IB IL 24 DO 8-2A
 IB IL 24 DO 8-2A-PAC

Inline Terminal With Eight Digital Outputs

This data sheet is only valid in association with the IB IL SYS PRO UM E User Manual or the Inline System Manual for your bus system.

The item versions IB IL 24 DO 8-2A and IB IL 24 DO 8-2A-PAC only differ with regard to the standard supplied with the module (see "Ordering Data" on page 13). Function and technical data are identical.

In the following, for greater clarity, we will only use the item designation IB IL 24 DO 8-2A.

Function

The terminal is designed for use within an Inline station. It is used to output digital signals.

Features

- Connections for eight digital actuators
- Connection of actuators in 2, 3, and 4-wire technology
- Nominal current per output: 2 A
- Total current of the terminal:

8 A at 50% simultaneity (up to $45^{\circ} \mathrm{C}$ [113 $\left.{ }^{\circ} \mathrm{F}\right]$)

- Short circuit and overload protected outputs
- Diagnostic and status indicators

6349B002

Figure 1 IB IL 24 DO 8-2A-PAC terminal

Local Diagnostic and Status Indicators

Figure 2 IB IL 24 DO 8-2A terminal with an appropriate connector

Function Identification

Des.	Color	Meaning
D	Green	Diagnostics
$\mathbf{1 , 2}$	Yellow	Status indicators of the outputs

Terminal Assignment for Each Connector

Terminal Point	Assignment
$\mathbf{1 . 1}$	Signal output (OUT1)
$\mathbf{2 . 1}$	Signal output (OUT2)
$\mathbf{1 . 2 , 2 . 2}$	Segment voltage U S for 4-wire termination Measuring points for the supply voltage
$\mathbf{1 . 3 , 2 . 3}$	Ground contact (GND) for 2, 3, and 4-wire termination
$\mathbf{1 . 4 , 2 . 4}$	FE connection for 2 and 3-wire termination

Pink

B

Figure 3 Terminal point numbering when using individual connectors (A) and when using a connector set (B)

Internal Circuit Diagram

Figure 4 Internal wiring of the terminal points

Key:

OPC

Pocol chip (bus logic including voltage conditioning)

Transistor
" Digital output

Electrically isolated area

Other symbols are explained in the IB IL SYS PRO UM E User Manual or in the Inline System Manual for your bus system.

Connection Example

Observe the Current Carrying Capacity

The maximum current carrying capacity of the potential jumpers U_{M} and U_{S} is 8 A . Simultaneous full load operation of all outputs is therefore not permitted.
Additional restrictions may apply when using certain supply terminals. Please refer to the information in the terminal-specific data sheets.

\triangle
When connecting the actuators, observe the assignment of the terminal points to the process data (see page 5).

A 4-wire termination
B 3-wire termination
The numbers shown above the module indicate the connector slots.

Figure 5 Typical actuator connections

Programming Data/Configuration Data

INTERBUS

ID code	$\mathrm{BD}_{\text {hex }}\left(189_{\mathrm{dec}}\right)$
Length code	$81_{\text {hex }}$
Process data channel	8 bits
Input address area	0 bytes
Output address area	1 byte
Parameter channel (PCP)	0 bytes
Register length (bus)	1 byte

Other bus systems

For programming data / configuration data for other bus systems, please refer to the corresponding electronic device data sheet (GSD, EDS)

Process Data

Please refer to the data sheet DB GB IBS SYS ADDRESS, Part No. 900099 0, for the assignment of the shown (byte.bit) view to your INTERBUS control or computer system.

Assignment of the Terminal Points to the OUT Process Data

The following table applies for IB IL 24 DO 8-2A-PAC terminal with the original connector set and when using the connector sets IB IL DI/DO 8-PLSET and IB IL DI/DO 8-PLSET/CP (see also Figure 3 on page 2, part B).

(Byte.bit) view	$\begin{array}{\|l\|} \hline \text { Byte } \\ \hline \text { Bit } \\ \hline \end{array}$	Byte 0							
		7	6	5	4	3	2	1	0
Terminal	Slot	4		3		2		1	
	Terminal point (signal)	8.1	7.1	6.1	5.1	4.1	3.1	2.1	1.1
	Terminal point (24 V)	8.2	7.2	6.2	5.2	4.2	3.2	2.2	1.2
	Terminal point (GND)	8.3	7.3	6.3	5.3	4.3	3.3	2.3	1.3
	Terminal point (FE)	8.4	7.4	6.4	5.4	4.4	3.4	2.4	1.4
Status indication	Slot	4		3		2		1	
	LED	2	1	2	1	2	1	2	1

The following table applies when using the connectors IB IL SCN-8 or IB IL SCN-8-CP (see also Figure 3 on page 2, part A).

