12: Division by 0

 Bit 13: Stack overflow

 Bit 14: Stack underflow

 Bit 15: Illegal stack

 Bit 16: Error when loading the application program

 Bit 24: Timeout - Cycle time

 Bit 25: Timeout - Task lock

 Bit 31: Unknown error

200168 Bootloader version (IP format)
200169 OS version (IP format)

201000 Runtime register in milliseconds (rw)

201001 Runtime register in seconds (rw)
201002 Runtime register in R 201003
 Units (rw)

201003 * 10 ms units for R 201002 (rw)
201004 Runtime register in milliseconds (ro)

201005 Runtime registers in microseconds (ro)

202930 Web status (bit-coded)

 Bit 0 = 1: FTP server available

 Bit 1 = 1: HTTP server available

 Bit 2 = 1: E-mail available

 Bit 3 = 1: Data file function available

 Bit 4 = 1: Modbus/TCP has been licensed

 Bit 5 = 1: Modbus/TCP available

 Bit 6 = 1: Ethernet/IP available

202960 Password for system command register (0x424f6f74)
202961 System command register

202980 Error history: Number of entries
202981 Error history: Index
202982 Error history: Entry

203100 ...
203107

32-bit overlaying - Flag 0 ... 255

203108 ...
203123

16-bit overlaying - Flag 0 ... 255

203124 ...
203131

32-bit overlaying - Flag 2048 ... 2303

203132 ...
203147

16-bit overlaying - Flag 2048 ... 2303

209700 System logger: Global enable
209701 ...
209739

Enabling system components

Application program

210000 Application program is running (bit 0 = 1)
210001 JetVM version
210004 Error register (bit-coded)
 Bit 8: Illegal jump

 Bit 9: Illegal call

 Bit 10: Illegal index

 Bit 11: Illegal opcode

 Bit 12: Division by 0

 Bit 13: Stack overflow

 Bit 14: Stack underflow

 Bit 15: Illegal stack

 Bit 16: Error when loading the application program

 Bit 24: Timeout - cycle time

 Bit 25: Timeout - task lock

 Bit 31: Unknown error

210006 Highest task number
210007 Minimum program cycle time
210008 Maximum program cycle time
210009 Current program cycle time
210011 Current task number
210050 Current program position within an execution unit
210051 ID of the execution unit being processed
210056 Desired total cycle time in µs

210057 Calculated total cycle time in µs
210058 Maximum time slice per task in µs
210060 Task ID (for R210061)
210061 Priority for task [R210060]
210063 Length of scheduler table

210064 Index in scheduler table
210065 Task ID in scheduler table
210070 Task ID (for R210071)

Jetter AG 171

JVM-104 Quick reference JVM-104

210071 Timer number (0 ... 31)
210072 Manual triggering of a timer event (bit-coded)
210073 End of cyclic task (task ID)

210074 Command for cyclic tasks
210075 Number of timers
210076 Timer number (for R210077)
210077 Timer value in milliseconds

210100 ...
210199

Task state

210400 ...
210499

Task - Program address

210600 Task ID of a cyclical task (for R210601)
210601 Processing time of a cyclical task in per mil figure
210609 Task lock timeout in ms
 -1: Monitoring disabled

210610 Timeout (bit-coded)
 Bit 0 -> Timer 0, etc.

Networking via JetIP

230000 JetIP/TCP server: Number of open connections
230001 JetIP/TCP server: Mode
230002 JetIP/TCP server: Time

232708 Timeout in milliseconds
232709 Response time in milliseconds
232710 Amount of network errors
232711 Error code of last access
 0 = No error

 1 = Timeout

 3 = Error message of the remote station

 5 = Invalid network address

 6 = Invalid amount of registers

 7 = Invalid interface number

232717 Max. number of retries
232718 Number of retries

Modbus/TCP

272702 Register offset
272704 Input offset
272705 Output offset
278000 ...
278999

16-bit I/O registers overlaid by virtual I/Os 20001 ...
36000

E-mail

292932 IP address of the SMTP server
292933 IP address of the POP3 server
292934 Port number of the SMTP server
292935 Port number of POP3 server
292937 Status of e-mail processing
292938 Task ID - E-mail

File system/data file function

312977 Status of file operation
312978 Task ID

User-programmable IP interface

 Reading out the connection list
350000 Last result (-1 = no connection selected)

350001 1 = Client; 2 = Server
350002 1 = UDP; 2 = TCP
350003 IP address
350004 Port number
350005 Connection state
350006 Number of sent bytes
350007 Number of received bytes

