INTERBUS Inline Terminal
With Two Digital Outputs With Negative Logic

This data sheet is only valid in association with the IB IL SYS PRO UM E "Configuring and Installing the INTERBUS Inline Product Range" User Manual.

Function

This terminal is used to output digital signals. It is designed for use within an INTERBUS Inline station.

Features

- Connections for two digital actuators with negative logic (NPN)
- Connection of actuators in 2-, 3-, and 4-wire technology
- Nominal current per output: 500 mA
- Total current of the terminal: 1 A
- Short circuit and overload protected outputs
- Diagnostic and status indicators

6224A002

Figure 1

Please note that the connector is not supplied as standard with the terminal. Please refer to the ordering data on page 10 to order the appropriate connectors for your application.

Figure 2
IB IL 24 DO 2-NPN with appropriate connector

Local Diagnostic and Status Indicators

Des.	Color	Meaning
\mathbf{D}	Green	Bus diagnostics
$\mathbf{1 , 2}$	Yellow	Status indicators of the outputs

Terminal Assignment

Terminal Points	Assignment
$\mathbf{1 . 1 , 2 . 1}$	Signal output (OUT)
$\mathbf{1 . 2 , 2 . 2}$	Segment voltage US for 2-, 3-, and 4-wire termination Measuring point for the supply voltage
$\mathbf{1 . 3 , 2 . 3}$	Ground contact (GND) for 4-wire termination
$\mathbf{1 . 4 , 2 . 4}$	FE connection for 3- and 4-wire termination

Please note the negative logic for the IB IL 24 DO 2-NPN terminal.

Internal Circuit Diagram

Figure 3 Internal wiring of the terminal points

Key:

OPC
INTERBUS protocol chip (bus logic including voltage conditioning)

Digital output (negative logic)
Isolated area
Other symbols are explained in the IB IL SYS PRO UM E User Manual.

Connection Example

When connecting the actuators, observe the assignment of the terminal points to the INTERBUS process data (see page 5).

Figure 4 Typical actuator connections
A 4-wire termination
B 3-wire termination
C 2-wire termination

The example for 2-wire technology shows the direction of the current flow for negative logic.

Programming Data

ID code	$\mathrm{BD}_{\text {hex }}\left(189_{\text {dec }}\right)$
Length code	$\mathrm{C} 2_{\text {hex }}$
Process data channel	2 bits
Input address area	0 bits
Output address area	2 bits
Parameter channel (PCP)	0 bits
Register length (bus)	2 bits

INTERBUS Process Data

IN process data is not available.

Assignment of Terminal Points to OUT Process Data

"Bit" view	Bit	1	0
Module	Terminal point (signal)	2.1	1.1
	Terminal point (+24 V)	2.2	1.2
Terminal point (GND)	2.3	1.3	
	Terminal point (FE)	2.4	1.4
Status indicator	LED	2	1

The two bits can be at any position within a byte due to automatic addressing.

Technical Data

General Data	
Housing dimensions (width x height x depth)	$12.2 \mathrm{~mm} \times 120 \mathrm{~mm} \times 71.5 \mathrm{~mm}$ $(0.480 \mathrm{in} \times 4.724 \mathrm{in} \times 2.815 \mathrm{in})$.
Weight	42 g (without connector)
Operating mode	Process data operation with 2 bits
Connection method of the actuators	$2-, 3-$, and $4-$ wire technology
Permissible temperature (operation)	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$
Permissible temperature (storage/transport)	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
Permissible humidity (operation)	75%, on average, 85%, occasionally

In the range from $-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$ appropriate measures against increased humidity (>85\%) must be taken.
Permissible humidity (storage/transport) $\quad 75 \%$, on average, 85%, occasionally

For a short period, slight condensation may appear on the housing if, for example, the terminal is brought into a closed room from a vehicle.

Permissible air pressure (operation)	80 kPa to 106 kPa (up to $2000 \mathrm{~m}[6562 \mathrm{ft}$.] above sea level)
Permissible air pressure (storage/transport)	70 kPa to 106 kPa (up to $3000 \mathrm{~m}[9843 \mathrm{ft}$.$] above sea level)$
Degree of protection	IP 20 according to IEC 60529
Class of protection	Class 3 according to VDE 0106, IEC 60536

Interface

INTERBUS local bus	Through data routing

Power Consumption	
Communications power	7.5 V
Current consumption from the local bus	32 mA, maximum
Power consumption from the local bus	0.24 W, maximum
Segment supply voltage U_{S}	$24 \mathrm{~V} \mathrm{DC} \mathrm{(nominal} \mathrm{value)}$
Nominal current consumption at U_{S}	$1 \mathrm{~A} \mathrm{(2} \mathrm{\times 0.5A)} maximum$,