(Byte.bit) view	Byte	Byte 0							
	Bit	7	6	5	4	3	2	1	0
Terminal	Slot	4		3		2		1	
	Terminal point (signal)	2.1	1.1	2.1	1.1	2.1	1.1	2.1	1.1
	Terminal point (24 V)	2.2	1.2	2.2	1.2	2.2	1.2	2.2	1.2
	Terminal point (GND)	2.3	1.3	2.3	1.3	2.3	1.3	2.3	1.3
	Terminal point (FE)	2.4	1.4	2.4	1.4	2.4	1.4	2.4	1.4
Status indi-	Slot	4	4	3	3	2	2	1	1
cation	LED	2	1	2	1	2	1	2	1

Technical Data

General Data	
Order designation (Order No.)	IB IL 24 DO 8-2A (2742117) IB IL 24 DO 8-2A-PAC $(286160$ 3)
Housing dimensions (width x height x depth)	$48.8 \mathrm{~mm} \times 120 \mathrm{~mm} \times 71.5 \mathrm{~mm}$ (1.921 x 4.724×2.815 in.)
Weight	130 g (without connectors)
Operating mode	Process data operation with 1 byte
Transmission speed	500 kBaud
Type of actuator connection	2, 3, and 4-wire technology
Permissible temperature (operation)	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$
Permissible temperature (storage/transport)	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
Permissible humidity (operation)	75% on average, 85\% occasionally
In the range from $-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$ appropriate measures against increased humidity ($>85 \%$) must be taken.	
Permissible humidity (storage/transport)	75% on average, 85% occasionally
For a short period, slight condensation may appear on the housing if, for example, the terminal is brought into a closed room from a vehicle.	
Permissible air pressure (operation)	80 kPa to 106 kPa (up to 2000 m [6562 ft.] above sea level)
Permissible air pressure (storage/transport)	$\begin{array}{\|l} 70 \mathrm{kPa} \text { to } 106 \mathrm{kPa} \\ \text { (up to } 3000 \mathrm{~m} \text { [9843 ft.] above sea level) } \end{array}$
Degree of protection	IP 20 according to IEC 60529
Class of protection	Class 3 according to VDE 0106, IEC 60536
Interface	
Local bus	Through data routing

Power Consumption	
Communications power	7.5 V DC
Current consumption from the local bus	60 mA, maximum
Power consumption from the local bus	0.45 W, maximum
Segment supply voltage U_{S}	24 V DC (nominal value)
Nominal current consumption at U_{S}	8 A, maximum, as the maximum current carrying capacity of the potential jumpers must not be ex- ceeded (theoretically: $8 \times 2 \mathrm{~A}=16 \mathrm{~A})$

Supply of the Module Electronics and I/O Through Bus Terminal/Power Terminal	
Connection method	Through potential routing

Digital Outputs	
Number	8
Nominal output voltage $\mathrm{U}_{\text {OUT }}$	24 V DC
Differential voltage for $\mathrm{I}_{\text {nom }}$	$\leq 1 \mathrm{~V}$
Nominal current $\mathrm{I}_{\text {nom }}$ per channel	2 A
Tolerance of the nominal current	+10\%
Total current	8 A (at 50\% simultaneity)
Possible output current during short circuit	28 A , maximum for $150 \mu \mathrm{~s}$
Please take this value into account when selecting the power supply unit.	
Protection	Short circuit; overload
Single chip structure, i.e., all channels are thermally isolated.	
Nominal load	
Ohmic	48 W
Lamp	48 W
Inductive	$48 \mathrm{VA}(1.2 \mathrm{H}, 12 \Omega)$

Digital Outputs (Continued)	
Signal delay upon power up of - Ohmic nominal load - Lamp nominal load - Inductive nominal load	Approximately $50 \mu \mathrm{~s}$, typical 75 ms , typical (with switching frequencies up to 8 Hz ; above this frequency the lamp load responds like an ohmic load) 50 ms , approximately $(1.2 \mathrm{H}, 12 \Omega)$
Signal delay upon power down of - Ohmic nominal load - Lamp nominal load - Inductive nominal load	$500 \mu \mathrm{~s}$, approximately $500 \mu \mathrm{~s}$, approximately 150 ms , approximately ($1.2 \mathrm{H}, 12 \Omega$)
Switching frequency with	
This switching frequency is limited by es, the bus structure, the software, a	e selected data rate, the number of bus devicthe control or computer system used.
- Lamp nominal load	\| 500 Hz , maximum
This switching frequency is limited by the selected data rate, the number of bus devices, the bus structure, the software, and the control or computer system used.	
- Inductive nominal load	0.3 Hz, maximum (1.2 H, 12Ω)
Overload response	Auto restart
Response time with ohmic overload (2 Ω)	3 s , approximately
Restart frequency with ohmic overload	33 Hz , approximately
Restart frequency with lamp overload	33 Hz , approximately
Inductive overload response	Output may be damaged
Response time after short circuit	400 ms , approximately
Reverse voltage endurance against short pulses	Protected against reverse voltages
Resistance to permanently applied reverse voltages	Up to 2 A DC
Resistance to polarity reversal of the supply voltage	Protective elements in the bus terminal or the power terminal
Resistance to permanently applied surge voltage	No