Application registers

1000000 ...
1005999

32-bit integer (remanent)

CAN-PRIM registers

200010500 CAN-PRIM status
200010501 CAN-PRIM command register
200010502 Message box number
200010503 FIFO buffer occupancy
200010504 FIFO data
200010506 Global receiving mask
200010507 Global receive ID
200010510 Box status register
200010511 Box configuration register
200010512 CAN ID
200010513 Number of data bytes
200010514
...
200010521

Data bytes

Display

Input keys
361000 ...
361007

Bit-coded map of input keys
e.g. bit 0: 1 = Key 1 is pressed

361000.0 KEY_OK
361000.1 KEY_ESC
361000.2 KEY_DOWN
361000.3 KEY_UP

Ignition (IGN)
361100 Bit 0:

0 = Ignition ON
1 = Ignition OFF

Digipot
363000 Present count value
363001 Digipot key
363002 Minimum count value
363003 Maximum count value

Display
364000 Background lighting
364001 Night-lighting of keys
364003 Brightness sensor

Visualization
365100 Language selection according to ID

Special flags for networks

2075 Error in networking via JetIP

Special flags - Interface monitoring

2088 OS flag - JetIP
2089 User flag - JetIP
2098 OS flag - Debug server
2099 User flag - Debug server

172 Jetter AG

12 Quick reference JVM-104

32 combined flags

203100 0 ... 31
203101 32 ... 63
203102 64 ... 95
203103 96 ... 127
203104 128 ... 159
203105 160 ... 191
203106 192 ... 223
203107 224 ... 255

16 combined flags

203108 0 ... 15
203109 16 ... 31
203110 32 ... 47
203111 48 ... 63
203112 64 ... 79
203113 80 ... 95
203114 96 ... 111
203115 112 ... 127
203116 128 ... 143
203117 144 ... 159
203118 160 ... 175
203119 176 ... 191
203120 192 ... 207
203121 208 ... 223
203122 224 ... 239
203123 240 ... 255

32 combined special flags

203124 2048 ... 2079
203125 2080 ... 2111
203126 2112 ... 2143
203127 2144 ... 2175
203128 2176 ... 2207
203129 2208 ... 2239
203130 2240 ... 2271
203131 2272 ... 2303

16 combined special flags

203132 2048 ... 2063
203133 2064 ... 2079
203134 2080 ... 2095
203135 2096 ... 2111
203136 2112 ... 2127
203137 2128 ... 2143
203138 2144 ... 2159
203139 2160 ... 2175
203140 2176 ... 2191
203141 2192 ... 2207
203142 2208 ... 2223
203143 2224 ... 2239
203144 2240 ... 2255
203145 2256 ... 2271
203146 2272 ... 2287
203147 2288 ... 2303

Overlaid application registers/flags

1000000 256 ... 287
1000001 288 ... 319
1000002 320 ... 351
1000003 352 ... 383
1000004 384 ... 415
1000005 416 ... 447
1000006 448 ... 479
1000007 480 ... 511
1000008 512 ... 543
1000009 544 ... 575
1000010 576 ... 607
1000011 608 ... 639
1000012 640 ... 671
1000013 672 ... 703

1000014 704 ... 735
1000015 736 ... 767
1000016 768 ... 799
1000017 800 ... 831
1000018 832 ... 863
1000019 864 ... 895
1000020 896 ... 927
1000021 928 ... 959
1000022 960 ... 991
1000023 992 ... 1023
1000024 1024 ... 1055
1000025 1056 ... 1087
1000026 1088 ... 1119
1000027 1120 ... 1151
1000028 1152 ... 1183
1000029 1184 ... 1215
1000030 1216 ... 1247
1000031 1248 ... 1279
1000032 1280 ... 1311
1000033 1312 ... 1343
1000034 1344 ... 1375
1000035 1376 ... 1407
1000036 1408 ... 1439
1000037 1440 ... 1471
1000038 1472 ... 1503
1000039 1504 ... 1535
1000040 1536 ... 1567
1000041 1568 ... 1599
1000042 1600 ... 1631
1000043 1632 ... 1663
1000044 1664 ... 1695
1000045 1696 ... 1727
1000046 1728 ... 1759
1000047 1760 ... 1791
1000048 1792 ... 1823
1000049 1824 ... 1855
1000050 1856 ... 1887
1000051 1888 ... 1919
1000052 1920 ... 1951
1000053 1952 ... 1983
1000054 1984 ... 2015
1000055 2016 ... 2047

Jetter AG 173

JVM-104 Quick reference JVM-104

System function

For reasons of compatibility, the system functions are listed below. In
JetSym STX, use the corresponding JetSym STX functions instead of
system functions.