Supply of the Module Electronics and I/O Through Bus Terminal/Power Terminal

Connection method
Through potential routing

Digital Outputs	
Number	2
Nominal output voltage U UOT	24 V DC
Differential voltage for $\mathrm{I}_{\text {nom }}$	$\leq 1 \mathrm{~V}$
Nominal current $\mathrm{I}_{\text {nom }}$ per channel	0.5 A
Tolerance of the nominal current	+10\%
Total current	1 A
Protection	Short circuit; overload
Nominal load Ohmic Lamp Inductive	$\begin{aligned} & 48 \Omega / 12 \mathrm{~W} \\ & 12 \mathrm{~W} \\ & 12 \mathrm{VA}(1.2 \mathrm{H}, 50 \Omega) \end{aligned}$
Signal delay upon power up of - Ohmic nominal load - Lamp nominal load - Inductive nominal load	Approximately $200 \mu \mathrm{~s}$ 200 ms , typical (with switching frequencies up to 8 Hz ; above this frequency the lamp load responds like an ohmic load) Approximately $250 \mathrm{~ms}(1.2 \mathrm{H}, 12 \Omega)$
Signal delay upon power down of - Ohmic nominal load - Lamp nominal load - Inductive nominal load	Approximately $200 \mu \mathrm{~s}$ Approximately $200 \mu \mathrm{~s}$ Approximately $250 \mathrm{~ms}(1.2 \mathrm{H}, 12 \Omega)$
Switching frequency with - Ohmic nominal load This switching frequency is limit the bus structure, the software	300 Hz , maximum he selected data rate, the number of bus devices, control or computer system used.
- Lamp nominal load This switching frequency is limi the bus structure, the software	300 Hz , maximum he selected data rate, the number of bus devices, control or computer system used.
- Inductive nominal load	
Overload response	Auto restart
Response time with ohmic overload (2 Ω)	3 s , maximum

Digital Outputs (Continued)	
Restart frequency with ohmic overload (6 $\Omega)$	Approximately 2 Hz
Restart frequency with lamp overload	Approximately 2 Hz
Inductive overload response	Output may be damaged
Reverse voltage endurance against short pulses	Protected against reverse voltages
Strength against permanently applied surge voltages	No
Validity of output data after connection of 24 V voltage supply (power up)	5 ms, typical
Response upon power down	The output follows the supply voltage without delay.
Limitation of the demagnetization voltage induced on circuit interruption	Approximately -8 V
Single maximum energy in free running	200 mJ
Protective circuit type	Integrated Zener diode in output chip
Overcurrent shutdown	$70 \mu \mathrm{~A}$, maximum
Output current when switched off	2 V, maximum
Output voltage when switched off	180 mA, maximum
Output current with ground connection interrupted	3.25 mW at 100Ω load resistance, typical
Switching power with ground connection interrupted	

Output Characteristic When Switched On (Typical)	
Output Current (A)	Differential Output Voltage (V)
0	0
0.3	0.06
0.4	0.078
0.5	0.097
0.8	0.154

Power Dissipation

Formula to Calculate the Power Dissipation of the Electronics

$P_{\text {tot }}=0.18 \mathrm{~W}+\sum_{\mathrm{n}=1}^{2}\left(200 \mathrm{~mW}+\mathrm{I}_{\mathrm{Ln}}{ }^{2} \times 0.2 \Omega\right)$

Where

$P_{\text {tot }}$	Total power dissipation of the terminal
n	Index of the number of set outputs $n=1$ to 2

In Load current of the output n

Power Dissipation of the Housing $\mathbf{P}_{\text {HOU }}$	0.7 W (within the permissible operating temperature)

Concurrent Channel Derating

None

Safety Devices	
Overload/short circuit in segment circuit	Electronic
Surge voltage	Protective circuits of the power terminal
Polarity reversal	Protective circuits of the power terminal

Electrical Isolation/Isolation of the Voltage Areas

\triangle
To provide electrical isolation between the logic level and the I/O area, it is necessary to supply the station bus terminal and the digital output terminal described here using the bus terminal or a power terminal from separate power supply units. Interconnection of the 24 V power supplies is not allowed.

Common Potentials

24 V main power, 24 V segment voltage, and GND have the same potential. FE is a separate potential area.

$\left\|\begin{array}{l}\left\lvert\, \begin{array}{l}\text { Separate Potentials in the System Consisting of Bus Terminal/Power Terminal and I/O } \\ \text { Terminal }\end{array}\right. \\ \hline \text { - Test Distance }\end{array}\right\|-$ Test Voltage
5 V supply incoming remote bus/7.5 V supply (bus logic)
5 V supply outgoing remote bus/7.5 V supply (bus logic)
7.5 V supply (bus logic)/24 V supply (I/O)
24 V supply (I/O)/functional earth ground

Error Messages to the Higher-Level Control or Computer System

Short circuit/overload of an output Yes
An error message is generated when an output is shorted and switched on. In addition, the diagnostic LED (D) flashes on the terminal at 2 Hz (medium) under these conditions.

Operating voltage out of range	No

Ordering Data

Description	Order Designation	Order No.
Terminal with two digital outputs with negative logic	IB IL 24 DO 2-NPN	2740119

One of the listed connectors is required to connect the cables.

I/O connector with eight terminals using the spring-clamp method (green, w/o color print); pack of 10	IB IL SCN-8	2726337
I/O connector with eight terminals using the spring-clamp method (green, with color print); pack of 10	IB IL SCN-8-CP	2727608
"Configuring and Installing the INTERBUS Inline Product Range" User Manual	IB IL SYS PRO UM E	2743048

Phoenix Contact GmbH \& Co
Flachsmarktstr. 8
32825 Blomberg
Germany
筆 + 49-52 35-300
$+49-5235-341200$
www.phoenixcontact.com