Digital Outputs (Continued)	
Validity of output data after connection of 24 V voltage supply (power up)	1 ms, typical
Response upon power down	The output follows the supply voltage without de- lay.
Limitation of the voltage induced on circuit inter- ruption	-8.5 V, approximately
Single maximum energy in free running	1500 W
Protective circuit type	Integrated free-wheeling diode for each channel
Overcurrent shutdown	At 3 A, minimum
Output current when switched off	$1 \mu \mathrm{~A}$, maximum
Output voltage when switched off	1 V at $1 \mathrm{M} \Omega$, maximum
Output current with ground connection inter- rupted	$1 \mu \mathrm{~A}$, maximum
Switching power with ground connection inter- rupted	$0.95 \mu \mathrm{~W}$ at $1 \mathrm{k} \Omega$ load resistance, typical
Inrush current with lamp load	1.5 A for 20 ms, maximum

Output Characteristic When Switched On (Typical)	
Output Current (A)	Differential Output Voltage (V)
0	0
0.2	0.04
0.4	0.08
0.6	0.13
0.8	0.17
1.0	0.21
1.2	0.26
1.4	0.30
1.6	0.35
1.8	0.39
2.0	0.44

Power Dissipation

Formula to Calculate the Power Dissipation of the Electronics

$$
P_{\text {tot }}=0.20 \mathrm{~W}+\sum_{n=1}^{8}\left(0.06 \mathrm{~W}+\mathrm{I}_{\mathrm{Ln}^{2}}{ }^{2} \times 0.125 \Omega\right)
$$

Where
$P_{\text {tot }} \quad$ Total power dissipation of the module
$\mathrm{n} \quad$ Index of the number of set outputs $\mathrm{n}=1$ to 8
In Load current of the output n

Power dissipation of the housing $\mathbf{P}_{\text {HOU }}$	2.7 W, maximum (within the permissible operating temperature)

Limitation of Simultaneity, Derating		
Ambient Temperature (TA)	Maximum Load Current (I) at 100\% Simultaneity	Maximum Load Current (I) at 50\% Simultaneity
$45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$	1 A	2 A
$55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$	0.75 A	1.5 A
With an ambient temperature of up to $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$ and 100% simultaneity, a load current of 1 A per channel is permissible. If only four channels are used (50% simultaneity), a load current of 2 A can be tapped. If all eight channels are used, the permissible working point must be defined according to the above formula. An example can be found in the "Configuring and Installing the INTERBUS Inline Product Range" User Manual IB IL SYS PRO UM E.		
		6349A006

Safety Equipment	
Overload/short circuit in segment circuit	Electronic
Surge voltage	Protective elements of the power terminal It is necessary to protect the voltage supply. The power supply unit should be able to supply 4 times (400\%) the nominal current of the fuse.
Polarity reversal of voltage supply	Protection up to 2 A DC
Reverse voltage	

Electrical Isolation/Isolation of the Voltage Areas

\triangle
To provide electrical isolation between the logic level and the I/O area, it is necessary to supply the station bus terminal and the digital output terminal described here using the bus terminal or a power terminal from separate power supply units. Interconnection of the 24 V power supplies is not permitted. (See also the User Manual).

Common Potentials

The 24 V main power supply, 24 V segment voltage, and GND have the same potential.
FE is a separate potential area.

Separate Potentials in the System Consisting of Bus Terminal/Power Terminal and I/O Terminal	
- Test Distance	- Test Voltage
5 V supply incoming remote bus / 7.5 V supply (bus logic)	$500 \mathrm{~V} \mathrm{AC,50Hz,1min}$.
5 V supply outgoing remote bus / 7.5 V supply (bus logic)	$500 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$.
7.5 V supply (bus logic) / 24 V supply (I/O)	$500 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$.
24 V supply (I/O) / functional earth ground	$500 \mathrm{~V} \mathrm{AC,50Hz,1min}$.

Error Messages to the Higher-Level Control or Computer System

Short circuit/overload of an output	Yes

An error message is generated when an output is shorted and switched on. In addition, the diagnostic LED (D) flashes on the terminal at 2 Hz (medium) under these conditions.

Operating voltage out of range	No

Ordering Data

Description	Order Designation	Order No.
Terminal with eight digital outputs including connectors and labeling fields	IB IL 24 DO 8-2A-PAC	2861603
Terminal with eight digital outputs	IB IL 24 DO 8-2A	2742117

[
Four of the listed connectors or one connector set are/is needed for the complete fitting of the terminal IB IL 24 DO 8-2A.

Connector with eight terminals using the spring-cage method (green, without color print); pack of 10	IB IL SCN-8	2726337
Connector with eight terminals using the spring-cage method (green, with color print); pack of 10	IB IL SCN-8-CP	2727608
Connector set with 32 terminals using the spring-cage method (green, without color print)	IB IL DI/DO 8-PLSET	2860950
Connector set with 32 terminals using the spring-cage method (green, with color print)	IB IL DI/DO 8-PLSET/CP	2860963
"Configuring and Installing the INTERBUS In- line Product Range" User Manual	IB IL SYS PRO UM E	2743048

Phoenix Contact GmbH \& Co. KG
Flachsmarktstr. 8
32825 Blomberg
Germany

+ 49-(0) 52 35-3-00
+49 - (0) 52 35-3-4 12 00
www.phoenixcontact.com
Worldwide Locations:
www.phoenixcontact.com/salesnetwork