4 Conversion from BCD to HEX
5 Conversion from HEX to BCD
20 Square root
21 Sine
22 Cosine
23 Tangent
24 Arc sine
25 Arc cosine
26 Arc tangent
27 Exponential function
28 Natural logarithm
29 Absolute value
30 Separation of digits before and after the decimal point
50 Sorting register values
60 CRC generation for Modbus RTU
61 CRC check for Modbus RTU
65/67 Reading register block via Modbus/TCP
66/68 Writing register block via Modbus/TCP
80/85 Initializing RemoteScan
81 Starting RemoteScan
82 Stopping RemoteScan
90 Writing a data file
91 Appending a data file
92 Reading a data file
96 Deleting a data file
110 Sending an e-mail
150 Configuring NetCopyList
151 Deleting NetCopyList
152 Sending NetCopyList

JetSym STX functions

System function Corresponding JetSym STX function
4 Function Bcd2Hex(Bcd: Int): Int;
5 Function Hex2Bcd(Hex: Int): Int;
50 Function QSort(DataPtr: Int, ElementCnt: Int,

ElementSize: Int, SortOffset: Int, SortType:
STXBASETYPE, SortMode: QSORTMODE): Int;

60 Function ModbusCRCgen(FramePtr: Int, Length: Int):
Int;

61 Function ModbusCRCcheck(FramePtr: Int, Length:
Int): Int;

65/67 Function ModbusReadReg(Const Ref MbParam:
MODBUS_PARAM): Int;

66/68 Function ModbusWriteReg(Const Ref MbParam:
MODBUS_PARAM): Int;

80/85 Function RemoteScanConfig(Protocol:
RSCAN_PROTOCOL, Elements: Int, Const Ref
Configuration: RSCAN_DSCR): Int;

81 Function RemoteScanStart(Protocol: Int): Int;
82 Function RemoteScanStop(Protocol: Int): Int;
90/91 Function FileDAWrite(Const Ref FileName: String,

Const Ref Mode: String, VarType: DAWRITE_TYPE,
First: Int, Last: Int): Int;

92 Function FileDARead(Const Ref FileName: String):
Int;

110 Function EmailSend(Const Ref FileName: String): Int;
150 Function NetCopyListConfig(IPAddr: Int, IPPort: Int,

Const Ref List: TNetCopyLinstL): Int;
151 Function NetCopyListSend(Handle: Int): Int;
152 Function NetCopyListDelete(Handle: Int): Int;

174 Jetter AG

12 Quick reference JVM-104

Assignment: 8-pin M12 connector

8 7

6
5

4

3

2 1

Pin Description
1 Power supply UB for logic circuits

Voltage: DC 12 V or DC 24 V
Maximum current: 2 A

2 Unassigned
3 Ignition (+)
4 Unassigned
5 CAN_L
6 Reference potential GND
7 CAN_H
8 Shield

Jetter AG 175

JVM-104 Appendix

Appendix

This appendix contains electrical and mechanical data, as well as operating
data.

Topic Page
Interfaces .. 176
Technical data ... 179
Index ... 185

Introduction

Contents

176 Jetter AG

Appendix

A: Interfaces

The HMI JVM-104 is equipped with the following interface:

 M12 male connector

The M12 connector has the following function:

 Power supply of the JVM-104
 CANopen® bus interface: CAN 1
 Recognition of the ignition

Topic Page
Pinout - Overview .. 177

Introduction

M12 male connector

Contents

Jetter AG 177

JVM-104 Appendix

Pinout - Overview

This chapter describes the pinout of the connector for the power supply.
The diagram shows the pinout of the power supply and ignition connector
(viewing the cable side):

8 7

6
5

4

3

2 1

The pinout is as follows:

Pin Description Terminal number in vehicles

1 Power supply UB for logic circuits
Voltage: DC 12 V or DC 24 V
Current consumption: 2 A max.

Terminal # 30

3 Ignition (+) Terminal # 15

6 Reference potential (GND) Terminal # 31

Power supply

178 Jetter AG

Appendix

This chapter describes the pinout of the connector for the CAN interface.
The diagram shows the pinout of the connector for the CANopen® bus
(viewing the cable side). Pin 6 for the reference potential is also color-coded.

8 7

6
5

4

3

2 1

The pinout is as follows:

Pin Description

5 CAN_L

6 Reference potential (GND)

7 CAN_H

CAN interface

Jetter AG 179

JVM-104 Appendix

B: Technical data

This chapter contains information on electrical and mechanical data, as well
as on operating data of the JVM-104.

Topic Page
Technical specifications .. 180
Physical dimensions ... 182
Operating parameters - Environment and mechanics 183
Operating parameters - EMC ... 184

Introduction

Contents

180 Jetter AG

Appendix

Technical specifications

Parameter Description

Rated voltage DC 12 V or DC 24 V

Permissible voltage range UB DC 8 V ... DC 32 V, to ISO 7637

Permissible voltage range - Ignition DC 5 V ... DC 32 V

Maximum current 2 A

Load dump protection DC 70 V max.

Typical current consumption logic circuit
(UB)

170 mA at DC 12 V
90 mA at DC 24 V

Power consumption Approx. 2 W

Integrated protective functions Protection against polarity reversal,
overloading,
voltage surges

Parameter Description

Display 3.5" TFT LCD flat screen monitor

Brightness LED backlight (white), typ. 350 cd/m2

Display resolution 320 x 240 pixels

Parameter Description

Baud rate 250 kBaud ... 1 MBaud

Bus terminating resistor None

External bus termination 120 Ω

Connector specifications Twisted pair conductors, unshielded

Parameter Description

Max. number of CAN ports 1

CANMAX 0

Parameter Description

Max. number of CAN ports 0

CANMAX 0

Technical specifications
- Power supply UB

Technical specifications
- Display

Technical specifications
- CAN interface

Max. number of
CANopen® ports

Max. number of
SAEJ1939 ports

Jetter AG 181

JVM-104 Appendix

Parameter Description

Number of remanent registers 30,000

Remanent memory for variables 120,000 bytes

Flash disk:
Total memory
Folder App
Folder Data

512 MBytes
64 MBytes
368 MBytes

Memory configurations

182 Jetter AG

Appendix

Physical dimensions

The illustration below shows the physical dimensions of the JVM-104 in
millimeters.

5 25 18.7
3

51.7

12
8

12
0

113
105

The illustration shows the space required for the HMI JVM-104. It is stated in
millimeters.

100

Ensure there is enough space around the housing for servicing requirements.

 It should be possible to disconnect the connector at any time.

Physical dimensions

Space required for
installation and service

Jetter AG 183

JVM-104 Appendix

Operating parameters - Environment and mechanics

Parameter Value Standard

Operating temperature
range

-20 ... +60 °C

Storage temperature range -30 ... +70 °C ISO 16750-4
DIN EN 60068-2-1
DIN EN 60068-2-2

Air humidity 10 ... 95 %
Do not use a steam jet or other
such devices to clean the
JVM-104.

DIN EN 61131-2

Climate test Humid heat ISO 16750-4

Pollution degree 2 DIN EN 61131-2

Installation location The JVM-104 must be installed
in the driver's cab.

Parameter Value Standard

Vibration Broadband noise,
10 Hz/0.005 (m/s2)2/Hz
200 Hz/0.02 (m/s2)2/Hz
300 Hz/0.01 (m/s2)2/Hz
350 Hz/0.002 (m/s2)2/Hz
Duration: 3x24 h

To
DIN EN 60068-2-64

Shock resistance Sinusoidal half wave, 30 g
(300 m/s2), 18 ms, 3 shocks in
all 6 orientations

To
DIN EN 60068-2-27

Degree of protection On the front: IP65
Rear: IP65

DIN EN 60529

Environment

Mechanical parameters

184 Jetter AG

Appendix

Operating parameters - EMC

The voltage testing results comply with DIN EN 16750-2.

Parameter Value Standard

Emitted interference to e1 Frequency band 400 ... 1,000
MHz, limit 63 dB (µV/m),
constant

DIN EN 55025

Emitted interference to CE 0.15 ... 0.5 MHz,
66 ... 56 dB (µV) QP DC
supply
0.5 ... 5 MHz,
56 dB (µV) QP
5 ... 30 MHz,
60 dB (µV) QP

DIN EN 55011-DC

 30 ... 230 MHz,
30/40 dB (µV/m) enclosure
230 ... 1,000 MHz,
37/47 dB (µV/m)

DIN EN 55011-HF

Parameter Value Standard

Immunity to interference to
CE

10 V/m over 80 % of the
frequency band

DIN EN 61000-4-3

 2/1 kV data
4/2 kV power

DIN EN 61000-4-4

 ± 1 kV line/ground
± 0.5 kV line/line

DIN EN 61000-4-5

 10 V, 0.15 ... 80 MHz, 80 %
AM sine 1 kHz

DIN EN 61000-4-6

ESD Discharge through air:
Test peak voltage 8 kV
Contact discharge:
Test peak voltage 4 kV

DIN EN 61000-4-2

Voltage testing at UB and
UB_PA

EMC - Emitted
interference

EMC - Immunity to
interference

JVM-104 Index

Jetter AG 185

C: Index

A
Application program

Default path • 166
Loading • 167

B
Components • 15
Order reference • 17

C
CANopen® • 65
Connector • 26

CAN • 30
Example - Wiring • 27
Power supply • 28

Creating visualizations
in JetSym • 50
in JetViewSoft • 45

D
File system

Properties • 132
Directories • 128

Disposal • 10

E
Entering data via digipot • 59
Initial commissioning • 39

I
Installation • 33
Intended conditions of use • 10

M
Making changes to visualization objects (visualization

command) • 63
Physical dimensions • 18
Memories - Overview • 137
Memory types • 137
Modifications • 10

O
Operating parameters

EMC • 184
Environment and mechanics • 183

Operating system update • 161

P
Personnel qualification • 10
Product description • 14
Programming

Digipot • 151
Ignition and switch off delay • 153
Input keys • 149

Q
Quick reference • 169

R
Repair • 10
Runtime registers • 155

S
SAE J1939 • 103

T
Technical specifications • 180
Transport • 10
Nameplate • 21

U
Usage other than intended • 10

V
Version registers • 22

Jetter AG
Graeterstrasse 2
71642 Ludwigsburg | Germany

Phone +49 7141 2550-0
Fax +49 7141 2550-425
info@jetter.de
www.jetter.de

We automate your success.

mailto:info@jetter.de
http://www.jetter.de

	User Manual JVM-104
	Table of Contents

	1 Safety instructions
	Basic safety instructions

	2 Product description and design
	Product description
	Parts and interfaces
	Order reference
	Physical dimensions

	3 Identifying the JVM-104
	3.1 Identification by means of the nameplate
	Nameplate

	3.2 Version registers
	Software versions

	4 Mounting and installation of the JVM-104
	4.1 Interfaces
	Example - Wiring
	Connecting the power supply
	CAN interface

	4.2 Installing the JVM-104
	Installation

	5 Initial commissioning
	5.1 Preparatory work and first insight into programming with JetSym STX
	Preparatory work for initial commissioning
	Programming in the programming language JetSym STX

	5.2 Configuring a project for the ER-STX-CE platform
	Initial commissioning in JetViewSoft
	Creating and configuring a visualization project in JetSym

	5.3 ER-STX-CE platform - Programming
	Entering data via digipot
	Using visualization commands to manipulate visualization objects

	6 CANopen® STX API
	STX function: CanOpenInit()
	STX function: CanOpenSetCommand()
	STX function: CanOpenUploadSDO()
	STX function: CanOpenDownloadSDO()
	STX function: CanOpenAddPDORx()
	STX function: CanOpenAddPDOTx()
	Heartbeat monitoring
	CANopen® object dictionary for JVM-104

	7 SAE J1939 STX API
	Content of a J1939 message
	STX Function SAEJ1939Init()
	STX function SAEJ1939SetSA()
	STX function SAEJ1939GetSA()
	STX function SAEJ1939AddRx()
	STX function SAEJ1939AddTx()
	STX function SAEJ1939RequestPGN()
	STX function SAEJ1939GetDM1()
	STX function SAEJ1939GetDM2()
	STX function SAEJ1939SetSPNConversion()
	STX Function SAEJ1939GetSPNConversion()

	8 File system
	8.1 Directories
	Directories

	8.2 Properties
	Flash disk - Properties

	9 Programming
	Abbreviations, module register properties and formats
	9.1 Memories - Overview
	Operating system memory
	File system memory
	Application program memory
	Memory for volatile application program variables
	Memory for non-volatile application program registers
	Memory for non-volatile application program variables
	Special registers
	Flags

	9.2 Controls and ignition
	Input keys
	Digipot
	Ignition and shutdown delay

	9.3 Runtime registers
	Description of the runtime registers
	Sample program - Runtime registers

	10 Operating system update
	10.1 Updating the operating system of an HMI
	OS update by means of JetSym
	Operating system update via \App

	11 Application program
	Application program - Default path
	Loading an application program

	12 Quick reference JVM-104
	Appendix
	A: Interfaces
	Pinout - Overview

	B: Technical data
	Technical specifications
	Physical dimensions
	Operating parameters - Environment and mechanics
	Operating parameters - EMC

	C: Index

	Addresses Jetter AG

